用户名: 密码: 验证码:
深水S-Spar平台水动力性能及其立管系统疲劳特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类石油勘探开发逐渐向深水领域扩展,涌现了许多新型的适应深海海洋环境的平台。与其他形式的平台相比,Spar平台的适用水深范围大,运动性能和稳定性好,已经成为世界深海油气开采的主力平台类型之一。Spar平台已经由第一代Classic Spar平台、第二代Truss Spar平台发展到第三代Cell Spar平台。目前我国在此领域的研究还处于起步阶段,且特殊的环境条件对Spar平台的设计和研究提出了新的挑战。因此,急需开展新型Spar平台概念设计及其水动力性能等方面计算和模型试验研究。
     本文结合Classic Spar和Truss Spar平台的优点,基于极深水和海洋内波等特殊的海洋环境条件,提出一种新型S-Spar平台,并设计了半张紧半悬链线式的系泊系统。S-Spar平台采用圆柱形中央井连接软硬舱,并在连接段的中央井外设置了三层垂荡板。S-Spar平台独特的封闭式中段能够有效避免顶张式立管等设施因内波高流速引起严重的涡激振动,还可以安装更长的浮筒,不需要采用轻质金属便能提供足够的顶张力,使用的水深范围更大。此外,中段的独特设计还减少了钢材的消耗量,有效的提高了平台的有效荷载。
     采用三维势流理论分析平台在频域内的运动响应,计算了作用在平台主体上的波浪载荷、附加质量和势流阻尼系数以及运动响应传递函数等。计算结果表明,新型S-Spar平台的附加质量和阻尼都达到了良好的量级,具有良好的运动性能,所得的频域计算结果将进一步用于平台的时域耦合分析计算。
     采用DeepC软件建立了S-Spar平台和‘Horn Mountain’Truss Spar平台的耦合分析模型,考虑风、浪、流等环境荷载的作用和系泊系统的非线性影响,进行了时域耦合分析。得到了两种Spar平台的波浪荷载(包括一阶波浪激励力和二阶波浪力)、运动位移时程、运动响应谱、系泊缆的张力时程和张力极值等,并对两种Spar平台的结果进行了比较。结果表明,S-Spar封闭式的中段并没有引起平台主体承受的波浪荷载的明显增大;在极端风浪流环境荷载的作用下,S-Spar平台各自由度的运动响应要优于‘Horn Mountain’Truss Spar平台,其系泊缆的张力极值和张力变化幅值也的得到了很好的控制,因此新型S-Spar平台保持了传统Spar平台良好的运动性能,能够适应深海油气的开采。
     Spar平台常采用TTR作为海面与海底井口间的主要连接件,现在对Spar平台TTR系统的研究多针对单根立管,即不考虑Spar平台的影响,尤其是TTR的涡激振动分析。本文最后基于S-Spar平台,对其顶张式立管涡激振动疲劳特性进行了研究,主要包括S-Spar平台对立管保护作用研究、Spar平台对其顶张式立管(TTR)固有频率和涡激振动疲劳损伤的影响、Spar平台VIM运动对其TTR疲劳损伤的响应,得出以下结论:
     1)新型S-Spar平台的封闭式中段不仅能够保护平台中段的立管,还能有效的减小整根立管的疲劳损伤。S-Spar平台对平台长度范围内立管及导向环支撑位置处立管的保护作用最为明显,且随着流速的增大保护作用增强。
     2)Spar平台中央井内的导向环对TTR提供侧向支撑作用,使得有Spar平台时TTR的固有频率会高于无Spar平台模型,对于本文的顶张式立管,固有频率误差最大可达11.12%。
     3)不考虑Spar平台而采用简化的单根管模型对TTR进行涡激振动疲劳损伤计算使立管的疲劳设计偏于危险。本文的顶张式立管在南海海域各流速的作用下,有Spar平台的立管疲劳损伤为单根管模型计算结果的2.598倍。
     4)VIV疲劳损伤与VIM疲劳损伤耦合计算时,Spar平台VIM运动可以降低TTR的疲劳损伤。忽略Spar平台VIM运动而对TTR进行疲劳寿命预报会使结果偏于保守。
     本论文的创新性工作主要体现在:综合Classic Spar和Truss Spar平台的优点,考虑极深水和海洋内波等特殊海洋环境条件,提出一种新型S-Spar平台,并完成了时域和频域内的运动响应分析;基于S-Spar平台,从S-Spar平台对立管保护作用、Spar平台对TTR涡激振动疲劳损伤的影响、Spar平台VIM运动对TTR疲劳损伤的影响等方面研究了Spar平台立管系统的疲劳特性。
As the offshore oil exploitation activities expending to deep water and even ultra-deep water, many new types of floating structures suitable for this depth are being developed concomitantly. Compared with other floating structures, Spar platform has excellent stability, benign motion behavior and adaptation to wide range of water depth. Spar platform is then regarded as an attractive design solution for regions of deep water. Since the first generation of Classic Spar has come to use, the Spar platform has been evolved into the second generation of Truss Spar and the latest Cell Spar. At present, the Chinese research in this area is still in the starting phase. However, the special environments, such as ultra-deep water and internal waves, pose a new challenge to the design of Spar platforms. Therefore, the concept design and hydrodynamic analysis of new type of Spar platform are urgently needed.
     Based on the advantages of Classic Spar and Truss Spar, A new type of Spar platform, named S-Spar, is presented in this paper. This Spar aims at applying to the especial areas with internal wave and ultra-deep water depth. Its midsection is a cylinder with same diameter as the centre well, and the centre well and midsection is designed as an integrated structure. Three heave plates are attached appropriately along the connect section. With the unique closed midsection, S-Spar shields the risers in the centre well from the majority of environment loads near the midsection, then can avoid the high frequency vibration of risers due to current and internal waves. S-Spar can provide sufficient top tension for ultra-deep water application but no buoyancy can made of lightweight alloy is need. Besides, S-Spar has been optimized to carry large payloads due to the decrease of steel using of midsection.
     Based on the 3D potential flow theory, the hydrodynamic analysis of S-Spar is conducted in frequency domain. The wave exciting force, added mass coefficient, damping coefficient and motion Response Amplitude Operators (RAO) are obtained. The calculation results show that added mass and damping of S-Spar platform has reach good level, and S-Spar is considered to have good motion characteristics. The results from frequency-domain analysis will be further used in time-domain coupling analysis of S-Spar platform.
     The coupling analysis model of S-Spar platform and‘Horn Mountain’Truss Spar are set up using the software DeepC. Then the hydrodynamic performance of two Spars is analyzed through nonlinear time-domain coupling method with the wind, wave, current loads and the nonlinear effects of mooring system. The wave force (including first order wave exciting force and second order wave drift force), time history of global motions, response spectrum, tension time history of mooring lines and maximum tension are obtained. Then the paper compares the motion characteristics of S-Spar and the typical Truss Spar in this paper. The results show that wave force on S-Spar platform is at the same level of that of Truss Spar which indicates the closed midsection doesn’t cause obvious increase of wave loads. S-Spar platform shows better motion response than the typical Truss Spar under the extreme wind, wave and flow condition. Besides, the maximum tension and tension fluctuation of mooring lines for S-Spar platform are also well controlled. Therefore, the S-Spar is considered to have excellent motion characteristics and good adaptation to exploitation of deep water and ultra-deep water.
     Top tensioned riser is usually used to connect sea surface and wellhead in seabed in Spar platform. However, most researches adopt single riser model which can not take the influence of Spar platform on TTR into consideration, especially for the vortex induce vibration (VIV) study. Based on the S-Spar platform, the vortex induced vibration and fatigue behaviors of TTR hosted in Spar platform are investigated in this paper at the last part. The researches mainly focus on protective effects of S-Spar on TTRs in centre well, influence of riser guides on natural frequency and VIV fatigue damage of TTRs, influence of Spar VIM on fatigue damage of TTRs. The following conclusions can be drawn:
     1) The S-Spar platform can not only protect TTR in the range of midsection, but also decrease fatigue damage of whole riser effectively. The protective effect is more obvious in the range of Spar hull and riser guides, and increases with current velocity.
     2) Riser guides in the centre well of Spar platform will make natural frequency of TTR higher than single riser model. For the TTR mentioned in this paper, tolerance of natural frequency can reach to 11.2%.
     3) Using single riser model to predict the fatigue life of TTR hosted in Spar platform is more dangerous. The fatigue damage of TTR with Spar platform is 2.598 times as that of single riser model under the current condition in South China Sea.
     4) When VIV fatigue damage and VIM fatigue calculated together, the VIM of Spar platform has great influence on the fatigue damage of TTR. VIM of Spar can restrain the vibration and fatigue damage of TTR It is conservative to predict the fatigue life of TTR without taking the VIM of Spar into consideration.
     The innovation of this thesis can be concluded as follows: Taking the ultra-deep water condition and internal wave load into consideration, a new type of Spar named S-Spar is presented in this paper by integrating the advantages of Classic Spar and Truss Spar. And the hydrodynamic performance is obtained using frequency-domain and time-domain method, and compared with a typical Truss Spar. Based on the S-Spar, protective effects of S-Spar on TTRs in centre well, influence of Spar platform on VIV fatigue damage of TTRs, influence of Spar VIM on fatigue damage of TTRs are investigate, and beneficial conclusions are obtained.
引文
[1]张帆,杨建民,李润培.Spar平台的发展趋势及其关键技术.中国海洋平台,2005,20(2):6-11.
    [2]李润培,谢永和,舒志.深海平台技术的研究现状与发展趋势.中国海洋平台,2003,18(3):1-5.
    [3]张大刚.深海油田的开发—当前国际应用及发展趋势.中国造船,2005,46(4) :41-46.
    [4] Ward E.G., Gilbert R. B., Jihad J.. Deepwater Production System Risks [A]. Proceedings of the.11th International Offshore and Polar Engineering Conference. [C], 2001: 654-659.
    [5]齐凯.Cell Spar平台概念设计及结构总体强度分析[D].硕士学位论文,大连理工大学,2008,pp:4~6.
    [6] Cannavaeeiuolo A. FPSO Technology and Development. Procedures of the 8th Deep offshore Technology,1995.
    [7]董艳秋.深海采油平台波浪载荷及响应.天津大学出版社,2005.
    [8]曾晓辉,沈晓鹏,吴应湘,深海平台分析和设计中的关键力学问题[J],船舶工程,2005, 27(5):18~21.
    [9] Rho J.B., Choi H. S., Lee W. C., et al. Heave and Pitch Motions of a Spar Platform with Damping Plate[A]. Proceedings of the12th International Offshore and Polar Engineering Confonference. [C], 2002: 198-201.
    [10] Tao L.B., Lim K. Y., Thiagarajan K. Heave Motion Characteristics of Spar Platform with Alternative Hull Shapes [A]. Proceedings of the .20th Offshore Mechanics and Arctic Engineering Conference[C], 2001.
    [11] Thiagarajan K., Datta I., Ran A., et al. Influence of Heave Plate Geometry on the Heave Response of Classic Spars[A]. Proceedings of the 21st Offshore Mechanics and Arctic Engineering Conference [C], 2002.
    [12] Tao L.B., Cai S.Q. Heave motion suppression of a Spar with a heave plate. Ocean Engineering, 2004,31: 669-692.
    [13] Downie M.J., Graham J. M. R., Hall C., et al. An experimental investigation of motion contrdevices for Truss Spar. Marine Structures, 2000, 13:75-90.
    [14] Tao L.B., Cai S.Q. Heave motion suppression of a Spar with a heave plate. Ocean Engineering, 2004, 31:669-692.
    [15] Liu T.J., Chen X.B., Wu J.F., et al. Global Performance and Mooring Analysis of a Truss Spar[A]. Proceedings of the 13th International Offshore and Polar Engineering Conference [C], 2003:256-263.
    [16] Hong Y. P., Lee D. Y., Choi Y. H., et al. An Experimental Study on the Extreme Motion Responses of a SPAR Platform in the Heave Resonant Waves[A]. Proceedings of the 15th International Offshore and Polar Engineering Conference[C], 2005:225-232.
    [17] Koo, B.J., Kim, M.H., Randall, R.E.. Mathieu Instability Of A Spar Platform With Mooring And Risers[J],Ocean Engineering, 2004, 31:2175~2208.
    [18] Rho, J. B., Choi, H. S., Shin, H. S., A Study On Mathieu-type Instability Of Conventional Spar Platform In Regular Waves[J], International Journal of Offshore and Polar Engineering, 2005, 15(2):104~108.
    [19] Van Dijk, R. R. T., Voogt, A. J., Fourchy, P., Mirza, S.. The Effect of Mooring System and Sheared Currents on Vortex Induced Motions of Truss Spars[A]. Proceedings of the 22nd International Conference on Offshore Mechanics and Arctic Engineering[C], 2003:285- 292.
    [20] Finn, L. D., Maher, J. V., Gupta, H.. The Cell Spar and Vortex Induced Vibrations [A]. Offshore Technology Conference[C], 2003.
    [21] Irani, M., Finn, L.. Model Testing for Vortex Induced Motions of Spar Platforms [A]. Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering [C], 2004:605- 611.
    [22] Oakley, Jr., O. H., Navarro, C., Constantinides, Y., Holmes, S.. Modeling Vortex Induced Motions of Spars in Uniform and Stratified Flows [A]. Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering, OMAE[C], 2005:885- 894.
    [23] Irani, M., Finn, L.. Improved Strake Design for Vortex Induced Motions of Spar Platforms [A], Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering[C], 2005:767- 773.
    [24] Halkyard, J., Sirnivas, S., Holmes, S., et al. Benchmarking of Truss Spar Vortex Induced Motions Derived from CFD With Experiments [A]. Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering [C], 2005:895- 902.
    [25] Bybee K. Spar vortex-induced-vibration prediction[J]. Journal of Petroleum Technology, 2005, 57(2):61-68.
    [26] Chen X.H., Zhang J., Ma W. On dynamic coupling effects between a spar and its mooring lines. Ocean Engineering, 2001, 28(7):863-887.
    [27]Gupta H.,Finn L.,Weaver T. Effects of Spar Coupled Analysis.Offshore Technology Conference[C], 2000.
    [28] Ma W., Lee M.Y., Zou J., et al. Deepwater Nonlinear Coupled Analysis Tool. Offshore Technology Conference[C], 2000.
    [29]Ran, Z., Kim, M. H., Zheng, W.. Coupled dynamic analysis of a moored spar in random waves and currents (time-domain vs. frequency-domain analysis).Journal of Offshore Mechanics and Arctic Engineering, 1999, 121:194~200.
    [30] Ma, Q. W., Patel, M. H.. On the non-linear forces acting on a floating spar platform in ocean waves. Applied Ocean Research, 2001, (23):29~40.
    [31] Kim, M. H., Ran, Z., Zheng, W.. Hull/Mooring Coupled Dynamic Analysis of a Truss Spar in Time Domain. International Journal of Offshore and Polar Engineering, 2001, 11(1):42~54.
    [32] Yang, J. M., Zhang, H. M., Xiao, L. F., et al. Experimental study on a new type of deep sea platform-geometric spar and integrated buoyancy can[J]. Ocean Engineering, 2003, 21(4):23-28.
    [33] Zhang, F., Li, R. P., Yang, J. M.. Effects of heave plate on the hydrodynamic behaviors of cell spar platform[A]. Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering[C], 2006.
    [34]张帆.深海立柱式平台概念设计及水动力性能研究[D],上海交通大学博士学位论文,2008.
    [35]郭斌,唐文勇,张圣坤. Truss Spar平台桁架的疲劳分析方法.中国海洋平台, 2006, 21(4): 36-41.
    [36] Luo, Y. H., Lu, R., Wang, J., Berg ,S.. Time-Domain Fatigue Analysis for Critical Connections of Truss Spar. Proceedings of the 11th International Offshore and Polar Engineering Conference [C], 2001:362-368.
    [37] Wang, J., Lu, R., Lu ,N.. Truss Spar Strength and Fatigue Analysis for Wet Tow[A]. Proceedings of the13th International Offshore and Polar Engineering Conference[C], 2003:264-271
    [38] Ji, C.Q., Halkyard, J.. Spar Deck Float-over Feasibility Study for West Africa Environment Condition[A]. Proceedings of the 25th Offshore Mechanics and Arctic Engineering Conference[C], 2006.
    [39] Lu, R, Wang, J., Ellen, E.. Time Domain Strength and Fatigue Analysis of Truss Spar with Heave Plate [A] , Proceedings of the 13th International Offshore and Polar Engineering Conference[C], 2003: 272- 279.
    [40] Downie, M. J., Wang, J., Graham, J. M .R.. The Effectiveness of Porous Damping Devices[A]. Proceedings of the 10th International Offshore and Polar Engineering Conference[C], 2000: 418-425.
    [41]王一飞.深水立管疲劳损伤预报分析方法研究[D].博士学位论文,上海交通大学,2008. pp:1-3.
    [42]方欣华,杜涛.海洋内波基础和中国海内波[M].青岛:中国海洋大学出版社, 2005.
    [43] Theckumpurath, B., Ding, Y., Zhang, J.. NUMERICAL SIMULATION OF THE TRUSS SPAR‘HORN MOUNTAIN’.Proceedings of the 16th International Offshore and Polar Engineering Conference, 2006.
    [44]竺艳蓉.海洋工程波浪力学.天津:天津大学出版社:63-77.
    [45] DNV, SESAM User Manual WADAM. Wave Analysis by Diffraction and Morison Theory
    [46]刘应中,缪国平.船舶在波浪中的运动理论.上海交通大学出版社,1986
    [47] Faltinsen, O.M.. Sea loads on ships and offshore structures. Cambridge University Press.1990
    [48]陈恒,王磊.深水平台二阶波浪力研究综述[J].海洋工程, 2006, 24(4).
    [49] Ma, S., Shi, S., Miao, W. J.. Viscous Damping Effect Investigation on Global Performance of SPM Buoy in Shallow Water. Deepwater Offshore Specialty Symposium, 2009.
    [50] Sadeghi, K., Atilla I., Martin J. D.. Response analysis of a truss spar in the frequency domain. Journal of Marine Science and Technology (2004) 8:126–137.
    [51] Prislin, I., Belvins, R.D., Halkyard, J. E.. Viscous Damping and Added Mass of Solid Square Plates. Proceedings of the 17th of International Conforence Offshore , 2007.
    [52]张帆,杨建民,李润培.新型多柱桁架式Spar平台水动力性能研究.海洋工程,2007, 25.
    [53]张帆,杨建民,李润培,柳存根.深海立柱式平台概念设计研究.海洋工程,2008, 26.
    [54] Chakrabarti,S., Barnett, J., Kanchi,H., et al. Yim. Design analysis of a truss pontoon semi-submersible concept in deep water. Ocean Engineering, 34(2007)621-629.
    [55] ABS Rules for Building and Classing Mobile Offshore Drilling Units[S], 2007
    [56] Cummins W. E. The Impulse Response Function and Ship Motions. Schiffstechnik, 1962
    [57] RIFLEX Theory Manual, SINTEF Report STF70 F95219, 1995
    [58]陈新权.深海半潜式平台初步设计中的若干关键问题研究.上海交通大学博士论文,2007.
    [59] Wichers J. E .W.. Wave-current Interaction Effects on Moored Tankers in High Seas. Offshore Technology Conference., 1988.
    [60] Zhang, F., Yang, J. M., Li, R. P., Chen, G.. Numerical and Experimental Research on the Global Performances of Cell-Truss Spar Platform. China Ocean Engineering, 2007, 21(4):561-576.
    [61]聂武,刘玉秋.海洋工程结构动力分析.哈尔滨:哈尔滨工程大学出版社,2002:128-139.
    [62] Cai, S. Q., Long, X. M., Dong, D. P., Wang, S.G.. Background current affects the internal wave structure of the South China Sea[J]. Progress in Natural Science, 2008, 18(5): 585-589.
    [63] Bai, Y., Tang, A., et al. Steel Catenary Riser Fatigue Due to Vortex Induced Spar Motions. Offshore Technology Conference, OTC 16629.
    [64] Cunff, C. L., Fontaine, E., Biolley, F.. Riser Fatigue Due to Currents and Waves. Proceedings of the 21th Offshore Mechanics and Arctic Engineering Conference[C], 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700