用户名: 密码: 验证码:
基于二次谐波和双光子激发荧光机制的胃癌诊断特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多癌症发生于层状结构的生物组织,且大多数胃癌出现在胃粘膜。由于诊断效果欠佳,胃癌是第二大常见的致死性癌症。基于双光子激发荧光和二次谐波产生的多光子激发显微技术是一种新兴的非线性光谱成像技术,它结合了双光子激发显微术和光谱测量技术,因此它能同时获得生物组织不同深度的图像和光谱信息。在本论文中,首先,通过结合双光子激发荧光成像和二次谐波产生成像,我们观察了人体胃粘膜的固有层。研究表明,用多光子激发显微技术能够有效地描述人体正常的胃粘膜的固有层的微结构。接着,利用多光子激发显微技术,我们研究了人体正常的和癌变的胃组织的粘膜层和粘膜下层,并建立了区分这两层的诊断特征。研究结果显示,多光子激发显微技术不仅能表现正常的和癌变的胃组织的粘膜层和粘膜下层的微结构,还能测量这两层中异常细胞的分布和含量。更重要的是,这些结果为建立胃癌的临床诊断标准奠定了实验基础。总之,我们的研究表明,多光子激发显微技术极有可能为人体胃组织的生理分析和病理诊断提供更精确、更丰富的信息。随着临床用微型化的多光子激发显微术和多光子探针技术的发展,我们的实验研究结果将有助于利用多光子内窥镜技术实现胃癌的早期、活体和实时的诊断。
Many neoplasms occur in biological tissues with a fine stratified structure, and most of stomach cancers develop in the gastric mucosa. Due to poor diagnosis, the stomach cancer is the second most common cause of death. Multiphoton excitation microscopy (MPM) is an emerging nonlinear spectral imaging based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). This microscopy combines two-photon excitation microscopy with spectral measurement technique, so it can be simultaneously used for obtaining tissue image and spectra at different depth. In this thesis, firstly, combining TPEF and SHG, the lamina propria of normal human gastric mucosa was observed. Our results demonstrated that MPM can be very effective to characterize the microstructure of lamina propria in normal human gastric mucosa. Then, by using MPM, the mucosa and submucosa of human normal and cancerous gastric tissues were investigated, and the diagnostic features for identifying the two layers were established. Our findings show that MPM can be capable of exhibiting the mucosal and submucosal microstructures of normal and cancerous gastric tissues, as well as the distribution and content of abnormal cells in the two layers. More importantly, the results can provide the groundwork for establishing clinical diagnostic criteria of gastric cancer. In a word, our findings suggested that MPM has great potential for providing more accurate and comprehensive information in physiological analysis and pathological diagnosis of human gastric tissue. With the development of clinically miniaturized MPM and multiphoton probe, our results can be helpful for applying multiphoton endoscopy to perform real-time in vivo early diagnosis of gastric cancer.
引文
1. World Health Organization. World cancer report 2008. Geneva: WHO Press; 2008. p. 42.
    2. World Health Organization. World health statistics 2008. Geneva: WHO Press; 2008. p.30.
    3. 中华人民共和国卫生部.2008年我国卫生事业发展统计公报.2008. Available from: http://ww.gov.cn/gzdt/2009-04/29/content_1299547.htm
    4. 中华人民共和国卫生部.第三次全国死因调查主要情况.China Academic Journal Electronic Publishing House,2008. Available from: http://www.moh.gov.cn/publicfiles/business/htmlfiles/wsb/pxwfb/200804/33517.htm
    5. Hayat MA, editor. Methods of Cancer diagnosis, therapy and prognosis. Volume 3, Gastrointestinal carcinoma. Springer; 2008. p.5.
    6. Huh CH, Bhutani MS, Farfan EB, Bolch WE. Individual variations in mucosa and total wall thickness in the stomach and rectum assessed via endoscopic ultrasound. Physiological Measurement 2003; 24:N15-22.
    7. Layke JC, Lopez PP. Gastric cancer: diagnosis and treatment options. American Family Physician 2004; 69:1133-40.
    8. Dacosta RS, Wilson BC, Marcon NE. New optical technologies for earlier endoscopic diagnosis of premalignant gastrointestinal lesions. Journal of Gastroenterology and Hepatology 2002; 17 (Suppl):S85-104.
    9. Tan YK, Fielding John WL. Early diagnosis of early gastric cancer. European Journal of Gastroenterology and Hepatology 2006; 18:821-9.
    10. Kobayashi M, Tajiri H, Seike E, et al. Detection of early gastric cancer by a real-time autofluorescence imaging system. Cancer Letters 2001; 165:155-9.
    11. Polglase AL, McLaren WJ, Skinner SA, Kiesslich R, Neurath MF, Delaney PM. A fluorescence confocal endomicroscope for in vivo microscopy of the upper-and the lower-GI tract. Gastrointestinal Endoscopy 2005; 62:686-95.
    12. Silveira L Jr, Betiol Filho JA, Silveira FL, Zangaro RA, Pacheco MT. Laser-induced fluorescence at 488 um excitation for detecting benign and malignant lesions. Journal of Fluorescence 2008; 18:35-40.
    13. Yoshida S, Tanaka S, Hirata M, et al. Optical biopsy of GI lesions by reflectance-type laser-scanning confocal microscopy. Gastrointestinal Endoscopy 2007; 66:144-9.
    14. Fu L, Jain A, Cranfield C, Xie H, Gu M. Three-dimensional nonlinear optical endoscopy. Journal of Biomedical Optics 2007; 12:040501.
    15. Teh SK, Zheng W, Ho KY, Teh M, Yeoh KG, Huang Z. Diagnostic potential of near-infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue. British Journal of Cancer 2008; 98:457-65.
    16. Gheorghe C, Iacob R, Becheanu G, Dumbrava M. Confocal endomicroscopy for in vivo microscopic analysis of upper gastrointestinal tract premalignant and malignant lesions. Journal of Gastrointestinal and Liver Diseases 2008; 17:95-100.
    17. Hoffman A, Goetz M, Vieth M, Galle PR, Neurath MF, Kiesslich R. Confocal laser endomicroscopy: technical status and current indications. Endoscopy 2006; 38: 1275-83.
    18. Wang BG, Konig K, Halbhuber KJ. Two-photon microscopy of deep intravital tissues and its merits in clinical research. Journal of Microscopy 2010; 238:1-20.
    19. Provenzano PP, Eliceiri KW, Keely PJ. Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clinical and Experimental Metastasis 2009; 26:357-70.
    20. Rogart JN, Nagata J, Loeser CS, et al. Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo. Clinical Gastroenterology and Hepatology 2008; 6:95-101.
    21. Ferreira DS, Henriques M, Oliveira R, Correia JH, Minas G Autofluorescence spectroscopy of a human gastrointestinal carcinoma cell line. Biodevices 2009-International Conference on Biomedical Electronics and Devices; 2009 January 14-17. Springer; 2009. p.61-66.
    22. Bao H, Boussioutas A, Reynolds J, Russell S, Gu M. Imaging of goblet cells as a marker for intestinal metaplasia of the stomach by one-photon and two-photon fluorescence endomicroscopy. Journal of Biomedical Optics 2009; 14:064031.
    23. Kojima T, Yoshikawa K, Saga S, et al. Detection of elevated proteins in peritoneal dissemination of gastric cancer by analyzing mass spectra data of serum proteins. Journal of Surgical Research 2009; 155:13-7.
    24. Ling X, Xu Y, Weng S, et al. Investigation of normal and malignant tissue samples from the human stomach using Fourier Transform Raman spectroscopy. Applied Spectroscopy 2002; 56:570-573.
    25. Li X, Lin J, Jia C, Wang R. Detection and characterization of stomach cancer and atrophic gastritis with fluorescence and Raman spectroscopy. Proceedings of the Biomolecular Photonics and Multidimensional Microscopy; 2003 June 8-11; Wuhan, China. WA:SPIE; 2003.
    26. Liu L, Qu J, Lin Z, et al. Simultaneous time-and spectrum- resolved multifocal multiphoton microscopy. Journal of Applied Physics B:Laser and Optics 2006; 84: 379-83.
    27. Chen J, Zhuo S, Chen R, Jiang X, Xie S, Zou Q. Depth-resolved spectral imaging of rabbit oesophageal tissue based on two-photon excited fluorescence and second-harmonic generation. New Journal of Physics 2007; 9:212.
    28. Zhuo S, Chen J, Jiang X, et al. The layered-resolved microstructure and spectroscopy of mouse oral mucosa using multiphoton microscopy. Physics in Medicine and Biology 2007; 52:4967-80.
    29.陈颖,吴云林,吴巍,蔚青,胡伟国,郭强苏.人胃癌与癌前病变组织的固有荧光特征.世界华人消化杂志2008;16:3055-9.
    30.方宝英,王成,陈家璧.癌变组织显微光谱测量分析.光子学报2009;38:1816-9.
    31. Minsky M. Memoir on inventing the confocal scanning microscope. Scanning 1988; 10:128-36.
    32. Davidovits P. Scanning laser microscope. Nature 1969; 223:831.
    33. Petran M, Hadravsky M, David Egger M, Galambos R. Tandem-scanning reflected-light microscope. Journal of the Optical Society of America 1968; 58: 661-4.
    34. Goppert-Mayer M. Uber elementarakte mit zwei quantensprungen. Annalen der Physik 1931; 401:273-94.
    35. Franken PA, Hill AE, Peters CW, Weinreich G. Generation of optical harmonics. Physics Review Letters 1961; 7:118-9.
    36. Kaiser W, Garrett CG. Two-photon excitation in CaF2:Eu2+. Physics Review Letters 1961; 7:229-31.
    1. National Cancer Institute. What you need to know about stomach cancer. Available from:http://www.cancer.gov/cancertopics/wyntk/stomach
    2.聂毓秀.组织学与胚胎学.北京:人民卫生出版社;2002.p.178-83.
    3. National Institute for Public Health and the Environment. Stomach. Available from: http://www.rivm.nl/interspeciesinfo/intra/human/stomach/
    4.钱士雄,王恭明.非线性光学——原理与进展.上海:复旦大学出版社;2001.p.2.
    5. Bloembergen N. in Nonlinear Spectroscopy, ed by N. Bloembergen. North-Holland, Amsterdam; 1977.
    6. Oheim M, Michael DJ, Geisbauer M, Madsen D, Chow RH. Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches. Advanced Drug Delivery Reviews 2006; 58:788-808.
    7. LaComb R, Nadiarnykh 0, Townsend SS, Campagnola PJ. Phase matching considerations in second harmonic generation from tissues:effects on emission directionality, conversion efficiency and observed morphology. Optics Communications 2008; 281:1823-1832.
    8. Masters BR, So PT. Handbook of biomedical nonlinear optical microscopy. Oxford: Oxford University Press; 2008. p.153-156.
    1. Ferlay J, Bray F, Pisani P, et al. GLOBOCAN 2002:cancer incidence, mortality and prevalence worldwide. IARC CancerBase No.5, version 2.0.. Lyon: IARC Press; 2004.
    2. Spix C, Pastore G, Sankila R, et al. Neuroblastoma incidence and survival in European children (1978-1997):report from the Automated Childhood Cancer Information System project. European Journal of Cancer 2006; 42:2081-91.
    3. Gatta G, Ciccolallo L, Kunkler I, et al. Survival from rare cancer in adults:a population-based study. The Lancet Oncology 2006; 7:132-40.
    4. World Health Organization. World Cancer Report 2008. Geneva: WHO Press; 2008. p.42.
    5. Arai K, Ota H, Hidaka E, et al. Histochemical, ultrastructural, and three-dimensional observation of smooth muscle cells in human gastric mucosa. Histochemistry and Cell Biology 2004; 121:229-37.
    6. Stachura J, Jkrause W, Jivey K. Ultrastructure of endocrine-like cells in lamina propria of human gastric mucosa. Gut 1981; 22:534-41.
    7. Nagashima R, Maeda K, Imai Y, Takahashi T. Lamina propria macrophages in the human gastrointestinal mucosa: their distribution, immunohistological phenotype, and function. Journal of Histochemistry and Cytochemistry 1996; 44:721-31.
    8. Balas C. Review of biomedical optical imaging-a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis. Measurement Science and Technology 2009; 20:104020.
    9. Zipfel WR, Williams RM, Webb WW. Nonlinear magic:multiphoton microscopy in the biosciences. Nature Biotechnology 2003; 21:1369-77.
    10. Williams RM, Zipfel WR, Webb WW. Multiphoton microscopy in biological research. Current Opinion in Chemical Biology 2001; 5:603-8.
    11. Zipfel WR, Williams RM, Christie R, et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proceedings of the National Academy of Sciences 2003; 100:7075-80.
    12. Wang BG, Konig K, Halbhuber KJ. Two-photon microscopy of deep intravital tissues and its merits in clinical research. Journal of Microscopy 2009; 238:1-20.
    13. Provenzano PP, Eliceiri KW, Keely PJ. Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clinical and Experimental Metastasis 2009; 26:357-70.
    14. Rogart JN, Nagata J, Loeser CS, et al. Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo. Clinical Gastroenterology and Hepatology 2008; 6:95-101.
    15. Chen J, Zhuo S, Chen R, et al. Depth-resolved spectral imaging of rabbit oesophageal tissue based on two-photon excited fluorescence and second-harmonic generation. New Journal of Physics 2007; 9:212.
    16. Zhuo S, Chen J, Luo T, et al. Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode. Optics Express 2006; 14:7810-20.
    17. Zhuo S, Chen J, Xie S, et al. Extracting diagnostic stromal organization features based on intrinsic two-photon excited fluorescence and second-harmonic generation signals. Journal of Biomedical Optics Letters 2009; 14:020503.
    18. Ichikura T, Tomimatsu S, Uefuji K, et al. Evaluation of the New American Joint Committee on Cancer/International Union against cancer classification of lymph node metastasis from gastric carcinoma in comparison with the Japanese classification. Cancer 1999; 86:553-8.
    19. Roder JD, Bottcher K, Busch R, et al. Classification of regional lymph node metastasis from gastric carcinoma. Cancer 1998; 82:621-31.
    20. Greene FL, Page DL, Fleming ID, et al. AJCC Cancer staging manual, sixth edition. New York: Springer; 2002. p.99-106.
    1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics,2002. CA:A Cancer Journal for Clinicians 2005; 55:74-108.
    2. Boyle P, Levin B. World Cancer Report 2008. Geneva: World Health Organization; 2008.
    3. Tan YK, Fielding JW. Early diagnosis of early gastric cancer. European Journal of Gastroenterology and Hepatology 2006; 18:821-9.
    4. Nieminen A, Kokkola A, Yla-Liedenpohja J, Louhimo J, Mustonen H, Puolakkainen P. Early gastric cancer: clinical characteristics and results of surgery. Digestive Surgery 2009; 26:378-83.
    5. Schlemper RJ, Riddell RH, Kato Y, et al. The vienna classification of gastrointestinal epithelial neoplasia. Gut 2000; 47:251-5.
    6. Yeoh KG, Salto-Tellez M, Khor CJL, et al. Confocal laser endoscopy is useful for in vivo rapid diagnosis of gastric neoplasia and pre-neoplasia. Gastroenterology 2005; 128 (suppl):A27-A127.
    7. Hoffman A, Goetz M, Vieth M, Galle PR, Neurath MF, Kiesslich R. Confocal laser endomicroscopy:technical status and current indications. Endoscopy 2006; 38: 1275-83.
    8. Collier T, Guillaud M, Follen M, et al. Real-time reflectance confocal microscopy: comparison of two-dimensional images and three-dimensional image stacks for detection of cervical precancer. Journal of Biomedical Optics 2007; 12:024021.
    9. Squirrell JM, Wokosin DL, White JG, Bavister BD. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nature Biotechnology 1999; 17:763-7.
    10. Centonze VE, White JG. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophysical Journal 1998; 75:2015-24.
    11. Maitland KC, Gillenwater AM, Williams MD, El-Naggar AK, Descour MR, Richards-Kortum RR. In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope. Oral Oncology.2008; 44:1059-66.
    12. Rogart JN, Nagata J, Loeser CS, et al. Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo. Clinical Gastroenterology and Hepatology 2008; 6:95-101.
    13. Bao H, Boussioutas A, Reynolds J, Russell S, Gu M. Imaging of goblet cells as a marker for intestinal metaplasia of the stomach by one-photon and two-photon fluorescence endomicroscopy. Journal of Biomedical Optics 2009; 14:064031.
    14. Jung JC, Schnitzer MJ. Multiphoton endoscopy. Optics Letters 2003; 28:902-4.
    15. Helmchen F, Fee MS, Tank DW, Denk W. A miniature head-mounted two-photon microscope: high resolution brain imaging in freely moving animals. Neuron 2001; 31:903-12.
    16. Koehler MJ, Konig K, Elsner P, Buckle R, Kaatz M. In vivo assessment of human skin aging by multiphoton laser scanning tomography. Optics Letters 2006; 31: 2879-81.
    17. Konig K. Clinical multiphoton tomography. Journal of Biophotonics 2008; 1:13-23.
    18. Zhuo S, Chen J, Luo T, Zou D. Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode. Optics Express 2006; 14:7810-20.
    19. Boulesteix T, Pena AM, Pages N, et al. Micrometer scale ex vivo multiphoton imaging of untained arterial wall structure. Cytometry Part A 2006; 69A: 20-6.
    20. Zoumi A, Lu X, Kassab GS, Tromberg BJ. Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy. Biophysical Journal 2004; 87:2778-86.
    21. Chen J, Zhuo S, Chen R, et al. Depth-resolved spectral imaging of rabbit oesophageal tissue based on two-photon excited fluorescence and second-harmonic generation. New Journal of Physics 2007; 9:212.
    22. Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proceeding of the National Academy of Sciences of the United States of America 2003; 100:7075-80.
    23. Huang S, Heikal AA, Webb WW. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophysical Journal 2002; 82:2811-25.
    24. Xu C, Zipfel W, Shear JB, Williams RM, Webb WW. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proceeding of the National Academy of Sciences of the United States of America 1996; 93: 10763-68.
    25. Zoumi A, Yeh A, Tromberg BJ. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proceeding of the National Academy of Sciences of the United States of America 2002; 99: 11014-9.
    26. Chen J, Lee A, Zhao J, et al. Spectroscopic characterization and microscopic imaging of extracted and in situ cutaneous collagen and elastic tissue components under two-photon excitation. Skin Research and Technology 2009; 15:418-26.
    27. Fuchs CS, Mayer RJ. Gastric carcinoma. New England Journal of Medicine 1995; 333:32-41.
    28. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140:883-99.
    29. Carriere V, Colisson R, Jiguet-Jiglaire C, et al. Cancer cells regulate lymphocyte recruitment and leukocyte-endothelium interactions in the tumor-draining lymph node. Cancer Research 2005; 65:11639-48.
    30. Rashid F, Ul-Haque A. Nuclear morphological and morphometric features of reactive versus neoplastic gastric mucosa. International Journal of Pathology 2009; 7:66-72.
    31. Enchev VG, Raichev RD. Cytomorphometric studies on normal stomach mucosa, precancerous diseases and stomach cancer. Archiv fur Geschwulstforschung 1982; 52: 641-7.
    32. Takahashi T, Iwama N. Three-dimensional morphology of gastric adenocarcinoma. Atypical glands as a basis for histopathologic diagnosis. Tohoku Journal of Experimental medicine 1984; 143:451-65.
    33. Guszczyn T, Sobolewski K. Deregulation of collagen metabolism in human stomach cancer. Pathobiology 2004; 71:308-13.
    34. David L, Nesland JM, Holm R, Sobrinho-Simones M. Expression of laminin, collagen IV, fibronectin, and type IV collagenase in gastric carcinoma. An immunohistochemical study of 87 patients. Cancer 1994; 73:518-27.
    35. Pavlova I, Williams M, El-Naggar A, Richards-Kortum R, Gillenwater A. Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue. Clinical Cancer Research 2008; 14:2396-404.
    36. Mignogna MD, Fedele S, Lo Russo L, Lo Muzio L, Bucci E. Immune activation and chronic inflammation as the cause of malignancy in oral lichen planus:is there any evidence? Oral Oncology 2004; 40:120-30.
    37. Jain RK. Molecular regulation of vessel maturation. Nature Medicine 2003; 9: 685-93.
    38. Helmlinger G, Netti PA, Lichtenbeld HC, et al. Solid stress inhibits the growth of multicellular tumor spheroids. Nature Biotechnology 1997; 15:778-83.
    39. Chang YS, di Tomaso E, McDonald DM, et al. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proceeding of the National Academy of Sciences of the United States of America 2000; 97:14608-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700