用户名: 密码: 验证码:
公路钢筋混凝土简支梁桥疲劳试验与剩余寿命预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土梁桥在公路工程中应用非常普遍。随着服役时间的增长,在车辆荷载作用和环境侵袭下,钢筋混凝土梁桥的承载力会逐步衰减,而交通对承载力的需求却逐步上升,使得很多桥梁在还没到设计基准期时就会失效破坏。为了确保桥梁的运营安全,为桥梁加固、限载或拆除重建提供技术依据,对桥梁进行剩余寿命评估非常重要。本文通过多年交通调查及实验室疲劳试验,对钢筋混凝土梁桥剩余寿命进行了理论和试验研究,具体内容如下:
     (1)基于贵新公路交通、车重调查资料,等效换算出各简化车型的等效轴重、轴距、车辆总重及各类车占车辆总数百分比,拟合出各种车型的总重概率密度函数,建立了公路钢筋混凝土梁桥疲劳荷载车辆模型。运用蒙特卡罗法对车辆荷载抽样得到作用于梁桥跨中截面的弯矩幅历程,采用雨流计数法得到应力幅计数及不同弯矩幅的分布频数,拟合出弯矩幅双指数分布函数,得到疲劳分析及试验用弯矩幅。建立了交通量增长灰色马尔科夫随机过程预测模型,用于预测未来年份交通量发展;拟合出所有车辆总重分布的双指数概率密度函数;建立了计算任意年份通过桥梁的某一车辆荷载总重范围内车辆数的车辆荷载随机过程模型,采用该模型对贵新公路交通量及车重进行了预测。
     (2)对5根空心板梁和5根T梁进行等幅疲劳试验,得到等幅疲劳的裂缝、挠度、应变发展规律及疲劳寿命、破坏形态与特征、S-N曲线。完成了4根高-低应力幅、低-高应力幅疲劳试验。根据公路桥梁疲劳荷载谱编制了实验室疲劳试验用的随机疲劳加载弯矩幅,完成2根梁的随机加载疲劳试验。分析了应力幅值、加载上限、截面型式、加载方式等对疲劳试验的影响。基于Miner准则和Corten-Dolan准则,推导出多级变幅荷载或随机荷载的等效等幅疲劳应力幅值计算公式及用于疲劳验算或疲劳寿命评估的方法,采用该公式预测了茅草冲大桥引桥的疲劳寿命。
     (3)基于刚度和承载力的退化是疲劳损伤的外在表现且存在唯一对应关联的假设,建立了桥梁承载力退化-刚度退化关联模型。以桥梁受荷时的挠度曲线方程反算刚度,揭示了钢筋混凝土梁在疲劳试验进程中刚度退化的三阶段线性规律,并建立了钢筋混凝土梁的刚度退化计算公式。利用该关联模型预测了某预制钢筋混凝土T梁桥的承载力。
     (4)基于热力学基本原理证实了可采用应变能来衡量梁在疲劳损伤过程中的能量耗散情况,将耗散能密度定义为每一循环中消耗的不可逆塑性功。测试了5根T梁的耗散能密度,发现疲劳试验中耗散能密度具有很明显的三阶段规律。对各试验梁的耗散能密度发展进行分段直线拟合,建立了耗散能密度和荷载幅与线刚度比之间的非线性方程及疲劳寿命与疲劳稳定阶段耗散能密度的非线性方程,通过对随机疲劳试验梁寿命的预测,验证了基于耗散能密度的疲劳寿命预测方法可行。利用该方法对贵新公路茅草冲大桥引桥进行了疲劳剩余寿命预测。
     (5)建立了受环境影响的车辆荷载作用下既有钢筋混凝土梁桥的承载力时变模型和时变可靠度预测模型,利用JC法求解出桥梁在任意时段的可靠指标。对茅草冲大桥引桥进行剩余寿命预测,得到了设计基准期内时变可靠指标,预测出在目标可靠指标和临界可靠指标时的寿命。
Reinforced concrete bridges were very rife in highway engineering. Along with the servicing time increasing, bridges'bearing capacity will be attenuated gradually under the action of vehicle load and environment attack, and this induced much bridges'be destroyed before design reference period. To insure bridges safety and to provide technology gist for bridges' reinforce, load limited or rebuilt, it is very important to evaluate existing bridges'residual service life. Based on the several years traffic investigation and laboratory fatigue experiment, this paper researched the reinforced concrete bridges'residual service life by experiment and theory manner, which were listed as following:
     (1) Based on the traffic and vehicle weight investigation information, predigest vehicle type's equivalent axis weight and wheelbase, vehicle's gross weight and percentage of every kind vehicle were calculated out. Gross weight's probability density function of every kind vehicle was imitated. Then fatigue load vehicle model was established. The bending moment breadth in middle span of Maocaochong Bridge was achieved by Monte Carlo method. Then the the stress and distributing frequency of different moment bending breadth were acquired. Double-exponent distributing frequency formula of bending moment were imitated, the bending moment breadth which can be used in fatigue test and fatigue analysis was achieved out. A grey-Markov stochastic process traffic forecasting model which considering the disciplinarian and randomicity of traffic development was set up using GM(1,1) model and Markov chains model, and it can forecast the traffic development of future years. The probability density function of gross weight of traffic was acquired, the vehicle load stochastic process model which can calculate the vehicle numbers in a certain gross weight range overpassing the bridge in No. N years were established. The traffic and vehicle load of Guixin highway was forecasted using the model.
     (2) The unvaried amplitude fatigue experiment of deferent stress breadth were carried using 5 hollow slab beams and 5 T beams, and the unvaried amplitude fatigue test properties of crack development, deflection development, reinforcing steel bar and concrete's strain development, as well as fatigue life, destroy form and destroy property when the beam fatigue destroyed. The S-N curves were fitted out. The low-high amplitude and high-low amplitude (two grade varied amplitude) fatigue experiment were carried using 2 hollow slab beams and 2 T beams. According to the highway bridge's fatigue load spectrum, a random fatigue load bending moment breadth which can be used at laboratory fatigue experiment were weaved, then the random load fatigue experiment using a hollow slab beams and a T beams were done, the beam's random load fatigue life and the fatigue destroy properties were obtained. Based on Miner ruler and Corten-Dolan ruler, a equivalent unvaried amplitude fatigue stress breadth calculation formula of multilevel or random load was deduced, Fatigue life of Maocaochong Bridge was triumphantly doped out by the formula.
     (3) Bridge's relationship model of bearing capacity degeneration-stiffness degeneration was established. The stiffness of the bridge was calculated by deflection curve equation under load action, and it showed three phases linearity disciplinarian of bridge stiffness degeneration in fatigue experiment, a stiffness degeneration formula was established at last. A beam bridge's bearing capacity was forecasted by using the model.
     (4) It was approved that the strain energy can showing the energy dissipating in fatigue processand the irreversible plastic power dissipated in every circular were defined as dissipated energy density. Five T beams' dissipated energy density were tested, and researches detected that the dissipated energy density in fatigue test had quite obviously three phase law. The non-linear equation between dissipated energy density and the ratio of load breadth to stiffness as well as the non-linear equation between fatigue life and dissipated energy density in fatigue stabilization phase were established. The fatigue life forecasting method based on dissipated energy density were validated to be feasible through random fatigue experiment, and Maocaochong Bridge's service life were triumphantly doped out with this method.
     (5) Using the bearing capacity degradation time-dependent model under environment infection and the fatigue bearing capacity degradation time-dependent model under vehicle load repeated action, existing reinforcing steel concrete bridge's bearing capacity degradation time-dependent model under the action of environment and repeated vehicle load was established. Using existing bridge's permanent load and load effect probability model, reinforcing steel concrete bridge's time-dependent reliability forecasting model was erected, and the reliability index of bridge in every period of time were calculated out by using JC method. Maocaochong Bridge's residual life forecast, reliability index in design reference period was acquired, and the Maocaochong Bridge's service life at target reliability index and critical reliability index were doped out.
引文
[1]肖盛燮.桥梁承载力演变理论及其应用技术.北京:科学出版社,2009.
    [2]Yung-Li Lee, Jwo Pan, Richard B. Hathaway, Mark E. Barkey. Fatigue Testing and Analysis (Theory and Practice). Elsevier,2005.
    [3]Stuart L M. Data Analysis for Science and Engineering. John Wiley and Sons, 1975.
    [4]焦宝仁,阎楚良.随机荷载的数据处理.农业机械学报,1980,1:22-23.
    [5]高镇同.疲劳荷载谱的编制.航空学报,1980,2:36-37.
    [6]熊峻江,高镇同.实测荷载谱数据处理系统.北京航空航天大学学报,1996,22(4):438-411.
    [7]宋玉普.混凝土结构的疲劳性能及设计原理.北京:机械工业出版社,2006.
    [8]Amazallag C, Gerey J P, Robert J L et al. Standardization of the Rainflow Counting Method for Fatigue Analysis. Int. J. Fatigue,1994,16:287-293.
    [9]Khosrovash A K, Dowling N E. Fatigue Loading History Reconstruction Based on the Raiflow Technique. Int. J. Fatigue,1990,12(2):99-106.
    [10]阎楚良,卓宁生,高镇同.雨流实时计数模型.北京航空航天大学学报,1998,24(5):623-624.
    [11]童乐为,沈祖炎.城市道路桥梁的疲劳荷载谱.土木工程学报,1997,30(5):20-27.
    [12]Committee on Fatigue and Fracture Reliability of the Committee on Structural Safety and Reliability of the Structural Division. Fatigue Reliability:Variable Amplitude Loading, J. Struct. Div. ASCE,1982,108(1),47-69.
    [13]Fisher, J. W., Kulak, G. L., and Smith, I. F. C. A Fatigue Primer for Structural Engineers, National Steel Bridge Alliance.1998
    [14]Laman, J. A., and Nowak, A. S. Fatigue-load Models for Girder Bridges. J. Struct. Eng.,1996,122(7),726-733.
    [15]Piya Chotickai and Mark D. Bowman. Truck Models for Improved Fatigue Life Predictions of Steel Bridges. Journal of Bridge Engineering, ASCE,2006,11, (1), 71-80.
    [16]英国标准BS5400:钢桥、混凝土桥及结合梁,第十篇:疲劳设计实用规则(1978-83版).成都:西南交通大学出版社,1987.
    [17]American Association of State Highway and Transportation Officials (AASHTO).Guide specifications for fatigue evaluation of existing steel bridges, AASHTO,1990, Washington, D.C.
    [18]American Association of State Highway and Transportation Officials (AASHTO). LRFD bridge design specifications, AASHTO,1998, Washington, D. C.
    [19]中华人民共和国交通部.JTJ 025-86.公路桥涵钢结构及木结构设计规范.北京:人民交通出版社,1998.
    [20]中华人民共和国交通部.JTG D62-2004.公路钢筋混凝土及预应力混凝土桥涵设计规范.北京:人民交通出版社,2004.
    [21]中华人民共和国建设部.CJJ11-93.城市桥梁设计准则.北京:中国建筑工业出版社,1994.
    [22]公路桥梁车辆荷载研究课题组.公路桥梁车辆荷载研究.公路,1997,3:8-12.
    [23]中华人民共和国交通部.JTG B01-2003公路工程技术标准.北京:人民交通出版社,2003.
    [24]梅刚,秦权,林道锦.公路桥梁车辆荷载的双峰分布概率模型.清华大学学报(自然科学版),2003,43(10):1394-1396.
    [25]冯德飞.车辆拥堵对城市桥梁受力性能影响的研究:[硕士学位论文].北京:北京交通大学,2006.
    [26]王荣辉,池春.广州市高架桥疲劳荷载车辆模型研究.华南理工大学学报(自然科学版).2004,32(12):94-96.
    [27]甄晓霞.钢箱混凝土准结合梁焊缝疲劳寿命评估.合肥工业大学学报(自然科学版).2004,27(7):778-782.
    [28]杨美良,李波,黄立浦.部分斜拉桥拉索疲劳可靠度分析.长沙交通学院学报,2007,23(1):6-9.
    [29]刘伯权,黄华,刘鸣.简支梁桥在车辆荷载谱作用下的动力分析.土木工程学报,2006,39(3):76-81.
    [30]童乐为,沈祖炎.正交异性钢桥面板疲劳验算.土木工程学报,2000,33(3):16-22.
    [31]任剑,赵人达,毛学明.公路桥梁疲劳荷载谱初探.四川建筑科学研究.2007,33(1):34-37.
    [32]张益,陈淑燕,王炜.短时交通量时间序列智能复合预测方法概述.公路交通科技,2006,23(8):139-142.
    [33]沈文,马川生.公路网路段交通量预测模型研究.长沙交通学院学报,2001,17(3):78-80.
    [34]裴玉龙,张宇.城市道路网节点短时段交通量预测模型研究.土木工程学报, 2003,36(1):11-15.
    [35]裴玉龙,王晓宁.基于BP神经网络的交通影响预测模型.哈尔滨工业大学学报,2004,36(8):1034-1037.
    [36]马祥伟.基于径向基函数神经网络的交通量预测.公路,2006,8:319-321.
    [37]向红艳,朱顺应,王红等.短期交通流预测效果的模糊综合评判.武汉理工大学学报(交通科学与工程版),2005,29(6):921-924.
    [38]邓聚龙.灰预测与灰决策.武汉:华中科技大学出版社,2002.
    [39]刘思峰,邓聚龙.GM(1,1)模型的适用范围.系统工程理论与实践,2000,5(5):121-124.
    [40]刘思峰.灰色系统理论持续发展的主要原因分析.中国管理科学,2006,10:650-656.
    [41]刘思峰.灰色系统理论的产生、发展及前沿动态.中国管理科学,2003,10:29-32.
    [42]刘思峰.灰色系统理论的产生与发展.南京航空航天大学学报,2004,4(2):267-272.
    [43]刘树堂,商庆森,姚占勇等.道路累计交通量的灰色预测方法探讨.山东工业大学学报,1999,29(1):19-24.
    [44]薛春明,曾应昆.公路交通运量的灰色预测模型研究.昆明理工大学学报(理工版),2006,31(4):98-103.
    [45]张新天,罗晓辉.灰色理论与模型在交通量预测中的应用.公路,2001,8:4-7.
    [46]温凯歌,曲仕茹,王娇.系统灰理论在交通量预测中的应用.沈阳理工大学学报,2006,25(2):11-14.
    [47]陈淑燕,陈家胜.一种改进的灰色模型在交通量预测中的应用.公路交通科技,2004(2):80-83.
    [48]许宏赞等.非线性GM(1,1)模型在交通量数据分析中的应用.工程与建设,2007,21(4):514-515.
    [49]张波,张景肖.应用随机过程.北京:清华大学出版社,2005.
    [50]曾小明,高荣堂,罗旗帜.基于马尔柯夫过程的交通量预测.公路交通技术,2003,8.
    [51]赵闯,刘凯,李电生.基于广义回归神经网络的货运量预测.铁道学报,2004,26(1):12-15.
    [52]魏晋雁,茹锋.采用GRNN模型进行交通量预测及实现研究.长沙交通学院学报,2006,22(2).
    [53]陈淑燕,王炜.交通量的灰色神经网络预测方法.东南大学学报(自然科学版), 2004,34(4).
    [54]Van O.J.L. Fatigue of concrete. Transactions, ASCE,1907,58:294-320.
    [55]Graf O., and Brenner. Experiments for investigating the resistance of concrete under often repeated compression loads.1. Bulletin, Deutscher Ausschuss fur Stahlbeton, Berlin,1934,1(76):17-25.
    [56]Graf O., and Brenner. Experiments for investigating the resistance of concrete under often repeated compression loads.2. Bulletin, Deutscher Ausschuss fur Stahlbeton, Berlin,1936,2(83):45-53.
    [57]Bennett E. W., and Muir S. E. J.. Some fatigue tests on high-strength concrete in axial compression. Magazine of Concrete Research,1967,19(59):113-117.
    [58]Matsushita H., and Tokumitsu Y. A study on compressive fatigue strength of concrete considered survival probability. Proc. Of JSCE,1972, No.198:127-138.
    [59]Jan Ove Holmen. Fatigue of concrete by constant and variable amplitude loading. Fatigue strength of Concrete Structures, SP-75, ACI,1982,71-110.
    [60]姚明初.混凝土在等幅和变幅重复应力下疲劳性能的研究.铁道部科学研究院报告,1990.
    [61]王瑞敏,赵国落,宋玉普.混凝土的受压疲劳性能研究.土木工程学报,1991,24(4):38-47.
    [62]吴佩刚,赵光仪,白利明.高强混凝土抗压疲劳性能研究.土木工程学报,1994,27(3):33-40.
    [63]王时越,张立翔,徐人平.弹性模量对混凝土疲劳性能的影响.昆明理工大学学报,2001,26(5):18-20.
    [64]李朝阳,宋玉普,赵国藩.混凝土疲劳残余应变性能研究.大连理工大学学报,2001,41(3):355-358.
    [65]Jeragh A.A.. Deformation behavior of plain concrete subjected to biaxial-cyclic loading. PhD dissertation, New Mexico State University, University Park,1978.
    [66]Traina L.A., and Jeragh A.A.. Fatigue of plain concrete subjected to biaxial cyclical loading. ACI Publications, SP-75,1982:217-234.
    [67]Eric C.M.Su and Thomas T.C.Hsu. Biaxial Compression fatigue and discontinuity of concrete. ACI Materials Journal,1988,85(3):178-188.
    [68]Weisu Yin and Thomas T.C.Hsu. Fatigue behavior of steel reinforced concrete in uniaxial and biaxial compression. ACI Materials Journal,1995,92(1):71-81.
    [69]吕培印.混凝土单轴、双轴动态强度和变形试验研究:[博士学位论文].大连:大连理工大学,2001.
    [70]朱劲松.混凝土双轴疲劳试验与破坏预测理论研究:[博士学位论文].大连:大连理工大学,2003.
    [71]P. Desayi, K.T.Sundara Raja lyengar and T.Sanjeeva Reddy. Stress-strain characteristics of concrete confined in steel spirals under repeated loading. Materials and Structures,1969,12(71):375-383.
    [72]Surendra P Shah, Apostolos Fafitis and Richard Arnold. Cyclic loading of spirally reinforced concrete. Journal of Structural Engineering,1983,109(7): 1695-1710.
    [73]Tan Teng Hooi. Effects of passive confinement on fatigue properties of concrete. Magazine of Concrete Research,2000,52(1):7-15.
    [74]H.A.W.Cornelissen and H.W.Reinhardt. Fatigue of plain concrete in uniaxial tension and in alternating tension compression loading. Fatigue of steel and Concrete Structures, IABSE Colloguium,1982,273-282.
    [75]曹伟.定侧压下混凝土三轴疲劳性能试验与理论研究:[博士学位论文].大连:大连理工大学,2004.
    [76]RILEM-FIP-CEB. Recommendations for reinforced and prestressed concrete. J Matr. and Constr. No 32 March-April 1973, RILEM Paris.
    [77]DIN 488. Betonstahl, Ausgabe Juni 1986.
    [78]Moss D S. Axial fatigue of high-yield reinforcing bars in air, TRRL Report SR 622, Transport and Road Research Laboratory, Department of Transport, Crowthorne, UK,1980.
    [79]Haibach E. Discussion on Session V. Proceedings of the Conference on Fatigue of Welded Structures. The Welding Instittute,1971.
    [80]Steel, concrete and composite bridges, British Standard BS5400, Part 10 Code of Practices for Fatigue, British Standards Institution, London 1980.
    [81]ECCS Technical Committee 6-Fatigue. Recommendations for the fatigue design of steel structures. European Convention for Constructional Steelwork No 43. Brussel,1985.
    [82]何成杰.410兆帕级钢筋材料性能的试验研究.冶金部建筑研究总院,1990.
    [83]秦斌,盛光敏,龚士弘.20MnSiV HRB400钢筋的低周疲劳性能分析.重庆大学学报,2003,26(7):93-96.
    [84]李秀芬,吴佩刚.变形钢筋疲劳性能的实验研究.工程力学,1997,A02:349-356.
    [85]卢树圣,陈国才.国产T20MnSiφ16螺纹钢筋的疲劳试验研究.长沙铁道学院 学报,1990,8(1):91-97.
    [86]彭修宁,韦树英,张喜德.基于剩余强度的混凝土用钢筋疲劳极限测定方法.工业建筑,2005,35(7):43-45.
    [87]曾志斌,李之榕.普通混凝土梁用钢筋的疲劳S-N曲线研究.土木工程学报,1999,32(5):10-14.
    [88]西北工业大学,铁道部科学研究院译.钢结构的疲劳设计规范.欧洲钢结构协会第六技术委员会“疲劳”篇.西安:西北工业大学出版社,1989
    [89]Fatigue of Steel and Concrete Structures, Proceedings of Colloquium, Lausanne, IABSE Reports,1982,37:895.
    [90]铁道综合技术研究所编.铁道构造物等设计标准.
    [91]中华人民共和国建设部.GB 50010-2002.混凝土结构设计规范.北京:中国建筑工业出版社,2002.
    [92]中华人民共和国铁道部.TB 10002.3-1999.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范.北京:中国铁道出版社,1999.
    [93]H.A.马达洛夫著.钢筋混凝土受弯构件在重复荷载下的性能研究.谢君斐译.北京:科学出版社,1964.
    [94]Tien S Chang, Clyde E Kesler. Fatigue behavior of reinforced concrete beams. ACI Journal Proceedings,1958,55(8):245-254.
    [95]Helgason, Th. Fatigue Strength of High-Yield Reinforcing Bars. NCHRP Report No.164, Transportation Research Board, Washington, D.C.,1976.
    [96]Max Schlftfli and Eugen Bruhwiler. Fatigue of Existing Reinforced Concrete Bridge Deck Slabs. Engineering Structures,1998,20 (11):991-998.
    [97]沈忠斌.疲劳荷载作用下钢筋混凝土受弯构件使用性能的试验研究:[硕士学位论文].南京:东南大学,1989.
    [98]朱晓东.重复荷载作用下钢筋混凝土梁正截面刚度的试验研究:[硕士学位论文].南京:东南大学,1989.
    [99]李惠民,顾传霖.钢筋混凝土梁斜截面疲劳强度及裂缝控制.建筑结构学报,1989,10(6):2-9.
    [100]李秀芬,吴佩刚,赵光仪.高强混凝土梁抗弯疲劳性能的试验研究.土木工程学报,1997,30(5):37-42.
    [101]华渊,张少波,姜稚清.混杂纤维增强混凝土弯曲疲劳性能的试验研究.混凝土与水泥制品,1997,(4):40-43.
    [102]赵顺波.钢筋混凝土板正截面疲劳性能试验研究.应用基础与工程科学学报,1999,7(3):289-296.
    [103]赵国藩.高等钢筋混凝土结构学.北京:中国电力出版社,1999:321-347.
    [104]陈浩军,彭艺斌,张起森.冷轧带肋钢筋混凝土受弯构件疲劳性能的试验研究.东南大学学报,2002,32(5):737-740.
    [105]潘华.混凝土受弯构件疲劳性能的试验研究:[博士学位论文].南京:东南大学,2006.
    [106]钟铭,王海龙,刘仲波,孟建伟.高强钢筋混凝土梁静力和疲劳性能试验研究.建筑结构学报.2005,26(2):94-100.
    [107]太原工学院土木系.钢筋混凝土受弯构件正截面疲劳验算方法的研究.见:中国建筑科学研究院主编.钢筋混凝土结构研究报告选集(2).北京:中国建筑工业出版社,1981.235-254.
    [108]易成,沈世钊,谢和平.局部高密度钢纤维混凝土弯曲疲劳性能研究.土木工程学报,2001,34(6):1-6.
    [109]吕海燕,戴公连,李德建.预应力混凝土梁在疲劳何在作用下的变形.长沙铁道学院学报,1998,16(1):24-28.
    [110]赵灿晖.无粘结PPC梁斜截面疲劳强度的试验研究:[硕士学位论文].重庆:重庆交通学院,1995.
    [111]赵灿晖,刘日圣,江炳章.重复荷载作用下无粘结部分预应力混凝土梁的抗剪强度.中国公路学报,2000,13(4):42-46.
    [112]Susanto Teng, Wei Ma, Fang Wang. Shear strength of concrete deep beams under fatigue. ACI Structural Journal,2000,97(4):572-580.
    [113]李士彬.钢筋混凝土受弯构件的疲劳性能研究:[硕士学位论文].济南:山东大学,2004.
    [114]ACI Committee 215. Considerations for Design of Concrete Structure Subjected to Fatigue Loading. JAm Conc Inst, Proc,1974,71 (3):97-121.
    [115]AASHTO. Standard Specification for Highway Bridges,1997.
    [116]1990 FIP-CEB模式规范(混凝土结构),中国建筑科学研究院结构所规范室译,1991.12.
    [117]中华人民共和国建设部.GB50010-2002.混凝土结构设计规范.北京:中国建筑工业出版社,2002.
    [118]中华人民共和国建设部.GBJ10-89.混凝土结构设计规范.北京:中国建筑工业出版社,1989.
    [119]牛鹏志,黄培彦,姚国文等.CFL增强RC梁的疲劳累积损伤模型.华南理工大学学报(自然科学版),2007,135(2):23-26.
    [120]文雨松,陈志芳.并列混凝土桥梁的疲劳加固.铁道学报,1999,,21(6): 105-107.
    [121]易伟建,孙晓东.锈蚀钢筋混凝土梁疲劳性能试验研究.土木工程学报,2007,40(3):6-10.
    [122]王海超.钢筋混凝土构件腐蚀疲劳试验研究与理论分析:[博士学位论文].大连:大连理工大学,2004.
    [123]冯秀峰,宋玉普,朱美春.随机变幅疲劳荷载下预应力混凝土梁疲劳寿命的试验研究.土木工程学报,2006,39(9):32-38.
    [124]罗小勇,余志武,聂建国等.自密实预应力混凝土梁的疲劳性能试验研究.建筑结构学报,2003,24(3):76-81.
    [125]Naaman A. E. Founas M. Partially prestressed beams under random-amplitude fatigue loading. Journal of Structural Engineering,1991,117(12):3742-3761.
    [126]淳庆.栓焊铁路钢梁桥疲劳寿命预测方法研究:[博士学位论文].南京:东南大学,2006.
    [127]张建玲.缓粘结部分预应力混凝土梁疲劳性能试验研究:[博士学位论文].大连:大连理工大学,2006.
    [128]冯秀峰.混合配筋部分预应力混凝土梁疲劳性能研究:[博士学位论文].大连:大连理工大学,2005.
    [129]雷冬.疲劳寿命预测若干方法的研究:[博士学位论文].合肥:中国科技大学,2006.
    [130]熊峻江.疲劳断裂可靠性工程学.北京:国防工业出版社,2008.
    [131]高镇同,熊峻江.疲劳可靠性.北京:北京航空航天大学出版社,2000.
    [132]姚卫星.结构疲劳寿命分析.北京:国防工业出版社,2003.
    [133]Coffin, L.F. A study of the effects of cyclic thermal stresses on a ductile metal. Transactions of the American Society of Mechanical Engineers.1954, 76:931-950.
    [134]Manson, S.S. Behavior of materials under conditions of thermal stress. National Advisory Commission on Aeronautics.1954, Report 1170.
    [135]Neuber, H. Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law. Journal of Applied Mechanics.1961, 28:544-550.
    [136]Paris, P.C., Erdogan, F. A critical analysis of crack propagation laws. Journal of Basic Engineering.1963,85:528-534.
    [137]Forman, R.G. Numerical analysis of crack propagation in cyclic-loaded structures. Journal of Basic Engineering.1967,89:459-464.
    [138]Elber, W. The significance of fatigue crack close. In Damage Tolerance in aircraft Structures. Special Technical Publication.1971, American Society for Testing and Materials.
    [139]McEvily,A.J. Current aspects of fatigue. Metal Science.1977,11:274-284.
    [140]Miller K.R. Mohamad H.J., de los Rios E R, The behavior of short fatigue cracks, Mechanical Engineering Publications Ltd, London,1986:491-511.
    [141]Hobson P.D., Brown M.W., de los Rios E R, Fatigue Engineering Materials and Structures,1982,5:323-327.
    [142]余寿文,冯西桥.损伤力学.北京:清华大学出版社,1997.
    [143]程光旭,楼志文.一种基于材料延性耗散模型的疲劳损伤研究方法.力学学报,1993,25(4):496-499.
    [144]姜菊生,张伟根,郭乙木等.金属材料疲劳损伤的定量研究.材料科学与工程,2000,18(1):43-46.
    [145]L. Yang and A. Fatemi. Cumulative fatigue damage mechanics and quantifying parameters:a literature review. Journal of Testing and Evaluation,1998,26(2): 89-100.
    [146]孟宪宏.混凝土疲劳剩余强度试验及理论研究:[博士学位论文].大连:大连理工大学,2006.
    [147]Wei Jun, Wu Xing-hao, Zhao Xiao-long. A damage model of concrete under freeze-thaw cycles. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2003,18(3):40-42.
    [148]Ju Yang and Xie Heping. Application of damage defination based on hypothesis of strain equivalence. Journal of Coal Science & Engineering,2000,6 (2):9-14.
    [149]Ravindra Gettu, Antonio Aguado and Marcel O.F.Oliveira. Damage in high-strength concrete due to monotonic and cyclic compression-a study based on splitting tensile strength. ACI Materials Journal,1996,93(6):519-523.
    [150]赵东拂.混凝土多轴疲劳破坏准则研究:[博士学位论文].大连:大连理工大学,2002.
    [151]王瑞敏,宋玉普,赵国藩.混凝士疲劳累积损伤准则.水利学报,1992,5:72-76.
    [152]李朝阳,宋玉普,车轶.混凝土的单轴抗压疲劳损伤累积性能研究.土木工程学报,2002,35(2):3840.
    [153]Feltner CE, Morrow JD. Microplastic strain hysteresis energy as a criterion for fatigue fracture.J Basic Engineering ASME 1961,4:15-22.
    [154]Kujawski D, Ellyin F. A cumulative damage theory for fatigue crack initiation and propagation. Int J Fatigue 1984,6:83-88.
    [155]Kliman V Fatigue life estimation under random loading using the energy criteria. Int J Fatigue 1985,7:39-44.
    [156]Kliman V Fatigue life prediction for a material under programmable loading using the cyclic stress-strain properties. Materials Science Engineering,1984,68: 1-10.
    [157]Topolinski T. Theoretical analysis and tests of fatigue damege cumulation in polymer composites, Technical University of Bydgoszczy, Dissertations No 82, Bydgoszcz 1997, p.114.
    [158]Shang D.G.. Yao W.X. A nonlinear damage cumulative model for uniaxial fatigue. Int J Fatigue 1999,21:187-94.
    [159]Miroslaw Grzybowski and Christian Meyer. Damage accumulation in concrete with and without fiber reinforcement. ACI Materials Journal,1993,90(6): 594-604.
    [160]陈志芳,文雨松.不明配筋梁的剩余疲劳寿命评估.长沙铁道学院学报,2003,21(1):19-23.
    [161]幸坤涛,岳清瑞,刘洪滨.钢结构吊车梁疲劳动态可靠度研究.土木工程学报,2004,37(8):38-42.
    [162]幸坤涛,佟晓利,岳清瑞.吊车荷载作用下钢结构吊车梁的疲劳可靠寿命评估.计算力学学报,2004,21(5):636-640.
    [163]幸坤涛,刘洪滨,岳清瑞.在役钢结构吊车梁剩余疲劳寿命的可靠寿命评估.工程力学,2004,21(3):101-105.
    [164]王钧利,马春燕.公路桥梁受车辆动力作用的疲劳可靠性分析.重庆交通学院学报,1998,17(3):31-37.
    [165]王春生,陈艾荣,陈惟珍.基于断裂力学的老龄钢桥剩余寿命与使用安全评估.中国公路学报,2006,19(2):42-48.
    [166]王春生,聂建国,陈艾荣等.基于概率断裂力学的老龄钢桥使用安全评估.工程力学,2006,23(6):102-106.
    [167]贡金鑫,王海超,赵国藩.结构疲劳累积损伤与极限承载能力可靠度.大连理工大学学报,2002,42(6):714-719.
    [168]贡金鑫,赵国藩.考虑抗力随时间变化的结构可靠度分析.建筑结构学报,1998,19(5):43-51.
    [169]赵尚传,赵国藩,贡金鑫.在役钢筋混凝土结构基于可靠性的疲劳寿命分析.工程力学,2002,19(4):7-11.
    [170]AASHTO. Design Code for American Highway Bridge.
    [171]Eurocode 1, Actions on Structures, Part 2-Traffic Loads on Bridges. BSEN 1991-2:2003. CEN, Brussels.2]任伟平,李小珍,李俊等.公轨两用钢桁桥轨道横梁与整体节点连接头的疲劳荷载.中国公路学报,2007,20(1):79-84.
    [173]王硕.桥梁运营荷载状况研究:[硕士学位论文].上海:同济大学,2007.
    [174]刘思峰,谢乃明等.灰色系统理论及其应用(第四版).北京:科学出版社,2008.
    [175]邓聚龙.灰色系统理论教程.武汉:华中理工出版社,1990.
    [176]邓聚龙.灰色系统理论与应用进展的若干问题.灰色系统研究新进展.武汉:华中理工大学出版社,1996.
    [177]Liu Sifeng, Lin Yi. An introduction to grey systems theory. Grove City:IIGSS Academic Publisher,1998.
    [178]田铮,秦超英.随机过程与应用.北京:科学出版社,2007.
    [179]Sheldon M. Ross. Stochastic Process, Elsevier (Singapore) Pte Ltd,2007.
    [180]林晓言,陈有孝.基于灰色马尔可夫链改进方法的铁路货运量预测研究.铁道学报,2005,3(3):15-19.
    [181]庞林飞.钢筋混凝土板疲劳损伤识别及疲劳寿命预测:[硕士学位论文].南京:东南大学,2004.
    [182]赵琛,黄培彦,黄龙田.桥梁随机载荷数据采集及统计分析.中南公路工程.2004,29(1):12-15.
    [183]金伟良,赵羽习.混凝土结构耐久性研究的回顾和展望.浙江大学学报(工学版).2002,37(8):371-379.
    [184]王钧利.在役桥梁检测、可靠性分析与寿命预测.北京:中国水利水电出版社,2005.
    [185]JI.M.什科利尼克.疲劳试验方法手册.北京:机械工业出版社,1978.
    [186]李朝阳.钢筋混凝土结构的疲劳性能研究:[博士学位论文].大连:大连理工大学,2001.
    [187]Manson, S.S. Application of a double linear damage rule to cumulative fatigue. ASTM STP 415,1967.
    [188]Corten H.T. and Dolan T. L., Cumulative fatigue damage. Proceed of the Inter. Conference on fatigue oa materials, IME and ASME,1956.
    [189]汤红卫,李士彬,朱慈勉.基于刚度下降的混凝土梁疲劳累积损伤模型的研究.铁道学报,2007,29(3):84-88.
    [190]吴晓莉,顾彬.识别钢筋混凝土桥面板疲劳损伤的剩余刚度法.特种结构,2008,25(3):69-71.
    [191]Van Paepegem W, Degrieck J. A new coupled approach of residual stiffness and strength for fatigue of fibre-reinforced composites. International Journal of Fatigue,2002,24(7):747-762.
    [192]顾怡,姚卫星.疲劳加载下纤维复合材料的剩余强度.复合材料学报,1999,16(3):98-102.
    [193]廉伟,姚卫星.复合材料层压板剩余刚度-剩余强度关联模型.复合材料学报,2008,25(5):151-156.
    [194]冯培峰,王殿富,杜善义,等.复合材料层板基于刚度比的剩余强度模型.应用力学学报,2001,18(1):41-44.
    [195]FONG J T. What is fatigue damage.Reifsnider K L,ed. Damage in Composite Materials, ASTM STP775. Badaliane:American Society for Testing and Materials,1982:2243-2266.
    [196]牛荻涛,王庆霖.一般大气环境下混凝土强度经时变化模型.工业建筑,1995,25(6):36-38.
    [197]牛荻涛.混凝土结构耐久性与寿命预测.北京:科学出版社,2003.
    [198]王磊.既有钢筋混凝土桥梁模糊时变可靠性与承载力评估研究:[硕士学位论文].长沙:长沙理工大学,2005.
    [199]王海超,贡金鑫,曲秀华.钢筋混凝土梁腐蚀疲劳后疲劳性能的实验研究.土木工程学报,2005,38(11):32-38.
    [200]王海超.钢筋混凝土构件腐蚀疲劳试验研究与理论分析:[博士学位论文].大连:大连理工大学,2004.
    [201]邹天一.结构可靠度.北京:人民交通出版社,1998.
    [202]李扬海,鲍卫刚,郭修武等.公路桥梁结构可靠度与概率极限状态设计.北京:人民交通出版社,1997.
    [203]张建仁,刘扬,许福友,等.结构可靠度理论及其在桥梁工程中的应用.北京:人民交通出版社,2003.
    [204]交通部公路规划设计院.GB/T50283-1999公路工程结构可靠度设计统一标准.北京:中国建筑工业出版社,1999.10.
    [205]赵国藩.工程结构可靠性理论与应用.大连:大连理工大学出版社,1996.
    [206]赵尚传.钢筋混凝土结构基于可靠度的耐久性评估与试验研究:[博士学位论文].大连:大连理工大学,2001.
    [207]Lin X, Haicheng G Plastic energy dissipation model for lifetime prediction of zirconium and zircaloy-4 fatigued at RT and 400 ℃. J Engng Material Technol ASME 1998,120:114-118.
    [208]Shang Dq, Yao WX. A nonlinear damage cumulative model for uniaxial fatigue. Int J Fatigue 1999,21:187-194.
    [209]姚磊江.疲劳损伤过程的能量耗散分析及基于能量耗散的疲劳损伤模型:[博士学位论文].西安:西北工业大学,2000.
    [210]唐雪松,郑健龙,蒋持平.连续损伤理论与应用.北京:人民交通出版社,2006.8
    [211]J.R. Rice. Inelastic Constitutive Relations for Solids, an Internal-variable Theory and its Application to Metal Plasticity. J. Mech. Phys. Solids,1971,19: 433-455.
    [212]B. Halphen, Q. S. Nguyen. Sur les materiaux standards generalizes. J. de Meca., 1975,14:39-63.
    [213]孙训方,方孝淑,关来泰.材料力学(第三版).北京:高等教育出版社,1994.12
    [214]Abraham Getachew. Traffic load effects on bridges:Statistieal Analysis of Collected and Monte Carlo Simulated Vehicle Data:[博士学位论文].Sweden: Structural Engineering Royal Institute of Technology SE-100 44 Stockholm, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700