用户名: 密码: 验证码:
不同媒质模型左手材料的时域FDTD分析及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
左手材料是当前科学研究的热点之一,在电磁学、光学和材料学领域都有着巨大的应用前景。对于其特性的研究,在理论分析、数值计算和实际应用等方面还需要不断地完善和深入发展。特别是利用数值计算方法对左手材料电磁特性进行分析,避开了解析方法中繁琐的推导和复杂的数学计算,在一定的精度范围内,可以灵活地分析目标的电磁性能,大大提高分析的效率。同时,通过现代先进的作图手段,可以很直观地了解电磁场在目标周围空间和时间上的变化过程和趋势,提高数值分析的有效性。时域有限差分(FDTD)算法从麦克斯韦(Maxwell)方程组出发,不需要任何导出方程,避免了使用更多的数学工具,具有简单、直观、易于矢量化和并行化的特点,被广泛的应用于求解各种复杂情况的电磁问题中。但是,由于左手材料具有介电常数和磁导率同时为负数的媒质特性,应用传统的时域有限差分法直接分析左手材料中的电磁波,将会造成计算结果发散,使数值计算无法进行。
     本文主要对不同数学模型左手材料中传统的时域有限差分算法进行改进,利用计算机编程技术,成功实现了对它们电磁特性的准确数值分析。同时,通过大量研究工作,讨论了各模型左手材料的负折射和电磁平板聚焦等现象。提出了一些具有特殊性质的左手材料系统结构,探索了其在微波中的一些潜在应用。本文的主要工作可以概括为:
     1.本文简要分析了左手材料的特殊性质及其研究的理论基础。掌握并熟练应用时域有限差分法对典型的电磁场问题进行时域的数值分析。
     2.本文对传统的时域有限差分法进行了改进,成功将改进后的时域有限差分法应用到左手材料的数值计算中去。解决了直接修改传统时域有限差分法中的媒质等效介电常数和等效磁导率所产生的数值发散问题。
     3.本文通过数学推导,分别给出了TM模和TE模电磁波在冷等离子体媒质模型下的左手材料中的改进的时域有限差分法数值计算公式以及该左手材料中的完美匹配层(PML)的数值计算表达式。引入背景媒质参数ε′_r和μ′_r,对二维有限长和无限长左手材料平板中的电磁波的传播特性进行了数值分析。同时,分别计算了不同负折射率边界条件下,左手材料平板的电磁波折射规律,数值验证了电磁波在二维左手材料中的传播满足推广的斯涅尔(Snell)定律。
     4.本文进一步引入了更接近实际材料的Drude媒质模型下的左手材料;详细推导了Drude模型下左手材料中的时域有限差分法数值计算公式。讨论了有损耗左手材料平板的电磁特性;分析了不同损耗因子y的有损耗左手材料平板中电磁波的分布变化。同时,计算了不同长度的有损耗左手材料平板中的电磁场分布。数值分析了一种利用有损耗左手材料平板来实现电磁能量聚焦的系统结构。数值分析结果,验证了该结构的能量局域化特性。
     5.本文详细讨论了具有更普适特性的洛伦兹(Lorentz)模型下的左手材料的特性。以第三章、第四章和第五章中的FDTD分析方法为基础,推导了洛伦兹模型下左手材料中的电磁场FDTD计算公式。数值模拟了该模型下不同厚度的左手材料平板结构的电磁场分布情况。根据左手材料平板的聚焦性质,提出了一种基于左手材料平板的电磁波多次聚焦结构,并对其作了数值分析,得到了较一致的结果。最后,利用该FDTD数值方法,模拟分析了左手材料平板的分层聚焦特性。采用电磁场数值仿真软件Ansoft,设计了具有折射率近似等于-1的实际金属阵列结构。同时,利用该结构进行了多层平板的Ansoft数值仿真实验,实验结果与FDTD数值仿真结果得到较好的吻合。
     6.本文最后结合前面几章对线性左手材料的分析结果,初步讨论了非线性左手材料的特性。推导了克尔(Kerr)非线性左手材料中的FDTD计算式。运用该方法数值模拟了具有该非线性效应左手材料平板中的电磁波,得到了稳定的数值结果。与线性左手材料平板结果进行了对比,数值计算和分析了波源到该平板不同距离情况下,该非线性左手材料平板对电磁波聚焦点的影响。
Presently,left-handed materials(LHMs)is one of the hot research interests for it has intensively potential application in the fields of Electromagnetics,Optics and Materials.However,for the newly artificial electromagnetic materials,these traditional theories,numerical methods and applications of electromagnetic fields need to be developed.Especially,by using the numerical methods to analyze the characteristics of the LHMs and the distributions of electromagnetic fields in the LHMs would greatly enhance the people's right understanding for these newly man-made materials and reduce the research time and costs.Besides,the variation of electromagnetic fields with time could be easily and clearly illustrated by recent drawing tools. Finite-difference time-domain(FDTD)method is directly derived by Maxwell's Equations which is widely used in many complex conditions.However,the traditional FDTD method would make the numerical simulation of LHMs divergence.
     In this thesis,finite-difference time-domain(FDTD)methods in different mathematic modeling LHMs are developed.Programs based on these modified algorithms are performed in order to analyze the electromagnetic fields in such LHMs. According a great quantity of calculations,the characteristics of different modeling LHMs are discussed.Some special LHMs structures or systems are proposed.Their potential applications are explored.The author's work is mainly focused on:
     1.The special characteristics and the basic theory of LHMs are introduced. Finite-difference time-domain(FDTD)method is grasped and applied masterly to the numerical analysis of electromagnetic problems.
     2.Traditional FDTD method is modified.Such modified FDTD method is successfully applied in the numerical calculation of LHMs.It could solve the numerical problem of traditional FDTD in LHMs simulation.
     3.TM and TE mode electromagnetic waves are separately concerned.The numerical expressions of the perfect-matched layer(PML)and such modified FDTD method in LHMs modeled by cold plasma model are derived.The permittivityε'_r and permeabilityμ'_r of back ground media are introduced.Two dimensional finite LHMs slab and infinite LHMs slab are numerically analyzed by such modified method.Besides,the refractional phenomena of electromagnetic waves in LHMs slab surface with different refraction-index are simulated.The extended Shell's law which electromagnetic waves satisfy in the LHMs could be verified by the numerical results.
     4.The much more real media model,Drude model,compared to the cold plasma model is introduced into the LHMs.The numerical expressions of the modified FDTD method in Drude model LHMs are derived in detail.The lossy LHMs slab is studied.The distributions of electromagnetic waves around such LHMs slab with different lossy factorγare calculated.An electromagnetic energy localizing system with such lossy LHMs slab is numerically analyzed.The characteristic of electromagnetic energy localization in such system could be proved by the numerical results.
     5.The most general model,Lorentz model,is introduced in LHMs.Based on the modified FDTD theory of chapter 3,chapter 4 and chapter 5,the numerical expressions of the modified FDTD method in Lorentz model LHMs are derived. The distributions of electromagnetic waves around such LHMs slab with different thickness are calculated.A multipoint focusing system with LHMs is discussed. According to the numerical results,these multipoint focuses certainly agree with the focusing theory of LHMs.Besides,a multi-layer LHMs system with multi-layer focusing characters is also discussed.A real metal-ring LHMs structure with the refraction-index approximately to -1 is designed which is applied to the multi-layer LHMs system.Ansoft is used to simulate the electromagnetic waves around the real LHMs.Great agreement could be seen between the FDTD results and the Ansoft results.
     6.Nonlinear LHMs is primarily discussed.The numerical expressions of the modified FDTD method in Nonlinear LHMs with Kerr effects are derived.The distribution of electromagnetic waves around such nonlinear LHMs slab is calculated steadily. Compare to the linear LHMs,the electromagnetic focus could also be observed in this nonlinear LHMs slab.The location of the focus would vary with the distance between the source and the nonlinear LHMs slab.
引文
[1]V.G.Veselago,The electrodynamics of substances with simultaneously negative values of ε and μ,Sov.Phys.Uspekhi,1968,10,509.
    [2]Pendry J B et al.Magnetism from conductors and enhanced nonlinear phenomena,IEEE Trans.Microwave Theory and Technology,1999,47,2075
    [3]Pendry J B,Holden A J,Stewart W Jet al.Extremely Low Frequency Plasmons in Metallic Mesostructures,Phys.Rev.Lett.,1996,76,4773
    [4]Pendry J B,Holden A J,Robbins D J et al.Low frequency plasmons in thin-wire structures,J.Phys.:Condens.Matt.,1998,10,4785
    [5]Sigalas M,Chan C T,Ho K Met al.Metallic photonic band-gap materials,Phys.Rev.B,1995,52,11744
    [6]Smith D R,Schultz S,Kroll N et al.Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity,Appl.Phys.Lett.,1994,65,645
    [7]Saryehev A K,Shalaev V M.,Comment on "Extremely low frequency plasmons in metallic microstructures",2001
    [8]Pokrovsky A L,Efros A L.,Electrodynamics of Metallic Photonic Crystals and the Problem of Left-Handed Materials,Phys.Rev.Lett.,2002,89,093901
    [9]Smith D R,Kroll N.,Negative Refractive Index in Left-Handed Materials,Phys.Rev.Lett.,2000,85,2933
    [10]Richard W,Ziokowski,Heyman E.,Wave propagation in media having negative permittivity and permeability,Phys.Rev.E.,2001,64,056625
    [11]Smith D R,Padilla W,Vier D et al.,Composite Medium with Simultaneously Negative Permeability and Permittivity,Phys.Rev.Lett.,2000,84,4184
    [12]Shelby R A,Smith D R,Nemat Nasser S C et al.Microwave transmission through a two-dimensional,isotropic,left-handed metamaterial,Appl.Phys.Lett.,2001,78,489
    [13]Shelby R A,Smith D R,Schultz S.Experimental Verification of a Negative Index of Refraction,Science,2001,292,77
    [14]Parazzoli C G,Gregor R B,Li K et al.Experimental Verification and Simulation of Negative Index of Refraction Using Snell's Law,Phys.Rev.Lett.,2003,90,107401
    [15]Pendry J B.Negative Refraction Makes a Perfect Lens,Phys.Rev.Lett.,2000,85,3966
    [16] Valanju P M ,Walser R M , Valanju A P., Wave Refraction in Negative-Index Media: Always Positive and Very Inhomogeneous, Phys. Rev. Lett., 2002 , 88 ,187401
    [17] Smith D R , Schurig D , Pendry J B. , Some of the waves emitted or reflected, Appl. Phys. Lett., 2002 , 81 , 2713
    [18] Garcia N , Nieto Vesperinas M., Is there an experimental verification of a negative index of refraction yet, Optics Lett., 2002 , 27 , 885
    [19] Sanz V , Papageorgopoulos A C , Egelhoff J r W F et al. Phys.Rev. E , 2002 , 67 : 067601
    [20] D. R. Smith, J. B. Pendry, M. Wiltshire, Metamaterials and Negative Refractive Index, Science, 2004, 305, 788.
    [21] D. R. Smith, J. B. Pendry, Reversing Light With Negative Refraction, Phys. Today 2004, June, 37.
    [22] S. A. Ramakrishna, Physics of negative refractive index materials, Rep. Prog. Phys. 2005, 68, 449.
    [23] t'Hoof G W. Comment On "Negative Refraction Makes a Perfect Lens", Phys. Rev. Lett., 2001 , 87, 249701
    [24] Williams J M Comment On "Negative Refraction Makes a Perfect Lens", Phys. Rev. Lett., 2001 ,87 , 249703
    [25] Garcia N , Nieto Vesperinas M., Is there an experimental verification of a negative index of refraction yet, Phys. Rev. Lett., 2002 ,88 ,207403
    [26] Pendry J B. Replies to [23] ,[24] . Phys. Rev. Lett. , 2001 , 87 , 249702 ; 249704
    [27] Pendry J B. Comment On "Is there an experimental verification of a negative index of refraction yet", eprint condmat, 2002,0206563.
    [28] Pendry J B , Smith D R. Comment on "Wave Refraction in Negative-Index Media: Always Positive and Very Inhomogeneous", eprint condmat, 2002, 0207689.
    [29] Lu W T , Sokoloff J B , Sridhar S. Comment on "Wave Refraction in Negative-Index Media: Always Positive and Very Inhomogeneous", E print condmat, 2002,0207689.
    [30] M. Ayindir, K. Aydin, E. Ozbay, et al, Transmission properties of composite metamaterials in free space, Appl.Phys. Lett. 2002, 81, 120.
    [31] N. Katsarakis, T. Koschny, M. Kafesaki, et al, Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials, Appl. Phys. Lett. 2004, 84, 2943.
    [32] L. Zhang, G. Tuttle, C. M. Soukoulis, GHz magnetic response of split ring resonators, Photon. and Nanostruct., 2004, 2, 155.
    [33] N. Katsarakis, T. Koschny, M. Kafesaki et al, Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, 70, 201101.
    [34] K. Aydin, K. Guven, L. Zhang et al, Experimental observation of true left-handed transmission peaks in metamaterials, Opt. Lett. 2004, 29,2623.
    [35] K. Aydin, K. Guven, N. Katsarakis, et al, Effect of disorder on magnetic resonance band gap of split-ring resonator structures, Opt. Express, 2004, 24, 5896.
    [36] K. Guven, K. Aydin, K. B. Alici, et al, Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens, Phys.Rev. B: Condens. Matter Mater. Phys. 2004, 70, 205 125.
    [37] R. Moussa, S. Foteinopoulou, L. Zhang, et al, Negative refraction and superlens behavior in a two-dimensional photonic crystal,Phys. Rev. B: Condens. Matter Mater. Phys., 2005, 71,085 106.
    [38] K. Aydin, K. Guven, C. M. Soukoulis et al, Observation of negative refraction and negative phase velocity in left-handed metamaterials, Appl. Phys. Lett., 2005, 86, 124 102.
    [39] Ruppin R., Surface polaritons of a left-handed medium, Phys. Lett. A , 2000 , 277, 61
    [40] Ruppin R., Surface polaritons of a left-handed medium, J .Phys. : Condens. Matt., 2001,13,1811
    [41] Haldane F D M., Electromagnetic surface modes at interfaces with negative refractive index make a"Not quite perfect" lens. E print condmat, 2002,0206420
    [42] Smith D R , Schurig D. , Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors, Phys. Rev. Lett., 2003 , 90,077405
    [43] Feise M W, Bevelacqua P J , Schneider J B., Effects of surface waves on the behavior of perfect lenses, Phys. Rev. B ,2002 ,66,035113
    [44] Nefedov I S , Tretyakov S A., Photonic band gap structure containing metamaterial with negative permittivity and permeability, Phys. Rev. B , 2002 , 66,036611
    [45] Pendry J B., Electromagnetic materials enter the negative age, Physics World , 2001 ,14 ,47
    [46] M. Wiltshire, J. B. Pendry, I. R. Young et al, Microstructured Magnetic Materials for RF Flux Guides in Magnetic Resonance Imaging, Science, 2001, 291, 848.
    [47] M. Notomi, Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap ,Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 62, 10696.
    [48] C. Luo, S. G. Johnson, J. D. Joannopoulos et al, All-angle negative refraction without negative effective index ,Phys. Rev.B: Condens. Matter Mater. Phys., 2002, 65, 201104.
    [49] C. Luo, S. G. Johnson, J. D. Joannopoulos et al, Subwavelength imaging in photonic crystals , Phys. Rev. B: Condens.Matter Mater. Phys. 2003, 68,045 115.
    [50] S. Foteinopoulou, E. N. Economou, C. M. Soukoulis, Refraction in media with a negative refractive index.,Phys. Rev. Lett., 2003,90,107 402.
    [51] S. Foteinopoulou, C. M. Soukoulis, Negative refraction and left-handed behavior in two-dimensional photonic crystals , Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 67, 235 107.
    [52] S. Foteinopoulou, C. M. Soukoulis, Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects, Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 72, 165 112.
    [53] E. Cubukcu, K. Aydin, E. Ozbay et al, Electromagnetic waves: Negative refraction by photonic crystals. Nature 2003, 423, 604.
    [54] E. Cubukcu, K. Aydin, E. Ozbay et al, Subwavelength resolution in a two-dimensional photonic-crystal-based superlens, Phys. Rev. Lett. 2003, 91, 207 401.
    [55] P. V. Parimi, W. T. Lu, P. Vodo et al, Negative refraction and left-handed electromagnetism in microwave photonic crystals. Phys. Rev. Lett. 2004,92,127 401.
    [56] P. Vodo, P. V. Parimi, W. T. Lu, et al, Microwave photonic crystal with tailor-made negative refractive index,Appl. Phys. Lett. 2004, 85,1858.
    [57] P.Vodo, P. V. Parimi, W. T. Lu et al, Focusing by planoconcave lens using negative refraction, Appl. Phys. Lett. 2005, 86,201 108.
    [58] M. Kafesaki, T. Koschny, R. S. Penciu et al, E. N. Economou, C. M. Soukoulis, Left-handed metamaterials: detailed numerical studies of the transmission properties, J. Opt. A: Pure Appl. Opt. 2005, 7, S12.
    [59] Th. Koschny, L. Zhang, C. M. Soukoulis, Isotropic three-dimensional left-handed metamaterials, Phys. Rev. B: Condens., Matter Mater. Phys. 2005, 71, 036617.
    [60] T. J. Yen, W. J. Padilla, N. Fang et al, Terahertz Magnetic Response from Artificial Materials, Science 2004, 303, 1494.
    [61] S. Linden, C. Enkirch, M. Wegener et al, Magnetic Response of Metamaterials at 100 Terahertz, Science 2004, 306, 1351.
    [62] N. Katsarakis, G. Konstantinidis, A. Kostopoulos et al, Magnetic response of split-ring resonators in the far-infrared frequency regime,Opt.Lett.,2005,30,1348.
    [63]C.Enkrich,S.Linden,M.Wegener et al,Magnetic metamaterials at telecommunication and visible frequencies,Phys.Rev.Lett,.2005,95,203901.
    [64]C.Enkrich,F.Perez-Willard,D.Gerthsen et al,Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials,Adv.Mater.2005,17,2547.
    [65]G.Dolling,C.Enkrich,M.Wegener et al,Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,Opt.Lett.2005,30,3198.
    [66]N.Fang,H.Lee,C.Sun et al,Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,Science 2005,308,534.
    [67]Sailing He,Yi Jin,Zhichao Ruan et al,On subwavelength and open resonators involving metamaterials of negative refraction index,New Journal of Physics,2005,7,210
    [68]Sailing He,Xin Hu,Jinlong He et al,Abnormal guiding and filtering properties for some composite structures of right/left-handed metamaterials,Proceedings of Asia-Pacific Microwave Conference,2005,35
    [69]Tiejun Cui et al.,Localization of electromagnetic energy using a left-handed medium slab,Physical Review B,2005,71,045114
    [70]Tiejun Cui et al.,Electromagnetic wave localization using a left-handed transmission-line superlens,Physical Review B,2005,72,035112
    [71]Hui-Fang Zhang,Qin Wang,Nian-Hai Shen et al,Optically uniaxial left-handed material,Phys.Rev.B,2005,72,153104
    [72]赵乾,赵晓鹏,康雷等,微波左手材料的反射率和相位随频率的变化特性,科学通报2005,50(6),584
    [73]罗春荣,康雷,赵乾等,非均匀缺陷环对微波左手材料的影响,物理学报2005,54(4),1607
    [74]康雷,赵乾,赵晓鹏,负磁导率材料的微波反射行为,自然科学进展,2005,15(10),1271
    [75]杨娟,梁昌洪,平面波在双负和双正参数媒质界面的反射与折射,电波科学学报,2005,20(3),321.
    [76]杨娟,梁昌洪,李乐伟,二维光子晶体的负折射现象,电波科学学报,2005,
    [77]杨娟,二维光子晶体及左手媒质研究,西安电子科技大学博士论文,2005
    [78]仇欣杰,陈鸿,李宏强,光子晶体中的反常折射现象,光电子与激光,2001,12(12),1321.
    [79]何金龙,沈林放,何赛灵等,负折射率介质光纤的导模异常特性分析,光子学报,2004,33(11),1327.
    [80]杨立功,顾培夫,黄弼勤,从几何光学研究负折射透镜的有限尺寸效应,光子学报,2003,32(11),1396.
    [81]Yijun Feng,Xiaohua Teng,Yan Chen et al,Electromagnetic wave propagation in anisotropic metamaterials created by a set of periodic inductor-capacitor circuit networks,Phys.Rev.B,2005,72,245107.
    [82]Lei Zhou,Vortex-like surface wave and its role in the transient phenomena of meta-material focusing,Appl.Phys.Lett.,2005,86,101104
    [83]Lei Zhou,Relaxation mechanisms in three dimensional meta-material lens focusing,Opt.Lett.,2005,30,1812
    [84]Lei Zhou,"Electromagnetic wave tunneling through negative-permittivity media with high magnetic fields",Phys.Rev.Lett.,2005,94,243905
    [85]K.Y.Xu,X.G.Zheng,Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,Phys.Rev.E,2005,71,1.
    [86]葛德彪,闫玉波,电磁波时域有限差分方法[M]。西安:西安电子科技大学出版社,2002,24.
    [87]D.Correia,J.M.Jin,Theoretical analysis of left-handed metamaterials using FDTD-PML method,Proceedings SBMO/IEEE MTT-S IMOC 2003,1033.
    [88]R.W.Ziolkowski,E.Heyman,Wave Propagation in Media Having Negative Permittivity and Permeability,Physical Review E,2001,64,056825.
    [89]R.W.Ziolkowski,Superluminal Transmission of Information Through an'Electromagnetic Matematerial,Physical Review E,2001,63,046604.
    [90]LIN Zhen,LIANG Changhong,Analysis of LHM slab by FDTD method respectively in TM and TE case,APMC2005 Proceedings,2005,3,2063.
    [91]林振,梁昌洪,负媒质模型的时域有限差分法分析,强激光与粒子束,2006,18(4),615.
    [92]LIN Zhen,LIANG Changhong,Electromagnetic wave propagation through different thickness lossy left-handed material slab,High Power Laser and Particle Beams,2006,18(12),2011
    [93]林振,梁昌洪,不同负相对折射率材料的FDTD分析,电波科学学报,2007,22(1),79.
    [94]林振,刘松华,梁昌洪等,有损耗左手材料模型的时域电磁分析,光电子·激光,2007,18(7),813.
    [95]LIN Zhen,MA Xueying,LIANG Changhong,Structure for splitting electromagnetic energy with left-handed-materials,High Power Laser and Particle Beams,2007,19(7),1183
    [96]LIN Zhen,LIANG Changhong,ZENG Hao,Research of Electromagnetic Field in Different Length Left-handed Material Slab,Nuclear Fusion and Plasma Physics,2007,27(3),256
    [97]林振,党晓杰,梁昌洪等,非线性左手材料的时域研究,强激光与粒子束,2007,19(11).
    [98]林振,梁昌洪,负折射率材料相对折射率的FDTD分析,全国微波毫米波会议论文集,2005,1,104
    [99]林振,梁昌洪,负折射率媒质的时域FDTD分析,全国微波毫米波会议论文集,2005,1,1467
    [100]Christopbe Caloz,Tatsuo Itob,Electromagnetic Metamaterials,John Wiley &Sons,New York,,2005,Chapter 2.
    [101]D.Schuring,D.R.Smith,Negative index lens aberration,Phys.Rev.E.,eprint physics,2003,0403147.
    [102]梁昌洪,谢拥军,官伯然,简明微波,高等教育出版社,2007
    [103]K.S.Yee,Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,IEEE Trans.Antennas Propagat.,1966,14(3):302.
    [104]A.Talfove,Computational Electrodynamics,Artech House,Norwood,MA,1995.
    [105]A.Talfove,Advances in computational electromagnetics:the FDTD method,Artech House,Norwood,MA,1998.
    [106]D.M.Sullivan,Electomagnetics simulation using the FDTD method,IEEE Press,New York,2000.
    [107]高本庆,时域有限差分算法,国防工业出版社,北京,1995.
    [108]王长清,祝西礼,电磁场计算中的时域有限差分法,北京大学出版社,1994年
    [109]楼仁海,符果行,电磁理论,电子科技大学出版社,1996年6月
    [110]J.P.Berenger,A perfectly matched layer for the absorption of electromagnetic waves,J.Comput.Phys.,1996,114(2),363.
    [111]J.Paul,C.Christopoulos,D.W.P.Thomas,Time-domain modeling of negative refractive index material,Electronics Letters,2001,37(14),912
    [112]Tie Jun Cui,Jin Au Kong,Time-domain electromagnetic energy in a frequency-dispersive left-handed medium,Phys.Rev.B.,2004,70,205106
    [113]Q.Cheng,T.J.Cui,Structure for localizing electromagnetic waves with a left-handed-medium slab and a conducting plane,Opt.Lett.,2005,30(10),1
    [114]Jeffrey B.Brock,Andrew A.Houck and Isaac L.Chuang,Focusing inside negative index materials,Appl.Phys.Lett.,2004,85,2472
    [115]J.A.Kong,Electromagnetic wave interaction with stratified negative isotropic media,Progress in Electromagnetics Research,2002,35,1.
    [116]A.A.Zharov,I.V.Shadrivov,Y.S.Kivshar,Nonlinear Properties of Left-Handed Metamaterials,Phys.Rev.Lett.2003,91,037401.
    [117]I.V.Shadrivov,A.A.Sukhorukov,Y.S.Kivshar et al,Nonlinear surface waves in left-handed materials,Phys.Rev.E:Stat.,Nonlinear,Soft MatterPhys.2004,69,016617.
    [118]P.A.Franken,A.E.Hill,C.W.Petersand G.Weinreich,Generation of Optical Harmonics,Physical Review Letters,1961,1(7),118
    [119]N.Bloembergen,Nonlinear Optics,Benjamin,New York,1965
    [120]P.N.Butcher,Nonlinear Optical Phenomena,Ohio State-University,Columbus,Ohio,1965.
    [121]Y.R.Shen,Recent Advances in Nonlinear Optics,Phys.Rev.Lett.,1976,48,1.
    [122]L.Allen,J.H.Eberly,Optical Resonance and Two-Level Atoms,John Wiley &Sons,New York,1975.
    [123]D.C.Hanna,M.A.Yuratich,D.Cotter,Nonlinear Optics of Free Atoms,Springer-Verlag.Berlin,1979.
    [124]Alexander A.Zharov,Ilya V.Shadrivov,Yuri S.Kivshar,Nonlinear Properties of Left-Handed Metamaterials,Phys.Rev.Lett.,2003,91(3),037401
    [125]徐旭明,刘念华,一维Kerr非线性光子晶体中的场分布,光子学报,2004,33(8),1011
    [126]顾利萍,高雷,弱非线性复合体中的高阶非线性响应,物理学报,2005,54(2),987
    [127]王兴林,王奇,施解龙等,左手系材料界面上的非线性TE电磁波,光子学报,2006,35(1),69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700