用户名: 密码: 验证码:
基于非线性与非参数时间序列的SPC-EPC集成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
统计过程控制(SPC)与工程过程控制(EPC)是分别从过程工业和零件工业两个不同的领域发展而来的目的在于控制和提升产品质量的两种不同的技术。虽然它们达到各自目的的方法和途径不同,但是它们都以减小质量特性对目标值的偏移作为自己的目标。随着生产的发展和技术的进步,SPC-EPC集成逐渐被认为是一种更为有效的质量控制方法,得到了广泛的关注和应用。
     随着生产过程和产品自身复杂程度的提高,越来越多的产品的质量特性在生产的过程中呈现出了超越线性自相关关系的复杂的非线性自相关关系。目前针对SPC-EPC集成的研究普遍采用线性时间序列来描述产品质量特性的自相关关系,这时线性模型在对于非线性自相关关系的描述上就会存在一定的偏差,从而影响最终的控制效果。故针对这一问题,本文提出了使用两种典型的非线性时间序列模型,即门限自回归模型(TAR)和平滑转移自回归模型(STAR)来对过程中的自相关关系进行描述,基于非线性时间序列模型建立控制器并进一步建立集成SPC-EPC控制体系。使用例子与大量模拟研究分析和验证了这一方法的控制效果。结果表明,基于非线性时间序列模型的集成SPC-EPC控制方法可以针对失控的复杂的非线性过程进行有效的控制。接着本文又基于一种更为高级的非参数时间序列模型,即函数系数自回归模型(FCAR)来描述系统的动态自相关关系,使用相同的方法对基于这一模型的SPC-EPC控制方法进行分析。结果表明,基于函数系数自回归模型的集成SPC-EPC控制方法可以针对失控的具体形式未知的复杂的非线性过程进行有效的控制。
     目前针对SPC-EPC集成的研究普遍采用线性传递函数模型来描述产品生产过程中的输入输出关系,然而此种线性传递函数模型在对于更加贴近现代化生产过程的复杂非线性输入输出关系的描述上同样会出现一定的偏差。故针对这一问题,本文提出了使用非参数传递函数模型来描述这种更为复杂的输入输出关系。基于非参数传递函数模型建立控制器并进一步建立集成SPC-EPC控制体系,使用例子与大量模拟研究分析和验证了这一方法的控制效果。结果表明,基于非参数传递函数模型的集成SPC-EPC控制方法可以针对含有复杂的非线性输入输出关系的失控过程进行有效的控制。
Statistical process control (SPC) and engineering process control (EPC) are twotechniques originated from the process industry and parts industry. Although the pathsthey achieve their goals are different, they have the same goal of reducing thedeviation in the quality characteristics. With the development of modern productiontechniques, integrated SPC-EPC is now considered to be an effective quality controlmethod, and has received many attentions and applications.
     Along with the development of the complexity in the production processes andthe products, more and more products have complex nonlinear autocorrelationships oftheir quality characteristics in their production processes. Now the studies ofintegrated SPC-EPC are based on linear time series model to describe theseautocorrelationships. But these linear models have errors in the description ofnonlinear relationships. This will affect the final control result. In order to solve thisproblem, this dissertation proposes a method using two typical kinds of nonlinear timeseries model——the threshold autoregressive model (TAR) and smooth transitionautoregressive model (STAR) to describe the autocorrelationships and buildingcontroller and integrated SPC-EPC system based on these two models. Theperformance of this control method is studied and verified through examples andsimulations. The results indicate that the method based on nonlinear time series modelcan effectively control the process which has nonlinear autocorrelationships. Thisdissertation then proposes a method based on a kind of more advanced time seriesmodel. That is the nonparametric functional coefficient autoregressive model (FCAR)to describe the dynamic nonlinear autocorrelationships. Using the same procedure tostudy this method, the results indicate that the method based on nonparametric timeseries model can effectively control the process which has complex nonlinearautocorrelationships.
     Now the studies of integrated SPC-EPC are based on linear transfer functionmodel to describe the relationship between the input variables and output variables.But these linear transfer function models have errors in the description of nonlinearinput-output relationships, which are closer to modern manufacturing processes. Inorder to solve this problem, this dissertation proposes a method using thenonparametric transfer function model to describe the input-output relationships and building controller and integrated SPC-EPC system based on this model. Theperformance of this control method is studied and verified through examples andsimulations. The results indicate that the method based on nonparametric transferfunction model can effectively control the process which has nonlinear input-outputrelationships.
引文
[1]Box G, Jenkins G, Reinsel G, Time series analysis: forecasting and control,4thEdition, New York: John Wiley&Sons,2008.
    [2]Barnard G, Control charts and stochastic processes, Journal of the Royal StatisticalSociety,1959,21:239-271.
    [3]Bather J, Control charts and the minimization of costs, Journal of the RoyalStatistical Society,1963,21:49-70.
    [4]MacGregor J, On-line statistical process control, Chemical Engineering Progress,1988,84(10):21-31.
    [5]Van der wiel S, Tucker W, Faltin F et al, Algorithmic statistical process control:concepts and an application, Technometrics,1992,34(3):286-297.
    [6]Tucker W, Faltin F, Van der wiel S, Algorithmic statistical process control: anelaboration, Technometrics,1993,35(4):363-375.
    [7]Montgomery D, Keats J, Runger G et al, Integrating statistical process control andengineering process control, Journal of Quality Technology,1994,26(2):79-87.
    [8]Montgomery D, Statistical quality control: a modern introduction, New York: JohnWiley&Sons,2009.
    [9]Messina W, Strategies for the integration of statistical and engineering processcontrol:[博士学位论文], USA: Arizona State University,1992.
    [10]Box G, Kramer T, Statistical process monitoring and feedback adjustment: adiscussion, Technometrics,1992,34(3):251-267.
    [11]Box G, Luceno A, Statistical control by monitoring and feedback adjustment,New York: John Wiley&Sons,1997.
    [12]Del Castillo E, Statistical process adjustment for quality control, New York: JohnWiley&Sons,2002.
    [13]Box G, Luceno A, Discrete Proportional-Integral adjustment and statisticalprocess control, Journal of Quality Technology,1997,29(3):248-261.
    [14]Tsung F, Wu H, Nair V, On efficiency and robustness of discreteproportional-ontegral control schemes, Technometrics,1998,40(3):214-222.
    [15]Tsung F, Shi J, Wu C, Joint monitoring of PID-controlled processes, Journal ofQuality Technology,1999,31(3):275-286.
    [16]Jiang W, Tsui K, SPC monitoring of MMSE-and PI-controlled processes, Journalof Quality Technology,2002,34(4):384-389.
    [17]Triantafyllopoulos K, Feedback quality adjustment with Bayesian state spacemodels, Applied Stochastic Models in Business and Industry,2007,23(2):145-156.
    [18]Lian Z, Colosimo B, Del Castillo E, Setup error adjustment: sensitivity analysisand a new MCMC control rule, Quality and Reliability Engineering International,2005,22(4):403-418.
    [19]Lian Z, Del Castillo E, Adaptive deadband control of a drifting process withunknown parameters, Statistics&Probability Letters,2007,77(8):843-852.
    [20]禹建丽,张宗伟,整合SPC/EPC系统过程干扰的时间序列预测及应用,中原工学院学报,2009,2,(4):11-15.
    [21]俞磊,孙学静,刘飞,基于反馈调整的自相关过程质量损失分析,控制工程,2008,15(3):273-275.
    [22]孙秋霞,高齐圣,赵建立,带有质量特性约束的SPC与EPC集成控制的经济设计,工程设计学报,2009,16(6):411-414.
    [23]崔敬巍,谢里阳,刘晓霞,一种集成SPC与EPC的过程控制方法,东北大学学报,2007,28(9):1317-1321.
    [24]刘飞,史荣珍,统计过程监测中低阶EPC控制器分析与设计,控制工程,2010,17(1):23-26.
    [25]史荣珍,刘飞,一种面向二阶动态过程的集成控制方法,计算机工程与应用,2010,46(2):227-229.
    [26]Huang C, Lin Y, Decision rule of assignable causes removal under an SPC-EPCintegration system, International Journal of Systems Science,2002,33(10):855-867.
    [27]Tsung F, Apley D, The dynamic T2chart for monitoring feedback-controlledprocesses, IIE Transactions,2002,34(12):1043-1053.
    [28]Pan R, Del Castillo E, Integration of sequential process adjustment and processmonitoring techniques, Quality and Reliability Engineering International,2003,19(4):371-386.
    [29]Nembhard H, Chen S, Cuscore control charts for generalized feedback-controlsystems, Quality and Reliability Engineering International,2007,23(4):483-502.
    [30]Chakraborti S, Van de Wiel M, A nonparametric control chart based on theMann-Whitney statistic, Beyond Parametrics in Interdisciplinary Research,2008,1:156-172.
    [31]Bakir S, A distribution-free Shewhart quality control chart based on signed-ranks.Quality Engineering,2004,16(4):613-623.
    [32]Chakraborti S, Eryilmaz S, A nonparametric Shewhart-type signed-rank controlchart based on runs, Communications in Statistics-Simulation and Computation,2007,36(2):335-356.
    [33]Chakraborti S, Eryilmaz S, Human S, A phaseⅡnonparametric control chartbased on precedence statistics with runs-type signaling rules, ComputationalStatistics and Data Analysis,2009,53(4):1054-1065.
    [34]Das N, Bhattacharya A, A new non-parametric control chart for controllingvariability, Quality Technology&Quantitative Management,2008,5(4):351-361.
    [35]Das N, A non-parametric control chart for controlling variability based onsquared rank test, Journal of Industrial and Systems Engineering,2008,2(2):114-125.
    [36]Nichols M, Padgett W, A bootstrap control chart for Weibull percentiles, Qualityand Reliability Engineering International,2006,22(2):141-151.
    [37]Chatterjee S, Qiu P, Distribution-free cumulative sum control charts usingbootstrap-based control limits, The Annals of Applied Statistics,2009,3(1):349-369.
    [38]Moguerza J, Munoz A, Psarakis S, Monitoring nonlinear profiles using supportvector machines, Progress in Pattern Recognition, Image Analysis andApplications,2008,4756(2007):574-583.
    [39]Zhao C, Wang F, Zhang Y, Nonlinear process monitoring based on kerneldissimilarity analysis, Control Engineering Practice,2009,17(1):221-230.
    [40]褚崴,孙树栋,于晓义,SPC与EPC的集成及相关关键技术研究,2007,27(1):228-230.
    [41]张黎,统计过程监测与调整:评述与展望,控制与决策,2005,20(8):841-847.
    [42]张黎,SPC、EPC与田口方法的比较及整合,制造业自动化,2005,27(8):28-32.
    [43]Qiu P, Distribution-free multivariate process control based on log-linear modeling,IIE Transactions,2008,40(7):664-677.
    [44]Messaoud A, Weihs C, Hering F, A nonparametric multivariate control chartbased on data depth, Technical Report,2004.
    [45]Camci F, Chinnam R, Ellis R, Robust kernel distance multivariate control chartusing support vector principles, International Journal of Production Research,2008,46(18):5075-5095.
    [46]Del Castillo E, Long-run and transient analysis of a double EWMA feedbackcontroller, IIE Transactions,1999,31(12):1157-1169.
    [47]Tseng S, Chou R, Lee S, A study on a multivariate EWMA controller, IIETransactions,2002,34(6):541-549.
    [48]Jen C, Jiang B, Fan S, General run-to-run (R2R) control framework usingself-tuning control for multiple-input multiple-output (MIMO) processes,International Journal of Production Research,2004,42(20):4249-4270.
    [49]Chiu C, Shao Y, Lee T, Identification of process disturbance using SPC/EPC andneural networks, Journal of Intelligent Manufacturing,2003,14(3):379-388.
    [50]Shi D, Tsung F, Modeling and diagnosis of feedback-controlled processes usingdynamic PCA and neural networks, International Journal of Production Research,2003,41(1):365-380.
    [51]Tsung F, Statistical monitoring and diagnosis of automatic controlled processesusing dynamic PCA, International Journal of Production Research,2000,38(3):625-637.
    [52]Yang L, Sheu S, Integrating EPC and SPC for MIMO system, IEEE InternationalConference on System, Man and Cybernetics,2005,1(1):127-132.
    [53]Jiang J, Hsiao F, Construct MIMO process control system by using softcomputing methods, International Journal of Advanced ManufacturingTechnology,2007,33(5-6):511-520.
    [54]Yang L, Sheu S, Integrating multivariate engineering process control andmultivariate statistical process control, International Journal of AdvancedManufacturing Technology,2006,29(1-2):129-136.
    [55]Lu C, Wu C, Keng C et al, Integrated application of SPC/EPC/ICA and neuralnetworks, International Journal of Production Research,2008,46(4):873-893.
    [56]Yang L, Sheu S, Economic design of the integrated multivariate EPC andmultivariate SPC charts, Quality and Reliability Engineering International,2007,23(2):203-218.
    [57]Wang J, He Q, An overlapping receding horizon approach to reduce delay ofdisturbance detection and classification using Bayesian statistics, IEEEInternational Symposium on Semiconductor Manufacturing,2005:402-405.
    [58]Jin N, Zhou S, Data-driven variation source identification for manufacturingprocess using the eigenspace comparison method, Naval research logistics,2006,53(5):383-396.
    [59]Lee J, Yoo C, Lee I, Fault detection of batch processes using multiway kernelprincipal component analysis, Computer and Chemical Engineering,2004,28(9):1837-1847.
    [60]Miller J, Statistical signatures used with principal component analysis for faultdetection and isolation in a continuous reactor, Journal of Chemometrics,2006,20(1-2):34-42.
    [61]杜福洲,唐晓青,基于PCA的多元质量控制与诊断方法研究,制造业自动化,2006,28(8):10-13,18.
    [62]Sachs E, Hu A, Ingolfsson A, Run by run process control: combining SPC andfeedback control, Semiconductor Manufacturing,1995,8(1):26-43.
    [63]Janakiram M, Keats J, Combining SPC and EPC in a hybrid industry, Journal ofQuality Technology,1998,30(3):189-200.
    [64]Capilla C, Ferrer A, Romero L et al, Integration of Statistical and EngineeringProcess Control in a Continuous Polymerization Process, Technometrics,1999,41(1):14-28.
    [65]Jiang W, Farr J, Integrating SPC and EPC methods for quality improvement,Quality Technology and Quantitative Management,2007,4(3):345-363.
    [66]Western Electric, Statistical quality control handbook, Indianapolis: WesternElectric Corporation,1956.
    [67]Nelson L, The Shewhart control chart test for special causes, Journal of QualityTechnology,1984,16(4):237-239.
    [68]Nelson L, Interpreting Shewhart x control chart, Journal of Quality Technology,1985,17(2):114-116.
    [69]Shewhart W, Economic control of quality, New York: D. Van Nostrand Co.,1931.
    [70]Kane V, Process capability indices, Journal of Quality Technology,1986,18(1):41-52.
    [71]Chan L, Cheng S, Spiring F, A new measure of process capability: Cpm, Journalof Quality Technology,1988,20(3):162-175.
    [72]Page E, Continous inspection schemes, Biometrics,1954,41:100-115.
    [73]Woodward R, Goldsmith P, Cumulative sum techniques, London: Oliver andBoyd,1964.
    [74]Wald A, Sequential analysis, New York: John Wiey&Sons,1947.
    [75]Barnard G, Control charts and stochastic process, Journal of the Royal StatisticalSociety,1959,21:239-271.
    [76]Roberts S, Control chart test based on geometric moving averages, Technometrics,1959,1:239-251.
    [77]Ng C, Case K, Development and evaluation of control charts using exponentiallyweighted moving averages, Journal of Quality Technology,1989,21(4):242-250.
    [78]Crowder S, Hamilton M, An EWMA for monitoring a process standard deviation,Journal of Quality Technology,1992,24(1):12-21.
    [79]Lowry C, Woodall W, A multivariate exponentially weighted moving averagecontrol chart, Technometrics,1992,34(1):46-53.
    [80]Hunter J, The exponentially weighted moving average, Journal of QualityTechnology,1986,18(4):203-210.
    [81]Hunter J, A one-point plot equivalent to the Shewhart chart with Western ElectricRules, Quality Engineering,1989,2(1):13-19.
    [82]MacGregor J, Hunter J, Harris T, SPC interfaces–A short course on interfacesbetween statistical process control,1988.
    [83]Wadsworth H, Stephens K, Godfrey A, Modern methods for quality controlimprovement, New York: John Wiley&Sons,1986.
    [84]Crowder S, Computation of ARL for combined individual measurements andmoving range charts, Journal of Quality Technology,1987,19(2):98-102.
    [85]Wetherill G, Sampling inspection and quality control, New York: Chapman&Hall,1977.
    [86]Messina W, Statistical quality control for manufacturing managers, New York:John Wiley&Sons,1987.
    [87]Vance L, Average run length of cumulative sum control charts for controllingnormal means, Journal of Quality Technology,1986,18(3):189-193.
    [88]Gan F, Computing the percentage points of the run length distribution of anexponentially weighted moving average control chart, Journal of QualityTechnology,1991,23(4):359-365.
    [89]Lucas J, Saccucci M, Exponentially weighted moving average control schemes:properties and enhancements, Technometrics,1990,32(1):1-12.
    [90]Crowder S, Average run lengths of exponentially weighted moving averagecontrol charts, Journal of Quality Technology,1987,19(3):161-164.
    [91]Astrom K, Introduction to stochastic control, New York: Academic Press,1970.
    [92]Macgragor J, Optimal discrete stochastic control theory for process application,The Canadian Journal of Chemical Engineering,1973,51(4):468-478.
    [93]Kalman R, A new approach to linear filtering and prediction theory, Journal ofBasic Engineering,1960,82:34-45.
    [94]Box G, Further contributions to adaptive control quality control: simultaneousestimation of dynamics: non-zero costs, Bullitin of the International StatisticalInstitute,34th session, Ottawa,1963,943-974.
    [95]Crowder S, Kalman filtering and statistical process control:[博士学位论文],USA: Iowa State University,1986.
    [96]Jensen K, Optimal adjustment in the presence of process drift and adjustmenterror:[博士学位论文], USA: Iowa State University,1989.
    [97]Kramer T, Process control from an economic point of view:[博士学位论文],USA: University of Wiscosin-Madison,1989.
    [98]Astrom K, Adaptive feedback control, Proceedings of IEEE,1987,75(2):185-271.
    [99]Kumar P, A survey of some results in stochastic adaptive control, Journal ofcontrol and optimaization,1985,23(3):329-380.
    [100]Goodwin G, Sin K, Adaptive filtering prediction and control, New Jersey:Prentice-Hall,1984.
    [101]Kalman R, Design of a self-optimization control system, Transaction of ASME,1958,80:468-478.
    [102]Faltin F, Hahn G, Tucker W, Integrating SPC with automatic controls: conceptsand experiences, Annual Fall Technical Conference of ASQC,1989.
    [103]MacGregor J, A different view of the funnel experiment, Journal of QualityTechnology,1990,22(4):255-259.
    [104]Montgomery D, Mastrangelo C, Some statistical process control methods forautocorrelated data, Journal of Quality Technology,1991,23(3):179-193.
    [105]Box G, Jenkins G, Reinsel G,(王成璋,尤梅芳,郝杨译),时间序列分析:预测与控制,北京:机械工业出版社,2011.
    [106]范剑青,姚琦伟,(陈敏译),非线性时间序列——建模、预报与应用,北京:高等教育出版社,2005.
    [107]Tong H, Non-linear time series: a dynamical systems approach, Oxford: OxfordUniversity Press,1990.
    [108]Zivot E, Wang J, Modeling financial time series with S-PLUS, second edition,New York: Springer,2006.
    [109]Engle R, Autoregressive conditional heteroscedasticy with estimates of thevariance of U.K inflation, Econometrica,1982,50(4):987-1008.
    [110]Bollerslev T, Generalized autoregressive conditional heteroscedasticy, Journal ofEconometrics,1986,31(3):307-327.
    [111]Taylor S, Modelling financial Time Series, New York: John Wiley&Sons,1986.
    [112]Granger C, Anderson A, An introduction to bilinear models, Gottingen: Van derHoeck&Rupretch,1978.
    [113]Chen R, Tsay R, Functional-coefficient autoregressive models, Journal ofAmerican Statistical Association,1993,88(421):298-308.
    [114]Cai Z, Fan J, Yao Q, Functional-coefficient regression models for nonlinear timeseries, Journal of American Statistical Association,2000,95(451):941-956.
    [115]Ezekiel A, A method for handling curvilinear correlation for any number ofvariables, Journal of American Statistical Association,1924,19:431-453.
    [116]Hastie T, Tibshirani R, Generalized additive models, London: Chapman andHall,1990.
    [117]Chambers J, Hastie T, Statistical models, CA: Wadsworth/Brooks Cole, PacificGrove,1991.
    [118]Chen R, Tsay R, Nonlinear transfer functions, Nonparametric Statistics,1996,6(2-3):193-204.
    [119]Liu J, Chen R, Yao Q, Nonparametric transfer function models, Journal ofEconometrics,2010,157(1):151-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700