用户名: 密码: 验证码:
SCN中节律行为与生物网络中Motif行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
历史上,生物被看成是一门实验性科学,因而更强调描述性。20世纪后半世纪出现的分子生物学引起了生物学研究方法的变革,使21世纪成为生命科学的世纪。“人类基因组计划”引发的生物学革命带来了一个崭新的“后基因组时代”。在系统层面理解大量基因、蛋白质和代谢物相互作用所导致的生命现象是“后基因时代”的任务。这种研究方式的改变标志着数理研究方式的加入。生命系统是大量基本单元之间相互作用产生的现象,这些基本单元本质是离散的,如基因、蛋白质、各种代谢物。这类研究方式的第一步就是如何综合各种生物数据来建立尽可能正确的模型。解决这个问题会碰到许多计算数学和统计学的问题,比如如何综合来自于不同数据库的数据、如何由小数据量来建立模型,现在已经有了大量的这方面的工作。总结现有研究,目前来看最合适的模型就是以网络为基础的大规模的动力学网络。也就是,生命现象必须要在成千上万个生物分子组成的复杂系统的层面上予以认识,而这种成千上万个生物分子的相互作用在结构上都表现出网络的特征,所以可以说今天的生命科学正面临着一个新的转型期;要以生物分子所组成网络的结构和功能来认识生命活动。
     在本文,我们主要是用动力系统以及复杂网络的有关知识来研究与生物网络有关的两类动力学性质。一类是基因调控网络的模体(Motif)的动力学行为;另一类是关于人类以及各种哺乳动物生物钟的问题,即24小时昼夜节律问题。在介绍了分子生物学的发展史、复杂网络及同步的相关概念和基本理论后,我们重点介绍了本文的主要工作和创新点。它们可以概括为以下五方面:
     (1)基因调控网络模体的的动力学性质。
     模体在基因调控网络中占有重要的地位,我们主要分析了基因调控网络中模体的动力学性质。我们得到的主要结论是单个模体的动力学性质非常简单,只有渐近稳定的平衡点;但是多个模体的组合将有非常复杂的动力学性质,比如极限环等。这些结果表明在基因调控网络中模体是一个稳定的结构并且它们的组合使得基因调控网络表现出更加复杂的动力学性质。
     (2)不同模体之间的同步。
     首先,基于开环闭环(open-plus-closed-loop,OPCL)方法,我们研究了具有不同拓扑结构和不同动力学行为的网络之间的同步,给出了不同网络达到同步的条件;然后利用所得的理论结果,研究了不同模体(Motif)之间的同步,并用数值例子验证了同步机制的有效性和可行性。这个结果表明网络的同步是可以通过模体(Motif)之间的聚类同步来实现,即使对于不同的模体(Motif)也可能通过此条途径实现同步。
     (3)日夜光照诱导下的节律振子的相同步。
     我们主要分析了视觉交叉上颌(SCN)节律振荡器在日夜光照(LD cycle)影响下的动力学行为。哺乳动物昼夜节律生物钟是自主维持的周期振荡器。在分子水平上,生物钟的振荡由自身调控反馈环路的转录和翻译组成,并接受外界环境因素的影响,通过SCN中枢振荡器的同步整合而产生作用。细胞的振动周期可以各不相同,但是在日夜光照周期的影响下这些振子表现出相同步行为。我们对SCN中的神经元细胞提出一个在光照影响下的模型,并且证明了在一定光照强度下这些神经元细胞在以24小时为周期的光照影响下能达到以24小时为周期的同步,也就是形成昼夜节律。我们的结论为更好地理解细胞在光照作用下的行为提供了理论和量化基础。
     (4)外部噪声对节律振子的影响。
     我们主要用数值的方法研究了日夜交替的周期光照和环境中的噪声对哺乳动物日常节律的影响。研究结果表明,环境中的噪声有利于细胞的相同步,但是当光照强度不大时,它不能使得细胞同步到以24小时为周期。相反,环境中噪声的存在使得细胞同步到以24小时为周期所需的光照强度的阈值升高。
     (5)SCN中昼夜节律的同步机制
     在哺乳动物中,SCN被认为是重要的昼夜节律起搏器。SCN内的每个细胞都含有一个自维持分子生物钟,SCN是由大量的节律振子组成的,这些振子的周期分布在20小时到28小时之间。现在的主要问题是,这些具有广泛周期的细胞振子是如何相互作用、组合并在日常光照的影响下整合后成为一个起搏器来调节着生物体的行为和生理的节律性。理论上关键的一点就是由SCN中的细胞生物钟构成的异质网络在周期光照作用下必须达到同步来维持这种时间一致活动。为了研究SCN中的同步机制以及节律的产生过程,我们在SCN的结构和功能异质的基础上提出一个由节律振子构成的异质网络模型,其中每个节点都是自维持振子。根据这个模型,我们从分析的角度说明了SCN的特殊结构产生的原因,也就是说,为什么腹外侧(VL)部分的神经元数目较少且联系紧密,而背内侧(DM)部分的神经元数目较多且联系稀疏?另外,我们证明了DM部分神经元能使变化剧烈的周期光信号的波形图变得更加光滑。我们还研究了在日常光照影响下的生物钟振子产生节律的三个过程:输入通路(input)、中央振荡器(centraloscillator,包括生物钟基因及其自主调节环路)和输出通路(output)。并且用数值模拟验证了理论结果的有效性。
     最后,结合目前该领域的研究进展和自己所做的工作,对本文的工作做了全面的总结,并指出了今后该领域进一步工作的展望。
In history,biology is regarded as an experimental subject with emphasis of description.At the second half of the 20th century,the appearance of molecular biology brought the change of research methods of biology,which made the 21st century be the age of life sciences.The biological revolution aroused by "Plan of Human Genome" brought the new "Post-genome Times".Systmatically understanding the life phenomenon led by the interaction of a great lot of genes and proteins is the task of "Post-genome Times".The change of research mathods indicates the participation of Mathematical methods.Life system is the results of a lot of basic units,such as gene、protein and metabolic products,which arc essentially discrete. The first step of this research method is how to integrate all kinds of biologial databases and give a model as correctly as possible.To solve this problem will meet with many problems of computational mathematics and statistics, for example,how to integrate the data of different databases,how to deal with the model based on a small quantity of data.There are a great deal of work on this aspect.Summarizing the researches,we find that the largescale dynamical network is the most appropriate model.That is to say, life phenomenon must be cognized on the complex system composed by thousands of biological molecules.While the interaction of these thousands of biological molecules show character of network structurally.So life science is faced with a new transitional period that we should cognize life activity of bivalves based on the structure and function of network composed by biological molecules.
     In this thesis,with the help of dynamical system and complex network, we mainly study the dynamial properties of two kinds of networks about biology.One is the dynamical behavior of motif which is the basic element in gene regulatory network.The other one is the circadian rhythm of mammalian.Firstly,we introduce the phylogeny of molecular biology and give the relative concept and basic theory of complex network and synchronization. Then we introduce the main contents and innovate points of this paper,which can be listed as follows.
     (1) Dynamics of network motifs in genetic regulatory networks.
     Network motifs hold a very important status in genetic regulatory networks. We aim to analyze the dynamical property of the network motifs in genetic regulatory networks.The main result we obtained is that the dynamical property of a single motif is very simple with only an asymptotically stable equilibrium point,but the combination of several motifs can make more complicated dynamical properties emerge such as limit cycles.The above-mentioned result shows that network motif is a stable substructure in genetic regulatory networks while their combinations make the genetic regulatory network more complicated.
     (2) Synchronization between different motifs.
     Firstly,With the help of opcn-plus-closed-loop(OPCL) method,the synchronization between two networks with different topology structures and different dynamical behaviors is studied.Conditions for two different networks to get synchronization are given.Then based on the theoretical results achieved,the synchronization between different motifs is studied, which verifies the effectiveness and feasibility of the synchronization scheme. The results show that the synchronization of biological network can be gotten by the cluster synchronization among motifs,even different kinds of motifs.
     (3) Phase synchronization of circadian oscillators induced by a Light-Dark cycle.
     We mainly analyze the circadian behavior of the population of suprachiasmatic nucleus(SCN) neuron by light-dark cycle.Self-sustained oscillation is generated in individual SCN neuron by a moleculer regulatory network. Cells oscillate with different periods,but the SCN neurons display significant synchronization under the effect of the light-dark(LD) cycle.We present a model for a population of circadian oscillations in the SCN.We show that synchronization can be entrained by a 24-h LD cycle.The results establish not only a theoretical foundation,but also a quantitative basis for understanding the essential cooperative dynamics.
     (4) The noise effect on circadian oscillators.
     We study the effect of the Light-Dark cycle and environment noise on the daily rhythms of mammals numerically.The results show that the environment noise makes for phase synchronization but it can not make the oscillators get phase synchronization with period of 24-h.On the contrary, the threshold of the strength of light that makes the oscillators to get the phase synchronization with period of 24-h with environment noise is larger than that in the case without environment noise.
     (5) Synchronization mechanisms of circadian rhythms in the SCN.
     In mammals,the suprachiasmatic nucleus(SCN) of the hypothalamus is considered as the master circadian pacemaker.Each cell in the SCN contains an autonomous molecular clock,and the SCN is composed of multiple single-cell circadian oscillators.The fundamental question is how the individual cellular oscillators,expressing a wide range of periods,interact and assemble to create an integrated pacemaker that can govern behavioral and physiological rhythmicity and be reset by environmental light.The key is that the heterogeneous network formed by the cellular clocks within the SCN must synchronize to maintain timekeeping activity.To study the synchronization mechanisms and the circadian rhythm generation,we propose a model based on the structural and functional heterogeneity of the SCN.The model is a heterogeneous network of circadian oscillators in which individual oscillators are self-sustained.By using the proposed model,we show how the special structure of the SCN is exploited in synchronization in an analytical manner,i.e.,why the ventrolateral(VL) part has fewer but compactly connected neurons,while dorsomedial(DM) part has more but sparsely connected neurons.Moreover,we show that the DM part can smooth the periodic but abruptly affect waves of signal.We also study the rhythmic process of the circadian oscillators under the effect of the daily light-dark(LD) cycle,including three courses:information afferent inputs, oscillation,and information efferent outputs.The numerical simulations are also given to demonstrate the theoretical results.
     At last,a compact summary of this paper is given by combining the advances of the previous researches in this fields and our work.The prospect for furture study is also given.
引文
[1]李振刚,现代分子生物学论纲,天津科学技术出版社,天津,2003.
    [2]许良英,二十世纪科学技术发展简史,科学出版社,北京,1985.
    [3]Watson J.and Crick F.,Molecular structure of nucleic acids,Nature,1953;171:737-738.
    [4]Dulbccco R.,A turning point in cancer research:sequencing the human gcnome,Science,1986;231(4742):1055-1056.
    [5]陈竺,李伟,俞曼等,人类基因组计划的机遇和挑战Ⅰ.从结构纂因组学到功能幕因组学,生命的化学,1998;18:5-13.
    [6]杨焕明,人类基因组计划及其意义,安徽科技,2003;5:8-10.
    [7]Hood L.,A personal view of molecular technology and how it has changed biology,J.Proteome Res.,2002;1(5):399-409.
    [8]Hiroyuki K.and Kazunari T.,Two-phase partition method for simulating a biological system at an extremely high speed,Genome Informatics,2000;11:185-195.
    [9]Luscombe N.M.,Greenbaum D.and Gerstein M.,What is bioinformatics? A proposed definition and overview of the field,Methods Inf.Med.,2001;40(4):346-358.
    [10]Koji M.K.,et al.,Construction of a generalized simulator for multi-cellular organisms and its application to smad signal transduction,Pacific Symposium on Biocomputing,2000;5:317-328.
    [11]McAdams H.and Arkin A.,Simulation of Prokaryotic Genetic Circuits,Annu.Rev.Biophys.Biomol.Struct.,1998;27:199-224.
    [12]Kitano H.,Systems biology:a brief overview,Science,2002;295:1662-1664.
    [13]陈竺,系统生物学-21世纪医学和生物学发展的核心驱动力,东方论坛第53届研讨会,2005,3.
    [14]Kitano H.,Computational Systems Biology,Nature,2002;420:206-210.
    [15]Hood L.,Systems Biology:integrating technology,biology and computation,Mechanisms of Aging and Development,2003;124:9-16.
    [16]Albert R.and Barabasi A-L.,Statistical mechanics of complex networks,Reviews of Modern Physics,2002;74:47-97.
    [17]Holland J.H.,Genetic algorithms and the optimal allocation of trials,SIAM Journal of Computing,1973;2:88-105.
    [18]Stevens C.F.,Systems biology versus molecular biology,Current Biology,2004;14(2):R51-52.
    [19]Barabasi A-L.,Zoltan N.,Oltvai,Network Biology:understanding the cell's functional organization,Nature reviews genetics,2004;5:101-113.
    [20]Watts D.J.,Networks dynamics and the small world phenomenon,Am.J.Sociol.,1999;105:493-592.
    [21]Newman M.E.J.and Juyong Park,Why social networks are different from other types of networks,Phys.Rev.E,2003;68:036122.
    [22]Newman M.E.J.,Assortative Mixing in Networks,Phys.Rev.Lett.,2002;89:208701.
    [23]Erdos P.and Renyi A.,On the evolution of random graphs,Publications of the Mathematical Institute of the Hungarian Academy of Sciences,1960;5:17-61.
    [24]Erdos P.and Renyi A.,On random graphs,Publicationes Mathematicae,1959;6:290-297.
    [25]Price D.J.de S.,A general theory of bibliometric and other cumulative advantage processes,J.Amer.Soc.Inform.Sci.,1976;27:292-306.
    [26]Rapoport A.,Contribution to the theory of random and biased nets,Bulletin of Mathematical Biophysics,1957;19:257-277.
    [27]Solomonoff R.and Rapoport A.,Connectivity of random nets,Bulletin of Mathematical Biophysics,1951;13:107-117.
    [28]Molloy M.and Reed B.,A critical point for random graphs with a given degree sequence,Random Structures and Algorithms,1995;6:161-179.
    [29]Molloy M.and Reed B.,The size of the giant component of a random graph with a given degree sequence,Combinatorics,Probability and Computing,1998;7:295-305.
    [30]Karonski M.,A review of random graphs,Journal of Graph Theory,1982;6:349-389.
    [31]Janson S.,Luczak T.and Rucinski A.,Random Graphs,New York:John Wiley,1999.
    [32]Bollobas B.,Random Graphs,New York:Academic Press,2001.
    [33]Watts D.J.,Small Worlds,Princeton:Princeton University Press,1999.
    [34]Watts D.a.and Strogatz S.H.,Collective dynamics of small-world,Nature,1998;393:440-442.
    [35]Newman M.E.J.and Watts D.J.,Scaling and percolation in the small-world network model,Phys.Rev.E,1999;60:7332-7342.
    [36]Barabasi A.L.and Albert R.,Einergence of scaling iu random networks.Science,1999;286:509-512.
    [37]谭璐,姜璐,系统生物学与生物网络研究,复杂系统与复杂性科学,2005;2(4):1-9.
    [38]Jeong H.,Tombor B.,Albert R.,Oltvai Z.N.and Barabasi A-L.,The large-scale organization of metabolic networks,Nature,2000;407:651-654.
    [39]Wagner A.and Fell D.,The small world inside large metabolic networks,Proc.Roy.Soc.London Series B,2001;268:1803-1810.
    [40]Fell D.A.and Wagner A.,The small world of metabolism,Nature Biotechnology,2000;18:1121-1122.
    [41]Pastor-Satorras R.,Smith E.and Sole R.,Evolving protein interaction networks through gent duplication,Theor.Biol.,2003;222:199-210.
    [42]Qian J.,Luscombe N.M.and Gerstein M.,Protein family and fold occurrence in genomes:power-law behavior and evolutionary model.Mol.Biol.,2001;3113:673-681.
    [43]Bhan A.,Galas D.J.and Dewey T.G.,A Duplication growth model of gene expression networks,Bioinformatics,2002;18:1486-1493.
    [44]Vazquez A.,Flammini A.,Maritan A.,and Vespignani A.,Modeling of protein interaction networks,ComPlexUs1,2002;1:38-44.
    [45]Milgram S.,The small world problem,Psychol.Today,1967;2:60-67.
    [46]Chung F.and Lu L.,The average distances in random graphs with given expected degrees,Proc.Natl.Acad.Sci.USA,2002;99:15879-15882.
    [47]Cohen R.and Havlin S.,Scale-free networks are ultra small,Phys.Rev.Lett.,2003;90:058701.
    [48]Wall M.E.,Hlavacek W.S.,and Savageau M.A.,Design of gene circuits:lessons from bacteria,Nature Rev.Genet.,2004;5:34-42.
    [49]Alon U.,Biological networks:the tinkerer as an engineer,Science,2003;301:1866-1867.
    [50]Eisenberg E.and Levanon E.Y.,Preferential attachment in the protein network evolution,Phys.Rev.Lett.,2003;91:138701.
    [51]Hartwell L.H.,Hopfield J.J.,Leibier S.and Murray A.W.,Prom molecular to modular cell biology,Nature,1999;402:C47-C52.
    [52]Ravasz E.and Barabasi A-L.,Hierarchical organization in complex networks,Phys.Rev.E,2003;67:026112.
    [53]Ravasz E.,Somera A.L.,Mongru D.A.,Oltvai Z.N.and Barabasi A-L,Hierarchical organization of modularity in metabolic networks,Science,2002;297:1551-1555.
    [54]Yook S-H.,Oltvai Z.N.and Barabasi A-L.,Functional and topological characterization of protein interaction networks,Proteomics,2004;4:928-942.
    [55]Albert R.,Jeong H.and Barabasi A-L.,Error and attack:tolerance of complex networks,Nature,2000;406:378-382.
    [56]吴金闪,狄增如,从统计物理学看复杂网络研究,物理学进展,2004;24(1):18-46.
    [57]史定华,网络-探索复杂性的新途径,系统工程学报,2005;20(2):117-119.
    [58]周涛,傅仲谦等,复杂网络上传播动力学研究综述,自然科学进展,2005;15(5):513-518.
    [59]方锦清,汪小帆等,略论复杂性问题和非线性复杂网络系统的研究,科技导报,基础科学,2004;2:9-12.
    [60]Han J.D.,Bertin N.,Hao T.et al.,Evidence for dynamically organized modularity in the yeast protein-protein interaction network,Nature,2004;430:88-93.
    [61]Stelling J.,Sauer U.,Szallasi Z.and Alon U.,Robustness of cellular functions,Cell,2004;118:675-685.
    [62]Milo R.,Shen-Orr S.,Itzkovitz S.,et al.,Network motifs:simple building blocks of complex networks,Science,2002;298:824-827.
    [63]Shen-Orr S.,Milo R.,Mangan S.and Alon U.,Network motifs in the transcriptional regulation network of Escherichia coli,Nature Genet.,2002;31:64-68.
    [64]Yeger Lotem E.,Sattath S.,Nadav K.,et al.,Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction,PNAS,2004;101(16):5934-5939.
    [65]Johnson C.H.,Endogenous timekeepers in photosynthetic organisms,Annu.Rev.Physiol,2001;63:695-728.
    [66]Kronauer R.E.,A Quantitative Model for the Effects of Light on the Amplitude and Phase of the Deep Circadian Pacemaker,Based on Human Data,Sleep'90,Proceedings of the Tenth European Congress on Sleep Research,J.Horne,ed,p306,Pontenagel Press,Dusseldorf,1990.
    [67]Jewett M.E.and Kronauer R.E..Refinement of a Limit Cycle Oscillator Model of the Effects of Light on the Human Circadian Pacemaker,J.Theor.Biol.,1998;192:455-465.
    [68]Jewett M.E.,Forger D.B.and Kronauer R.E.,Revised Limit Cycle Oscillator Model of Human Circadian Pacemaker,J.of Biol.Rhy.,1999;14(6):493-499.
    [69]Reppert,S.M.and Weaver D.R.,Molecular analysis of mammalian circadian rhythms,Annu.Rev.Physiol.,2001;63:647-676.
    [70]Li Y.,Zhang J.B.,and Liu Z.R.,Circadian oscillators and phase synchronization under a light-dark cycle,Int.J.Nonlinear Science,2006;1(3):131-138.
    [71]Welsh,D.K.,Logothetis D.E.,Meister M.,and Reppert S.M.,Individual neurons dissociated from rat suprachiasmatic nuclcus express independently phased circadian firing rhythms,Neuron,1995;14:697-706.
    [72]Honma,S.,Nakamura W.,Shirakawa T.and Honma K.,Diversity in the circadian periods of single neurons of the rat suprachiasmatic nucleus depends on nuclear structure and intrinsic period,Neurosci.Lett.,2004;358:173-176.
    [73]Hugenii C.,Horoloquium oscilatorium,Apud F.Muguet,Parisiis,1673.
    [74]Fujisaka H.and Yamada T.,Stability Theory of Synchronized Motion in Coupled-Oscillator Systems,Prog.Theor.Phys.,1983;69:32-47.
    [75]刘曾荣,关于同步的几个理论问题,自然,2004;26(5):298-300.
    [76]刘曾荣,用结构适应实现不同系统之间的完全同步,应用数学和计算数学学报,2004;18(2):68-72.
    [77]Pecora L.M.and Carroll T.L.,Synchronization in chaotic systems,Phys.Rev.Lett.,1990;64:821-824.
    [78]Pecora L.M.and Carroll T.L.,Driving systems with chaotic signals,Phys.Rev.A,1991;44:2374-2383.
    [79]Boccalettia S.,Kurths J.,Osipov G.,Valladaresb D.L.,Zhou C.S.,The synchronization of chaotic systems,Physics Reports,2002;366:1-101.
    [80]Kocarev L.and Parlitz U.,General approach for chaotic synchronization with applications to communication,Phys.Rev.Lett.,1995;74:5028-5031.
    [81]Parlitz U.,Kocarev L.,Stojanovski T.and Preckel H.,Encoding messages using chaotic synchronization,Phys.Rev.E,1996;53:4351-4361.
    [82]Wang X.and Chen G.,Synchronization in small-world dynamical networks,Int.J. Bifurcation and Chaos,2002;12(1):187-192.
    [83]Wang X.and Chen G.,Synchronization in scale-free dynamical networks:Robustness and fragility,IEEE Trans.Circuits Syst.-Ⅰ,2002;49:54-62.
    [84]Lu W.and Chen T.,Synchronization analysis of linearly coupled networks of discrete time systems,Phys.D,2004;198:148-168.
    [85]Barahona M.and Pecora L.M.,Synchronization in Small-World Systems,Phys.Rev.Lett.,2002;89:054101-054103.
    [86]Wang Y.,Guan Z.and Wang H.,Feedback and adaptive control for the synchronization of Chen system via a single variable,Phy.Lett.A,2003;312:34-40.
    [87]Agiaz H.N.,Chaos synchronization of Lu dynamical system,Nonlinear Analysis,2004;58:11-20.
    [88]Elabbasy E.M.,Agiaz H.N.,EI-Dessoky M.M.,Adaptive synchronization of Lu system with uncertain parameters,Chaos,Solitons and Fractals,2004;21:657-667.
    [89]Zhang G.,Liu Z.R.and Zhang J.B.,Adaptive synchronization of a class of continuous,chaotic systems with uncertain parameters,Phys.Lett.A,Available online.
    [90]Yang T.,Yang L.and Yang C.,Impulsive synchronization of Lorenz systems,Phys.Lett.A,1997;226:349-354.
    [91]Yang L.and Yang T.,Impulsive synchronization of nonautonomous chaotic systems,Acta Physica Sinica,2000;49(1):33-37.
    [92]Sun J.and Zhang Y.,Impulsive control and synchronization of Chua's oscillators,Mathematics and Computers in Simulation,2004;66:499-508.
    [93]Pecora L.M.and Carroll T.L.,Master stability functions for synchronized coupled systems,Phys.Rev.Lett.,1998;80:2109-2112.
    [94]Li C.and Chen G.,Chaos and hyperchaos in the fractional-order Rossler equations,Physica A,2004;341:55-61.
    [95]廖晓昕,稳定性的理论方法和应用,华中理工大学出版社,武汉,1999.
    [96]Lu W.and Chen T.,Synchronization of coupled connected neural networks with delays,IEEE Trans.Circuits Syst.-Ⅰ,2004;51(12):2491-2503.
    [97]Lu W.and Chen T.,New approach to synchronization analysis of linearly coupled ordinary differential systems,2006;Physica D,213:214-230.
    [98]Belykh I.,Belykh V.,Nevidin K.and Hasler M.,Persistent clusters in lattices of coupled nonidentical chaotic systems,Chaos,2003;13(1):165-178.
    [99]Belykh V.,Belykh I.and Hasler M.,Connected graph stability method for synchronized coupled chaotic systems,Physica D,2004;195:159-187.
    [100]I.Belykh,V.Belykh and M.Hasler,Blinking model and synchronization in smallworld networks with a time-varying coupling,Physica D,2004;195:188-206.
    [101]Ma Z.,Liu Z.and Zhang G.,A new method to realize cluster synchronization in connected chaotic networks,Chaos,2006;16:023103-023109.
    [102]Li Y.,Zhang J.B.and Liu Z.R.,Phase Synchronization of Circadian Oscillators Induced by a Light-Dark Cycle and Extracellular Noise,International Conference on Life System Modeling and Simulation,2007;1-8.
    [103]Reppert S.M.and Weaver D.R.,Coordination of circadian timing in mammals,Nature,2002;418:935-941.
    [104]Leloup J.C.,Gonze D.and Goldbeter A.,Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora,J.Bilo.Rhythms,1999;14:433-448.
    [105]Didier G.,S.Bernard,C.Waltermann,et al.,Spontaneous synchronization of coupled circadian oscillators,Biophysical J.2005;89:120-129.
    [106]Segal,R.and Greenberg D.E..Intracellular signaling pathwaysactivated by neurotrophin receptors,Ann.Rev.Neurosci.,1996;19:463-484.
    [107]Coddington E.A.and Levinson N.,Theory of Ordinary Differential Equations,McGraw-Hill Book Co.Inc.,New York,1955.
    [108]Aulbach B.,Invariant manifolds with asymptotic phase,Nonlinear Analysis.Theory,Methods and Applications,1982;6;817-827.
    [109]Guckenheimer J.,Isochrons and phaseless sets,J.Math.Biol.,1975;1:259-273.
    [110]Kuramoto Y.,Chemical Oscillations,Waves and Turbulence,Springer-Verlag,New York,1984.
    [111]Acebron J.A.,Bonilla L.L,Perez C.J.,et al.,The Kuramoto model:A simple paradigm for synchronization phenomena,Rev.of Modern Phys.,2005;77(1):137-185.
    [112]Y.Li,Z.R.Liu,and J.B.Zhang,Dynamics of network motifs in genetic regulatory networks,Chin.Phys.,2007;16(9):2587-2594.
    [113]LI Y.,Liu Z.R.and Zhang J.B.,Synchronization between Different Networks,Chin.Phys.Lett.,2008;25(3):874-877.
    [114]LI Y.,Liu Z.R.and Zhang J.B.,Synchronization between Different Motifs,Submitted.
    [115]LI Y.,Liu Z.R.,Zhang J.B.,Wang R.Q.and Chen L.N.,Synchronization Mechanisms of Circadian Rhythms in the Suprachiasmatic Nucleus,IET Systems Biology,Revised.
    [116]Babu M.M.,Luscombe N.M.,Aravind L.,Gerstein M.and Teichmann S.A.,Structure and evolution of transcriptional regulatory networks,Current Opinion in Structural Biology,2004;14(3):283-291.
    [117]Moreno Y.,Vazquez-Prada M.and Pacheco A.F.,Fitness for Synchronization of Network Motifs,Phys.A,2004;343:279-297.
    [118]S.Wuchty,Z.N.Olivai,and A.L.Barabasi,Evolutionary conservation of motif constituents in the yeast protein interaction network,Nat.Genet.,2003;35(2):176-179.
    [119]Lodato I.,Boccaletti S.,and Latora V.,Synchronization properties of network motifs,Europhys.Lett.,2007;78(2):28001.
    [120]Lee T.,Rinaldi N.et.al.,Transcriptional Regulatory Networks in Saccharomyces cerevisiae,Science,2002;298(5594):799-804.
    [121]Thieffry D.,Huerta A.M.,Perez-Rueda E.and Collado-Vides J.,From specific gene regulation to genomic networks:a global analysis of transcriptional regulation in Escherichia coli,Bioessays,1998;20(5):433-440.
    [122]Bray D.,Protein molecules as computational elements in living cells,Nature,1995;376:307-312.
    [123]McAdams H.H.and Shapiro L.,Circuit simulation of genetic networks,Science,1995;269(5224):650-656.
    [124]Rao C.V.and Arkin A.P.,Control Motifs for Intracellular Regulatory Networks,Annu.Rev.Biomed.Eng.,2001;3:391-419.
    [125]Hughes J.D.,Estep P.W.,Tavazoie S.and Church G.M.,Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae,J.Mol.Biol.,2000;296(5):1205-1214.
    [126]Hartemink A.J.,Gifford D.K.,Jaakkola T.S.and Young R.A.,Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks,Pac.Symp.Biocomput.,2001;6:422-433.
    [127]Newman M.E.J.,Strogatz S.H.and Watts D.J..Raudom graphs with arbitrary degree distribution and their applications,Phys.Rev.E,2001;64:026118.
    [128]Costanzo M.C.,Crawford M.E.,Hirschman J.E.and Kranz J.E.,YPD,PombePD and WormPD:model organism volumes of the BioKnowledge library,an integrated resource for protein information,Nucleic Acids Res.,2001;29(1):75-79.
    [129]Mangan S.and Alon U.,Structure and function of the feed-forward loop network motif,PNAS,2003;100(21):11980-11985.
    [130]Francois P.and Hakim V.,Core genetic module:The mixed feedback loop,Phys.Rev.E,2005;72:031908.
    [131]Smolen P.,Baxter D.A.and Byrne J.H.,Mathematical modeling of gene networks,Neuron,2000;26(3):567-580.
    [132]Chen T.,He H.L.,Church G.M.,Modeling gene expression with differential equations,Pac.Symp.Biocomput.,1999;4:29+40.
    [133]Chen L.and Aihara K.,Stability and Bifurcation Analysis of Differential-Difference-Algebraic Equations,IEEE Trans.on Circuits and Systems-Ⅰ:Fundamental.Theory and Applications,2001;48(3):308-326.
    [134]Chen L.and Aihara K.,Stability of Genetic Regulatory Networks with Time Delay,IEEE Trans.on Circuits and Systems-Ⅰ:Fundamental Theory and Applications,2002;49(5):602-608.
    [135]Tetsuya K.,Chen L.and Kazuyuki A.,Modeling Genetic Switches with Positive Feedback Loops,J.Theor.Biol.,2003;221:379-399.
    [136]Smith H.L.,Monotone Dynamical Systems41,American Mathematical Society:Providence RI,1995.
    [137]Strogatz S.H.,Exploring comlex networks,Nature(London),2001;410:268-276.
    [138]Li C.G.,Aihara K.and Chen L.N.,A systems biology perspective on signal processing in genetic network motifs,IEEE Signal Processing Magazine,2007;24(2):136-147.
    [139]Kocarev L.and Parlitz U.,Generalized Synchronization,Predictability,and Equivalence of Unidirectionally Coupled Dynamical Systems,Phys.Rev.Lett.,1996;76:1816-1819.
    [140]Li C.P.,Sun W.G.,and Kurths J.,Synchronization between two coupled complex networks,Phys.Rev.E,2007;76:046204.
    [141]Jackson E.A.and Grosu I.,An open-plus-closed-loop(OPCL) control of complex dynamic systems,Phys.D,1995;85(1):1-9.
    [142]Grosu I.,Robust synchronization,Phys.Rev.E,1997;56:3709-3712.
    [143]Lerescu A.I.,Constandache N.,Oancea S.,and Grosu I.,Collection of master-slave synchronized chaotic systems,Chaos,Solitons Fractals,2004;22:599-604.
    [144]Wang X.F.and Chen G.,Complex networks:Topology,dynamics and synchronization,Int.J.Bifurcation and Chaos,2002;12(5):885-916.
    [145]Belykh I.V.,Belykh V.N.,and Hasler M.,Synchronization in asymmetrically coupled networks with node balance,Chaos,2006;16:015102.
    [146]Nishikawa T.and Motter A.E.,Synchronization is optimal in nondiagonalizable networks,Phys.Rev.E,2006;73:065106(R).
    [147]Sprott J.C.,Some simple chaotic flows,Phys.Rev.E,1994;55(5):5285-5290.
    [148]Moore,R.Y.,Speh J.C.and Leak R.K.,Suprachiasmatic nucleus organizarion,Cell Tissue Res.,2002;309:89-98.
    [149]Shirakawa,T.,Honma,S.,Katsuno,Y.,Oguchi,H.and Honma,K.,Multiple oscillators in the suprachiasmatic nucleus,Chronobiol.Int.,2001;18:371-387.
    [150]Hastings,M.and Herzog,E.,Clock genes,oscillators,and ccllular networks in the suprachiasmatic nuclei,J.Biol.Rhythms,2004;19:400-413.
    [151]Moore,R.,Entrainment pathways and the functional organization of the circadian system,Prog.Brain Res.,1996;111:103-119.
    [152]Kalamatianos,T.,Kallo,I.,Piggins,H.and Coen,C.,Expression of VIP and/or PACAP receptor mRNA in peptide synthesizing cells within the suprachiasmatic nucleus of the rat and in its efferent target sites,J.Comp.Neurol.,2004;475:19-35.
    [153]Meijer,J.and Schwartz,W.,In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus,J.Biol.Rhy.,2003;18:235-249.
    [154]Morin,L.and Allen,C.,The circadian visual system,2005,Brain Res.Rev.,2006;51:1-60.
    [155]Shearman,L.,Zylka,M.,Weaver,D.,Kolakowski,L.,and Reppert,S.,Two period homologs:circadian expression and photic regulation in the suprachiasmatic nuclei,Neuron,1997;19:1261-1269.
    [156]Shigeyoshi,Y.,Taguchi,K.,Yamamoto,S.,Takekida,S.,Yan,L.,Tei,H.,Moriya,T.,Shibata,S.,Loros,J.,Dunlap,J.and Okamura,H.,Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPcr1 transcript, Cell, 1997; 91: 1043-1053.
    [157] Albrecht, U., Sun, Z., Eichele, G. and Lee, C., A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light, Cell, 1997; 91: 1055-1064.
    [158] Cutler, D., Haraura, M., Reed, H., Shen, S., Sheward, W. Morrison, C., Marston, H., Harmar, A. and Piggins, H., The mouse VPAC2 receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptide in vitro, Eur. J. Neurosci., 2003; 17: 197-204.
    [159] Aton, S., Colwell, C., Harmar, A., Waschck, J. and Hcrzog, E., Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons, Nat. Neurosci, 2005: 8: 476-483.
    [160] Harmar, A., Marston, H., Shen, S., Spratt, C., West, K., Sheward, W., Morrison, C. Dorin, J., Piggins, H., Rcubi, J., Kelly. J., Maywood, E. and Hastings, M., The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei, Cell, 2002; 109: 497-508.
    [161] King, V., Chahad-Ehlers, S.. Shen, S., Harmar, A., Maywood, E. and Hastings, M., A hVIPR transgene as a novel tool for the analysis of circadian function in the mouse suprachiasmatic nucleus, Eur. J. Neurosci., 2003; 17: 822-832.
    [162] Maywood, E., Reddy, A., Wong, G., O ' Neill, J., O ' Brien, J., McMahon, D., Harmar, A., Okamura, H. and Hastings, M., Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling, Curr. Bio., 2006; 16: 599-605.
    [163] Ingram, C., Ciobanu, R., Coculescu, I., Tanasescu, R., Coculescu, M. and Mihai, R., Vasopressin neurotransmission and the control of circadian rhythms in the suprachiasmatic nucleus, Prog. Brain Res., 1998; 119: 351-364.
    [164] Mihai, R., Juss, T. and Ingram, C., Suppression of suprachiasmatic nucleus neuron activity with a vasopressin receptor antagonist: possible role for endogenous vasopressin in circadian activity cycles in vitro, Neurosci. Lett., 1994; 179: 95-99.
    [165] Mihai, R., Coculescu, M., Wakerley, J. and Ingram, C., The effects of [Arg8] vasopressin and [Arg8] vasotocin on the firing rate of suprachiasmatic neurons in vitro, Neuroscience, 1994; 62: 783-792.
    [166]Eskin,A.,Circadian system of the Aplysia cyc:properties of the pacemaker and mechanisms of its entrainment,Fed Proc.,1979;38(12):2573-2579.
    [167]He,G.and Sun,S.,Structure and role of suprachiasmatic nucleus in the circadian rhythem,Process of Anatomical Science,2000;6(2):97-101(in Chinese).
    [168]Antle,M.,Foley,D.,Foley,N.and Silver,R.,Gates and oscillators:a network model of the brain clock,J.Bio.Rhy.,2003;18(4):339-350.
    [169]Bush,W.and Siegelman,H.,Circadian synchrony in networks of protein rhythm driven neurons,Complexity,2006;12:67-72.
    [170]Rougemont,J.and Naef,F.,Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies,Phy.Rev.E,2006;73:011104.
    [171]Antle,M.,Foley,N.,Foley,D.and Silver,R.,Gates and oscillators Ⅱ:zeitgebers and the network model of the brain clock,J.Bio.Rhy.,2007;22(1):14-25.
    [172]Indic,P.,Schwartz,W.,Herzog,E.,Foley,N.and Antle,M.,Modeling the behavior of coupled cellular circadian oscillators in the suprachiasmatic nucleus,J.Bio.Rhy.,2007;22(3):211-219.
    [173]Lcise,T.and Siegelmann,H.,Dynamics of a multistage circadian system,J.Bio.Rhy.,2007;21(3):314-323.
    [174]To,T.,Hcnson,M.,Herzog,E.and Doyle Ⅲ,F.,A molecular model for intercellular synchronization in the mammalian circadian clock,Biophys.J.,2007;92:3792-3803.
    [175]Rougemont,J.and Naef,F.,Dynamical signatures of cellular fluctuations and oscillator stability in peripheral circadian clocks,Molecular Sys.Bio.,2007;3:93(8).
    [176]Antle,M.and Silver,R.,Orchestrating time:arrangements the brain circadian clock,Trends in Neurosci.,2005;28(3):145-151.
    [177]Goodwin,B.C.,Oscillatory behavior in enzymatic control processes,Adv.Enzyme Regul.,1965;3:425-438.
    [178]Griffith,J.S.,Mathematics of cellular control processes.I.Negative feedback to one gene,J.Theor.Biol.,1968;20:202-208.
    [179]Smolen,P.,P.E.Hardin,B.S.Lo,D.A.Baxter,and J.H.Byme,Simulation of Drosophila circadian oscillations,mutations,and light responses by a model with VRI,PDP-1,and CLK,Biophys.J.,2004;86:2786-2802.
    [180]Rouff.P.and L.Rensing,The temperature-conpensated Goodwin model simulates many circadian clock properties,J.Theor.Biol.,1996;179:275-285.
    [181]Rouff.P.,M.Vinsjevik,C.Monnerjahn,and L.Rensing,The Coodwin model:simulating the effect of light pulses on the circadian sporulation rhythm of Neurospora crassa,J.Theor.Biol.,2001;209:29-42.
    [182]Abrahamson,E.and Moore,R.,Suprachiasmatic nucleus in the mouse:retinal innervation,intrinsic organization and efferent proje ctions,Brain Res.,2001;916:172-191.
    [183]Zhang,X.,Matrix Analysis and Applications,Springer,2004.
    [184]Li,X.and Chen,G.,Synchronization and desynchronization of complex dynamical networks:An engineering viewpoint,IEEE Trans Circuits Syst Ⅰ,2003;50(11):1381-1390.
    [185]Yamaguchi,S.,Isejima,H.,Matsuo,T.,Okura,R.,Yagita,K.,Kobayashi,M.and Okamura,H.,Synchronization of ccllular clocks in thc suprachiasmatic nucleus,Science,2003;302:1408-1412.
    [180]Boyd,S.,Ghaoui,L.,Fcron,E.and Balakrishnan,V.,Linear matrix inequalities in system and control theory,SIAM,Philadclphia,PA,1994.
    [187]Vidyasagar,M.,Nonlinear Systems Analysis(2nd Edition),Englewood Cliffs,Prcnticc-Hall,NJ,1993.
    [188]Zhang,J.,Liu,Z.and Xu,J.,Synchronization in oscillator networks with coupling balancc,Chaos,Solit and Fract.,2007;nolinc.
    [189]Li,C.,Chen,L.and Aihara,K.,Synchronization of couplcd nonidentical genetic oscillators,Phys.Bio.,2006;3:37-44.
    [190]Liu,C.and Reppert,S.,GABA synchronizes clock cells within the suprachiasmatic circadian clock,Neuron,2000;25:123-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700