用户名: 密码: 验证码:
APD光子计数成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工作在盖革模式下的雪崩型光电二极管(APD)和二极管阵列(APD array)具备单光子探测能力,在天文观测、生物波导探测、通信、粒子物理学等领域具有广泛的应用前景,是各发达国家光电子学重点研究的课题之一。本文从光子统计特性和APD的瞬态响应特性入手,对APD器件光电响应原理及其固有缺陷产生机理进行了理论分析和实验研究,提出了一种新的基于盖革模式APD器件的微弱光成像方法。本文研究的内容既涉及到基本的物理问题,也涉及到未来的应用。
     在微弱光成像中,微弱的光信号更多地呈现出粒子特征,并伴随着随机的通量涨落,这种粒子性和随机性给成像系统带来的是与图像信息相关的离散信号,很难使用经典的图像噪声理论和方法进行处理。为了减小微弱光的粒子性对成像质量的影响,通常采用延长积分时间的方法对较宽时间范围内的微弱光信号进行能量积分,以抵消光子通量涨落和“群聚效应”造成的影响,这种能量平均的方法一方面需要对成像器件进行特殊处理以减小器件自身的暗电流和热噪声,另一方面则降低了成像频率。采用光子计数得到入射光的光子计数值,通过已知概率分布的反演方法快速准确地得到入射光的统计特性,成为克服微弱光探测难题的一个研究热点和难点。光子计数反演方法能否准确反映目标光场的强度分布则成为光子计数成像的一个核心科学问题。本文从半经典统计光学出发,建立了粗糙表面的单光子反射模型,采用蒙特卡罗仿真与物理实验相结合的方法对粗糙表面单光子反射特性进行了深入研究,得到了微弱光子信号经粗糙表面反射后的统计分布,证明了基于APD的光子计数反演方法能够准确反映目标光场的强度分布,为光子计数反演方法在APD光子计数成像中的应用奠定了理论基础。
     在单光子计数系统中,APD的时间响应特性和频率响应特性是很重要的。现有的APD响应模型多以载流子稳态平衡方程为基础,对单光子量级的瞬态入射信号响应精度较差。为了更加准确地描述单光子量级的瞬态信号入射状态下APD的响应特性,本文立足于单个载流子在耗尽层漂移和倍增区碰撞电离过程,将倍增区划分为厚度Δx→0的倍增区域,针对单个倍增区域建立时间-载流子浓度方程,通过时域积分方法建立了四层拉通型APD的时间响应模型,并对时间响应特性方程进行傅立叶变换得到APD的频率响应特性。数值仿真与实验结果的比较显示:在盖革模式下,APD的增益快速提高,光电流持续时间增加,导致APD的响应频率降低。采用门控技术和主动抑制技术可以在雪崩电流产生瞬间将APD的偏置电压降低到雪崩电压以下,抑制雪崩的继续,从而达到缩短光电流的持续时间、提高器件的响应频率的目的,满足微弱光照条件下光子计数成像的需要。
     采用APD进行光子计数成像时,受到器件恢复时间的限制,只能以门控工作方式对入射光子进行采样,这样就把有效时间分成了一组离散的时间间隔。显然,这样测量得到的信息要比光子本身出现时刻所载的信息量少,需要对接收到的光子事件进行统计特性的恢复和修正。为了尽量准确地对入射光场进行反演,我们建立了基于泊松点过程的光子事件模型和APD光子计数反演模型,通过蒙特卡罗仿真得到了所给标准图像的光子计数反演结果,对不同参数条件下的光子计数成像结果进行了比较,深入分析了非均匀性、暗计数等器件固有缺陷对成像质量的影响,给出了现有器件技术水平下APD光子计数成像的极限条件。
     构建了以硅APD单光子计数器为探测核心的实验平台,完成了相关的硬件和软件开发,实现了单元扫描方式的APD光子计数成像。在实验平台上进行了大量的实验测试,分析了成像模型仿真结果与实验结果之间的共同点以及两者产生差异的原因,对建立的光子计数成像模型进行了分析和评估,提出了进一步的改进措施。进行了APD光子计数成像与EMCCD微光成像的对比实验,对两者在不同光照度条件下的灰度响应、竖条纹分辨能力进行了比较,并对两者的灰度图像进行了质量评价。实验数据的统计分析和数学模型的仿真评估结果都表明,与现有的光电成像技术相比较,基于APD的光子计数成像技术在探测灵敏度上具有一定的优势。
     文章最后结合本文研究的不足之处,给出了今后研究的方向和APD光子计数成像技术研究展望。
When biased above the breakdown voltage, which called Geiger mode, avalanche photodiodes (APDs) and avalanche photodiode arrays (APD arrays) have the ability of single-photon detecting, find applications in many areas like astronomy, biochemistry, waveguide photodetector, telecommunication, particle physics and general instrumentation. With APDs and APD arrays, many geometrical and device parameters can be adjusted to optimize their performance for a particular application. A new low-level-light imaging technology was proposed based on the statistical properties of photons and the photoelectric response of APDs. The topics which we have studied include both fundamental physics and future applications. The main achievements are as follow:
     In low-level-light imaging system, very low-level-light appears more particle characters than wave characters, going with luminous flux fluctuations randomly, which can't be properly treated with classical image processing theories and techniques. Time domain integration is the common method to reduce the effects of corpuscular property and luminous flux fluctuations. To achieve longer integration time, the detector need some special handling to reduce dark current noise and thermal noise of detector itself, causing response frequency decreased. Photon counting technology is a useful method to solve this difficult problem. In this way, we can get low-level-light image quickly and accurately based on inversion techniques with photon counting result and the known probability distribution of incident light. It is very important to study on the probability distribution of reflect light in photon counting image technology. We derived the model of photon reflecting from rough surface based on semiclassical statistical optics, conducted the thorough research to photon reflection properties of rough surface with a combination of Monte Carlo method and physics experiment. In this work, statistical distributions of low-level-light based on APDs are derived, which will lay a foundation of further application of photon counting image technology.
     Time and frequency responses of APDs are very important in photon counting system, and there are many models for circuit simulation. But these studies generally based on the carrier rate equations of steady-state condition, disagree with the single-photon-indicate condition. In this work, the absorption region and the multiplication are proposed as many little regions of△χ→Othickness. Based on sub-domain carrier integration equations, a mathematical model describing the time and frequency response of four-layer reach-through APDs was derived, under some reasonable assumptions. The results presented here for the electrons clearly indicate that, under Geiger mode, gain of APDs increased rapidly, which lead to avalanche current duration expanded. The analysis assumes gated-mode and active quenching operation of the APDs and APD arrays can reduce dead time, increase response frequency greatly.
     As we know, Geiger mode APDs and APD arrays must work under gated-mode because of their quenching time. In this working mode, the continuous incident light signals are divided into discrete time interval. Obviously, the informations of photon counting results were decreased because of gated-mode sampling, recovery and correction must be done to the counting resulting. In this work, a photon counting image model based APD arrays'response characters and Poisson point process of photons was developed. To validate the model, an image correlated by pixels and photons number was used as standard image, which processed by the arithmetic of photon counting image model. And Monte Carlo simulation methods were used to investigate the relationship between the qualities of photon counting image and the inherent disadvantage of APDs such as nonuniformity and dark counting. As a result, illumination limit of APD counting image technology based on existing APDs is given.
     AS an important work, we developed an experimental platform based on silicon APD single-photon conter, achieved photon counting image through serial scanning mode of single APD. Focusing on models of photon counting image technology, a large amount of experimental were conducted, sameness and diference were compared with the simulation results. This work also studies on the applications of photon counting image technology in low-level-light image enhanced technology through contrast experiment on gray response and vertical fringe resolution between APD photon counting image and EMCCD. In conclusion, all experimental test, simulation comparison and application results indicate that photon counting image technology based on APDs has better sensitivity than traditional photoelectric imaging technology.
     Finally, research directions of future work are considered including possible photon counting image technology extensions.
引文
[1]王仕璠,朱自强.现代光学原理.成都:电子科技大学出版社,1998.
    [2]Amnon Yariv. Optical Electronics in Modern Communications. Beijing: Publishing House of Electronics Industry,2004.
    [3]赵勋杰.光子计数成像原理及其应用.红外与激光工程,2003,32(1):42-45.
    [4]A. Boksenberg, D. E. Burgess. Image photon counting system for optical astronomy. Adv. Electron and Electron Physics,1972,33B:835-849.
    [5]J. L. A. Fordham, et al. Astronomical performance of a micro-channel plateinstensif ied photon counting detector. Mon. Not. R. Astr. Soc.,1989, 237:513-521.
    [6]R. W. Aircy, et al. DQE enhancement of MCP intensifiers for astronomy results of the MICII programme. SPIE,1990,1235:338-346.
    [7]Yutaka Tsuehiya, et al. Photon counting image acquisition system and its applications. J. Imaging Technol,1985,11:215-220.
    [8]J. G. Timothy, J. S. Morgan, et al. MaMa detector system:A status report. SPIE,1989,1158:104-117.
    [9]D. B. Kasle, J. S. Morgan. High resolution decoding of multi-anade microchannel array detector. SPIE,1991,1549:52-58.
    [10]M. Suyama, T. Sato, S, Ema, et al. Single-photon-sensitive EBCCD with additional multiplication. SPIE,2006,6294,629407:1-11.
    [11]C. Bruce Johnson. Review of electron-bombarded CCD cameras. SPIE,1998, 3434:45-53.
    [12]张灿林,陈钱,周蓓蓓.高灵敏度电子倍增CCD的发展现状.红外技术,2007,29(4):192-195.
    [13]N. Smith, C. Coates, A. Giltinan, et al. EMCCD Technology and its Impact on Rapid Low-Light Photometry. SPIE,2004,5499:162-172.
    [14]李健军,郑小兵,冯渝.单光子源和单光子探测器研究进展.量子电子学报,2006,23(6):766-771.
    [15]李园,李刚,张玉驰等.计数率和分辨时间对光场统计性质测量的影响.物理学报,2006,55(11):5779-5783.
    [16]郑力明,王发强,刘伟平等.单光子量子密钥分发系统中干涉稳定性分析.光子学报,2005,34(5):797-800.
    [17]Kosaka H, Tomita A, Nambu Y, et al. Single-photon interference experiment over 100 km for quantum cryptography system using a balanced gated-mode photon detector. Electronics Letters,2003,39(16):1199-1201.
    [18]张忠祥,韩正甫,刘云等.超导单光子探测技术.物理学进展,2007,27(1):1-8.
    [19]吴光,周春源,陈修亮等.长距离长期稳定的量子密钥分发系统.物理学报,2005,54(8):3622-3626.
    [20]李水峰,熊予莹,李日豪等.红外InGaAs/InP单光子探测器暗计数的研究,量子光学学报,2007,13(2):141-145.
    [21]吕华,彭孝东.单光子探测器APD无源抑制特性研究.应用光学,2006,27(4):355-358.
    [22]Hiskett P A, Buller G S, Loudon A Y, et al. Performance and design of InGaAs/InP photodiodes for single-photon couting at 1.55 μm. Applied Optics,2000,39(36):6818-6829.
    [23]LIAO Changjun, WANG Jindong, LU Hua, et al. Experimental characterization improving the design of InGaAs/InP APD for single photon detection. Chinese Optics Lettes,2005,3(Sup.):31-33.
    [24]Kang Y, Mages P, Clawson AR, et al. Fused InGaAs-Si avalanche photodiodes with low-noise performances. Photonics Technology Letters. IEEE,2002, 14(11):1593-1595.
    [25]Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science,2000,290:2282-2285.
    [26]韦啸,杨涛,彭承志等.恒温控制下的硅雪崩光电二极管单光子探测器的研制.核电子学与探测技术,2006,26(6):1013-1017.
    [27]彭建,冯雪冬,杨伯君等.量子通信中SAGM型单光子探测器性能分析.半导体技术,2006,31(11):851-855.
    [28]姚立,杨伯君,彭建等.量子通讯中单光子探测器的研究.光通信技术,2007,1:47-48.
    [29]Gauri Karve, Xiaoguang Zheng, Xiaofeng Zhang, et al. Geiger Mode Operation of an In0.53Ga0.47As-In0.52A10.48As Avalanche Photodiode. Journal of Quantum Electronics, IEEE,2003,39(10):1281-1286.
    [30]Carl Jackson and Alan Mathewson. Improvements in silicon photon counting modules. SPIE,2005,5726:69-76.
    [31]William G. Lawrence, James F. Christian, Frank L. Augustine, et al. Development and Characterization of CMOS Avalanche Photodiode Arrays. SPIE,2005,5726:122-131.
    [32]Sergio Cova, Massimo Ghioni, Franco Zappa, et al. A View on Progress of Silicon Single Photon Avalanche Diodes and Quenching Circuits. SPIE,2006, 6372,637201:1-12.
    [33]M. R. Squillante, J. S. Gordon. Recent Advances in Avalanche Photodiode Technology. SPIE,2003,5071:405-410.
    [34]K. A. Mclntosh. Development of Geiger-mode APD arrays for 1.06μm. the 15th Annual meeting of the IEEE,2002,2:760-761
    [35]Michael R. Squillante, James Christian. Recent advances in very large area avalanche photodiodes. SPIE,2003,5071:405-410.
    [36]William G. Lawrence, Christopher Stapels, Richard Farrell, et al. A 16-channel avalanche photodiode detector array for visible and near-infrared flow cytometry. SPIE,2006,6088,60880T:1-10.
    [37]Nick Bertone, Roberto Biasi, Bruno Dion. Overview of photon counting detectors based on CMOS processed Single Photon Avalanche Diodes (SPAD), InGaAs APD's, and novel Hybrid (Tube+APD) detectors. SPIE,2005,5726: 153-163.
    [38]Ross A. La Rue, Gary A. Davis, Dan Pudvay, et al. Photon Counting 1060nm Hybrid Photomultiplier with High Quantum Efficiency. Electron Device Letters. IEEE,1999,20(3):126-128.
    [39]Rengarajan Sudharsanan, Ping Yuan, Joseph Boisvert, et al. Single Photon Counting Geiger Mode InGaAs(P)/InP Avalanche Photodiode Arrays For 3D Imaging. SPIE,2008,6950,69500N:1-9.
    [40]龚威.G-APD阵列一种具有单光子灵敏度的三维成像探测器.激光技术,2007,31(5):452-455.
    [41]M. A. Albota, R. M. Heinrichs, D. G. Kocher, et al. Three-Dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser. Applied Optics,2002,41:7671-7678.
    [42]周文,陈秀峰,杨冬晓.光子学基础.杭州:浙江大学出版社,2000.
    [43]冉晓强,汶德胜,郑培云.基于CPLD的空间面阵CCD相机驱动时序发生器的设计与硬件实现.光子学报,2007,36(2):364-367.
    [44]J. Gethyn Timothy, Paolo Bergamini, Thomas E.Berger. Stanford MAMA detector characterization facility. SPIE,1993,2006:59-68.
    [45]Toshi Hori. Fast Frame-Rate Cameras Using a Progressiveflnterlace Combinational-Scan CCD. SPIE,1996,2654:180-187.
    [46]金伟其,王岭雪,赵源萌等.彩色夜视成像处理算法的新进展.红外与激光工程,2008,37(1):147-150.
    [47]柏连发,陈钱,孔捷等.红外与微光图像融合技术研究.红外与毫米波学报,1999,18(1):47-52.
    [48]柏连发,张毅,顾国华等.微光图像和紫外图像分析与融合方法研究.红外与激光工程,2007,36(1):113-117.
    [49]李琦,迟欣,王骐.基于盖革模式APD阵列的单脉冲3D激光雷达原理和技术.激光与红外,2006,36(12):1116-1119.
    [50]Cristiano Niclass, Alexis Rochas, Pierre-Andre Besse, et al. Toward a 3-D Camera Based on Single Photon Avalanche Diodes. Journal of Selected Topics in Quantum Electronics, IEEE,2004,10(4):796-802.
    [51]Franco Zappa, Angelo Gulinatti, Piera Maccagnani, et al. SPADA: Single-photon avalanche diode arrays. Photonics Technologh Letters. IEEE, 2005,17(3):657-659.
    [52]Richard M. Marino, Timothy Stephens, Robert E. Hatch, et al. A compact 3D imaging laser radar system using Geiger-mode APD arrays:system and measurements. SPIE,2003,5086:1-15.
    [53]R. M. Marino, R. M. Spitzberg, M. J. Bohrer. A Photon Counting 3-D Imaging Laser Radar for Advanced Discriminating Interceptors.2nd Annual AIAA SDIO Interceptor Technology Conference, AIAA 93-2669, Albuquerque, NM, June 1993.
    [54]Barry L. Stann, Keith Aliberti, Daniel Carothers, et al. A 32×32 pixel focal plane array ladar system using chirped amplitude modulation. SPIE, 2004,5412:264-272.
    [55]Brian F. Aull, Andrew H. Loomis, Douglas J. Young, et al. Three-dimensional imaging with arrays of Geiger-mode avalanche photodiodes. SPIE,2004,5353:105-116.
    [56]John Degnan, David Wells, Roman Machan, et al. Second generation airborne 3D imaging lidars based on photon counting. SPIE,2007,6771,6771N:1-7.
    [57]M Jack, J. Asbrock, C Anderson, S. Bailey, et al. Advances in Linear and Area HgCdTe APD Arrays for Eyesafe LADAR Sensors. SPIE,2001,4454: 198-211.
    [58]张兴华,赵宝升,缪震华等.紫外单光子成像系统的研究.物理学报.2008,57(7):4238-4242.
    [59]朱香平,赵宝升,刘永安等.30.4 nm极紫外成像探测器的实验研究.光学学报,2008,28(10):1925-1929.
    [60]尼启良,刘世界,陈波.极紫外位置灵敏阳极光子计数成像探测器研究.中国光学与应用光学,2009,2(1):36-40.
    [61]李光,赵占娟,焦小雪等.叶片衰老过程中的光子计数统计实验研究.河北大学学报(自然科学版),2008,28(4):360-364.
    [62]朱磊,黄庚华,欧阳俊华等.光子计数成像激光雷达时间间隔测量系统研究.红外与毫米波学报,27(6):461-464.
    [63]左防,高稚允.微光成像系统信噪比及图像探测特性研究.兵工学报,2005,26(2):185-187.
    [64]Dautet H, Deschammps P, Dion B, et al. Photon counting techniques with silicon avalanche photodiodes. Appl. Opt.,1993,32:3894-3900.
    [65]Xiaoli Sun. Photon Counting with Silicon Avalanche Photodiodes. Journal of Lightwave Technol., IEEE,1992,10(8):1203-1032.
    [66]Rarity J G, Wall T E, Ridley K D, et al. Single-photon counting for the 1300-1600 nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes. Appl. Opt.,2000,39:6746-6753.
    [67]L. Mandel. Inversion problem in photon counting with dead time. J. Opt. Soc. Am.,1980,70(7):873-874.
    [68]Vitalij N. Kurashov, Andrey V. Kurashov and Alexandr G. Chumakov. Stable solution of photon-count statistics inverse problem by means of iterated operator eigenfunctions. SPIE,1995,2570:347-358.
    [69]F. Sultani, C. Aime, H. Lanteri. Inverse Poisson transform using Pade approximants. Applications to speckl interferometry in astronomy, Pure Appl. Opt.,1995,4:89-103.
    [70]E. R. Pike and B. McNally. Theory and design of photon correlation and light-scattering experiments. Appl. Opt.,1997,36:7531-7538.
    [71]J.W.顾德门.统计光学.北京:科学出版社,1985.
    [72]戚康男,秦克诚,程路.统计光学导论.天津:南开大学,1987.
    [73]Vitalij N. Kurashov and Andrey V. Kurashov. Inverse problem in 2D photocounting statistics. SPIE,2003,3317:31-35.
    [74]V. N. Kurashov, A. V. Kurashov. Determination of the probability density function of speckle intensity fluctuations from the photocount experiments. SPIE,1995,2647:365-376.
    [75]王忠和、张光寅.光子学物理基础.北京,国防工业出版社,1998.3.
    [76]B.R.弗里德.概率与统计在光学研究中的应用.北京:宇航出版社,1989.
    [77]B.塞勒.光电子统计学及光谱与光通讯应用.北京:科学出版社,1985.
    [78]谢一冈,陈昌,王曼等.粒子探测器与数据获取.北京:科学出版社,2003.
    [79]A G Stewart, E Greene-O'Sullivan, D J Herbert, et al. Study of the Properties of New SPM Detectors. SPIE,2006,6119,61190A:1-10.
    [80]Gethyn Timothy J. Recent advances with the MAMA detector systems. SPIE, 1994,2278:134-137.
    [81]李慧蕊.多阳极微通道阵列(MAMA)探测器及其应用.真空科学与技术学报,2004,24(1):27-32.
    [82]S. Cova, M. Ghioni, A. Lacaita, and F. Zappa, Avalanche photodiodes and quenching circuits for single-photon detection. Applied Optics,1996, 35:1956-1976.
    [83]左昉,刘广荣,高稚允等.用于微光成像的BCCD、 ICCD、 EBCCD性能分析.北京理工大学学报,2002,22(1):109-112.
    [84]刘继芳.现代光学.西安:西安电子科技大学出版社,2004.
    [85]Stephen Bellis, Reuben Wilcock, Carl Jackson. Photon counting imaging: the DigitalAPD. SPIE,2006,6068,60680D:1-10.
    [86]刘培森.散斑统计光学基础.北京,科学出版社.1987.
    [87]姚连兴,仇维礼,王福恒.目标和环境的光学特性.北京:宇航出版社,1995.128-144.
    [88]张保民.成像系统分析导论.北京:国防工业出版社,1992.
    [89]刘继昆.固体摄像器件的物理基础.成都:电子科技大学出版社,1959.
    [90]常本康,蔡毅.红外成像阵列与系统.北京:科学出版社,2006.
    [91]陈钱.微光图像微型化实时数字处理技术研究[博士学位论文],南京理工大学,1996.
    [92]张保民,柏连发.微光图像时空噪声处理理论与技术研究.南京理工大学学报,1997,21(5):457-460.
    [93]张敬贤,李玉丹,金伟其.微光与红外热成像技术.北京:北京理工大学出版社,1995.
    [94]徐之海,李奇.现代成像系统.北京:国防工业出版社,2001.
    [95]Barrett H H. Objective assessment of image quality:effects of quantum noise and object variability. Journal Optical Society ofAmerica,1990, 7(7):1266-1278.
    [96]马瑜,俞信,王苏生等.小样本光子图像的统计处理.光学学报,2000,20(12):1641-1646.
    [97]叶华俊,鲍超,刘华锋.基于交叉验证的超微弱光子图像去噪处理.光子学报,2003,32(2):179-181.
    [98]R. Pierrat, N. Ben Braham, L. F. Rojas-Ochoa, et al. The influence of the scattering anisotropy parameter on diffuse reflection of light. Optics Communications,2008,281:18-22.
    [99]R. C. Jennison. Relationship between photons and electromagnetic waves derived from classical radio principles. IEE Microw. Antennas Propag., 1999,146(1):91-93.
    [100]吴振森,谢东辉,谢品华等.粗糙表面激光散射统计建模的遗传算法.光学学报,2002,22(8):897-901.
    [101]吴振森,韩香娥,张向东等.不同表面激光双向反射分布函数的实验研究.光学学报,1996,16(3):262-268.
    [102]Hossein Ragheb, Edwin R. Hancock.Reflectance Modeling for Layered Dielectrics with Rough Surface Boundaries. IEEE 3DPVT'06,2006, page(s): 302-309.
    [103]A. G. Vonovich. Nonlocal small-slope approximation for wave scattering from rough surfaces. Waves Random Media,1996,6:151-167.
    [104]Takehiro Tomitani. A Model of Optical Reflection on Rough Surface and its Application to Monte carlo Simulation of Light Transport. IEEE Trans. On Nuclear Sci.,1996,43(3):1544-1548.
    [105]B. Dhanasekar, N. Krishna Mohanb, Basanta Bhaduri, et al. Evaluation of surface roughness based on monochromatic speckle correlation using image processing. Precision Engineering,2008,32:196-206.
    [106]Jun-ichi Nakayama, Kiyoshi Mitzutani, Hisanao Ogura. Theory of light scattering from a random metal surface:Excitation of surface plasmons in a Ag film. J. Appl. Phys.,1984,56(5):1465-1472.
    [107]G. Brown, V. Celli, M. Haller. Resonant light scattering from a randomly rough surface. Physical Review B,1985,31:4993-5005.
    [108]Andrei V. Shchegrov, Alexei A. Maradudin. Near-field and far-field changes in the spectrum of light scattered from a randomly rough surface. Physical Review B,1999-1,59(11):7732-7744.
    [109]G. H. Cocoletzi. Resonant scattering of light by excitonic rough surface. Physical Review B,1993-1,48(23):17413-17417.
    [110]NC. Bruce,O. Rodriguez Herrera, M. Rosete-Aguilar. A Scatterometer for measuring the visible light scattered from 2D rough surfaces. SPIE,2002, 4780:161-164.
    [111]Patrik Hermansson. Models for Scattering of Light from Rough Surfaces with Applications in IR Signature Simulations. SPIE,2004,5431: 222-232.
    [112]D. M. Burkovets,0. P. Maksimyak, K. I. Nestina. Modelling of light scattering by fractal clusters. SPIE,2008,7008,700812:1-7.
    [113]P. Beckman. Scattering of light by rough surface. Progress in Optics, 1967,6:53-69.
    [114]裴鹿成,张孝泽.蒙特卡罗方法及其在粒子输运问题中的应用.北京:科学出版社,1980.
    [115]刘小闹,刘忠.喷墨打印纸粗糙度对印刷光泽度的影响.国际造纸,2007,26(6):18-22.
    [116]翟绪圣.表面粗糙度测量.北京:中国计量出版社,1989.
    [117]机械设计手册编委会.机械设计手册(第一卷).北京,机械工业出版社,2004.
    [118]陈维友,刘式墉.用于电路模拟的PIN雪崩光电二极管模型.固体电子学研究与进展,1997,17(3):242-250.
    [119]Abbas Zarifkar, Mohammad soroosh. Circuit Modeling of Separate Absorption, Charge and Multiplication Avalanche Photodiode (SACM-APD). IEEE LFNM,2004,32(12):213-219.
    [120]Tamer F. Refaat, Hani E. Elsayed-Ali. Drift-diffusion model for reach-through avalanche photodiodes. Optical Engineering,2001,40 (9): 1928-1935.
    [121]C. Groves, J. P. R. David, G. J. Rees. Gain, dependent avalanche duration and gain X bandwidth product in an avalanche photodiode. IEEE NSOD,2004, 30-31.
    [122]K. Kato. Ultrawide-band/high-frequency photodetectors. IEEE Trans. Microw. Theory Techn.,1999,47(7):1265-1281.
    [123]H. Nie,O. Baklenov, P. Yuan, ET AL. Quantum-dot resonant-cavity separate absorption, charge and multiplication avalanche photodiodes operating at 1.06 μm. IEEE Photon. Technol. Lett.,1998,10(7): 1009-1011.
    [124]J. Wei, F. Xia, S. R. Forrest. A high-responsivity high-bandwidth asymmetric twin-waveguide coupled InGaAs-InP-InAlAs avalanche photodiode. IEEE Photon. Technol. Lett.,2002,14(11):1590-1592.
    [125]Y. M. El-Batawy, M. J. Deen, N. R. Das. Analysis, optimization and SPICE modeling of resonant cavity enhanced PIN photodetector. J. Lightw. Technol.,2003,22(9):2031-2043.
    [126]Kevin Brennan. Theory of Electron and Hole Impact Ionization in Quantum Well and Staircase Superlattice Avalanche Photodiode Structures. IEEE Trans. Electron Dev.,1985, ED-32(11):2197-2205.
    [127]Joe C. Campbell, Shuling Wang, X. G. Zheng, et al. Ultra-Low-Noise Avalanche Photodiodes. SPIE,2001,4283:480-488.
    [128]H. Ando, H. Kanbe. Ionization coefficient measurement in GaAs by using multiplication noise measurements. Solid-State Electron.,1981,24: 629-634.
    [129]O. Marinov, M. Jamal Deen. Physical Model for Low Frequency Noise in Avalanche Breakdown of PN Junctions. SPIE,2003,5113:484-493.
    [130]X. Zhao, M. Deen, L. Tarof. Low frequency noise in separate absorption, grading, charge, and multiplication (SAGCM) avalanche photodiodes. Electronics Letters,1996,32(3):250-252.
    [131]Kou Songfeng, Chen Qian, Ji Eryou, et al. Single-photon time response of reach-through APD. Optics Communications,2008,281:2481-2484.
    [132]Kuniaki Matsuo, Malvin C. Teich, Bahaa E. A. Saleh. Noise Properties and Time Response of the Staircase Avalanche Photodiode. IEEE Trans. Electron Dev.,1985, ED-32 (12):2615-2623.
    [133]Yasser M. El-Batawy, M. Jamal Deen. Analysis and Circuit Modeling of Waveguide-Separated Absorption Charge Multiplication-Avalanche Photodetector (WG-SACM-APD). IEEE Trans. Electron Dev.,2005,52(3): 335-344.
    [134]Malvin C. Teich, Kuniaki Matsuo, E. A. Bahaa. Time and Frequency Response of the Conventional Avalanche Photodiode. IEEE Trans. Electron Dev. 1986, ED-SS (10):1511-1517.
    [135]蒋平,徐致中.固体物理简明教程.上海:复旦大学出版社,2000,36-40.
    [136]EG&G Canada Ltd., Optoelectronic Division, High Speed Solid State Detectors for Fiber Optic and Very Low Light-Level Applications, Silicon Avalanche Photodiodes C30902E,C30902S, C30921S, Data Sheet (1991).
    [137]秦晓琳,周春元,李和祥等.单光子雪崩二极管的被动-主动混合抑制技术.半导体光电,2004,25(6):459-462.
    [138]吕华,彭孝东.单光子探测器APD无源抑制特性研究.应用光学,2006,27(4):355-358.
    [139]韦啸,杨涛,彭承志等.恒温控制下的硅雪崩光电二极管单光子探测器的研制.核电子学与探测技术,2006,26(6):1013-1016.
    [140]罗纳德.N.布雷斯韦尔.傅里叶变换及其应用.西安:西安交通大学出版社,2005.
    [141]Joseph W. Goodman.傅里叶光学导论.北京:电子工业出版社,2006.
    [142]M. R. Squillante, J. S. Gordon, R. Farrel, Recent Advances in Avalanche Photodiode Technology, SPIE,1993,2009:64-71.
    [143]邹异松.电真空成像器件及其理论分析.北京:国防工业出版社,1989.
    [144]吴晗平.军用微光夜视系统的现状与研究.应用光学,1994,15(1):15-19.
    [145]Don Phelan, J. C. Jackson, R. M. Rdfern, et al. Geiger morde avalanche photodiodes for microarry systems. SPIE,2002,4626:89-97.
    [146]Xiaoli Sun, Frederic M. Davidson. Photon Counting with Silicon Avalanche Photododes. Journal of Lightwave Technology,1992,10(8):1023-1032.
    [147]Tamal Bose.数字信号与图像处理.北京:高等教育出版社,2002.
    [148]王彦飞.反演问题的计算方法及其应用.北京:高等教育出版社,2007.
    [149]姚姚.蒙特卡罗非线性反演方法及应用.北京:冶金工业出版社,1997.
    [150]王明军,董雁冰,吴振森等.粗糙表面光散射特性研究与光学常数反演.红外与激光工程,2004,33(5):549-552.
    [151]Takashi Machida, Naokazu Yokoya, Haruo Takemura. GPU Accelerated Inverse Photon Mapping for Real-time Surface Reflectance Modeling. IEEE, 2006, ICME 2006:645-648.
    [152]Carole K., Hayakawa, Jerome Spanier. Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues. Opt. Lett.,2001,26(17):1335-1337.
    [153]林元烈.应用随机过程.北京:清华大学出版社,2002.
    [154]安连生.应用光学.北京:北京理工大学出版社,2002.
    [155]Lewis N W, Allnatt J A. Subjective quality of television pictures with multiple impairments. Electron Letters,1965,1(7):187-188.
    [156]Jones B L, Turner J A. Subjective assessment of cable impairments on television picture quality. IEEE Transactions on Consumer Electronics, 1992,38(4):850-861.
    [157]韦学辉,李均利,陈刚.基于多元线性回归的图像质量评价方法.中国图像图形学报,2008,13(11):2123-2131.
    [158]杨嘉琛,侯春萍,沈丽丽等.基于PSNR立体图像质量客观评价方法.天津大学学报,2008,41(12):1448-1452.
    [159]赵达尊,张怀玉.波动光学.北京:宇航出版社,1988.
    [160]张祥雪,张立.单光子计数器的校验方法研究.光学技术,2007,33(4):561-563.
    [161]方志烈.半导体发光材料和器件.上海:复旦大学出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700