用户名: 密码: 验证码:
基于寿命周期成本的桥梁全寿命设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁等基础设施工程的基于寿命周期成本的全寿命设计理论和方法是近年来国内外工程界普遍关注的研究课题,在国内的研究尚处于起步研究阶段,工程应用更少。桥梁全寿命设计方法研究具有重要的学术意义和工程价值。
     在综述国内外相关文献的基础上,对桥梁全寿命优化设计方法的相关问题进行了深入研究。开展了如下研究工作:
     (1)基于现有的碳化深度预测模型,利用最新的气候变化数据,改进了受碳化腐蚀的预应力混凝土板梁的强度和开裂时变可靠度模型,计算了不同CO2浓度和不同腐蚀环境下预应力混凝土结构的失效概率和平均腐蚀损伤比例,比较了不同的耐久性措施和裂缝宽度准则对混凝土碳化损伤比例的影响。参数敏感性分析得到了进行时变可靠度分析的主要影响因素;
     (2)提出了基于概率的间接维护成本模型,使用基于改进的事件树模型,验证了间接维护成本模型的有效性;
     (3)提出了时变可靠指标和状态指标作为桥梁性能的定量评估指标,推导了桥梁维护策略-寿命周期成本-桥梁时变性能指标之间的相互关系,建立了多目标的组合维护优化模型,基于粒子群优化算法,得到了桥梁结构服役期内的最优维护策略;
     (4)提出了基于构造措施和设计细节的桥梁全寿命设计方法的体系框架和实施步骤,比较了全寿命优化设计方法和现有设计的联系和不同,结合试验桥的设计实践和基于全寿命成本桥梁车道数决策分析,验证了桥梁全寿命设计方法的合理性。
In recent years, life-cycle cost-based bridge whole-life optimum design method for infrastructure engineering, such as bridge, building, etc, has become a hot research topic in engineering field in home and abroad. Its research in home is still in beginning stage. Moreover, its use in engineering practice is absolutely fewer. Consequently, the work on bridge whole-life design method in this paper has an important theoretical meaning and engineering values.
     Based on the state-of-the-practice and state-of-the-art of the literature reviews, the related problems for bridge whole-life design methodology have been systematically studied. Hence, the work was summarized as follow:
     (1) Based on the corrected carbonation depth prediction model, the present study described how climate change predicted increases in CO2 levels will affect carbonation-induced corrosion damage and safety loss to prestressed concrete structures using the latest CO2 emission scenarios. The time-dependent structural reliability analysis of prestressed concrete bridge deck will the predict probability of corrosion initiation, mean propotion of corrosion damage and probability of structural collapse over the next 100 years considering several IPCC atmospheric CO2 emission scenarios and various corrosive environments. The influence of durability design specification and crack width on the mean proportion of corrosion damage was analyzed. Parameter sensitivity analysis was used to obtain the important influencing factors for time-dependent structural reliability.
     (2) The present study presented probabilistic whole-life cost calculation models. The modified event-tree modelling was used to demonstrate the effectiveness of the developed indirect maintenance cost models.
     (3) The present paper proposed the reliability index and condition index as indicators of bridge performance and deduced the interaction of maintenance interventions– life-cycle cost– bridge time-dependent performance. Based on the Particle Swarm Optimization (PSO), the present study developed multi-objective combinative maintenance optimization hybrid model to optimize the optimal combined maintenance interventions that corresponds to the minimal life cycle cost and maximum of reliability index and condition index in service time.
     (4) The present study developed the systematic framework and flowchart for whole-life optimum design method based on structural configuration and design details, and compared the differences and relationships between the whole-life design and conventional design method. The design work on an example bridge and the whole-life cost based bridge lane decision were employed to demonstrate the reasonability of bridge whole-life optimum design method.
引文
[1]邵旭东,彭建新.基于寿命周期成本(LCC)的桥梁设计方法研究.见:全国桥梁学术会议论文集.北京:人民交通出版社, 2005, 840-845
    [2] Peng J, Shao X. Research framework of lifetime performance based bridge design method. In: Proc of the 2nd Int Conf of Structural Health Monitoring of Intelligent Infrastructure. Shenzhen, 2005, 1431-1434
    [3] Kong J S, Frangopol D M. Prediction of reliability and cost profiles of deteriorating bridges under time- and performance-controlled maintenance. Journal of Structural Engineering, 2004, 130(12): 1865-1874
    [4] Jawad M. Life cycle cost optimization for infrastructure facilities: [PhD Dissertation]. New Jersey: State Univ. of New Jersey, 2003, 45-89
    [5] Frangopol D M. Life-cycle cost analysis for bridge, Bridge Safety and Reliability. ASCE Reston:VA, 1999, 210-236
    [6] Frangopol D M, Kong J S, Gharaibeh E S. Reliability-based life-cycle management of Highway bridges. Journal of Computing in Civil Engineering, 2001, 15(1): 397-410
    [7] Hassanain M A, Loov R E. Cost optimization of concrete bridge infrastructure. Canadian Journal of Civil Engineering, 2003, 30:841-849
    [8] National Cooperative Highway Research Program. Bridge life-cycle cost analysis. Washington D C: Transportation research Board, 2003, 23-29
    [9] Lee Y J, Chang L M. Rehabilitation decision analysis and life-cycle costing of the infrastructure system. Construction Research, 2003, 82: 1-6
    [10] Frangopol D M, Gharaibeh E S, Kong J S, Miyake M. Optimal network-level bridge management planning based on minimum expected cost. Journal of Transportation Board, 2000, 2(1696): 26-33
    [11] Frangopol D M, Kong J S, Gharaibeh E S. Bridge management based on lifetime reliability and whole life costing-The next generation. London: Thomas Telford, 2000, 392-399
    [12] Kong J S, Frangopol D M. Evaluation of expected life-cycle maintenance cost of deteriorating structures. Journal of Structural Engineering, 2003, 129(5): 682-691
    [13] Kong J S, Frangopol D M. Cost-reliability interaction in life-cycle cost optimization of deteriorating structures. Journal of Structural Engineering, 2004,130(11), 1704-1712
    [14]邵旭东,彭建新,晏班夫.基于结构可靠度的桥梁维护策略优化研究.工程力学, 2008, 25(9):149-155
    [15]邵旭东,彭建新,晏班夫,李立新.基于全寿命成本优化的桥梁车道数决策研究.土木工程学报, 2008, 41(10): 46-52
    [16] Stewart M G, Mullard J A. Spatial time-dependent reliability analysis of corrosion damage and the timing of first repair for RC structures. Engineering Structure, 2007, 29(7): 1457-1464
    [17]禹智涛,韩大建.基于可靠度的桥梁结构优化设计.广东工业大学学报, 2002, 19(3): 50-55
    [18]屈文俊,张誉.混凝土桥梁结构的耐久性优化设计.中国公路学报, 1999, 12(1): 62-70
    [19]屈文俊,车惠民.混凝土桥梁的优化等耐久性设计.土木工程学报, 1998, 31(4): 23-30
    [20] Frangopol D M, Lin K Y, Estes A C. Life-cycle cost design of deteriorating structures. Journal of Structural Engineering, 1997, 123(10): 1390-1401
    [21]邵旭东,彭建新,晏班夫.桥梁全寿命设计方法框架性研究.公路, 2006, 26(1): 44-49
    [22] Lee K M, Cho H N. Life-cycle cost-effective optimum design of steel bridges. Journal of Constructional Steel Research, 2004, (60): 1585-1613
    [23] Ang A H S, Leon D. Determination of optimal target reliabilities for design and upgrading of structures. Structural Safety, 1998, 19(1): 91-103
    [24] Saetta A V, Vitaliani R V. Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures Part II-Practical applications. Cement and Concrete Research, 2005, 35(5): 958-967
    [25] Uhlig H H, Revie R W. Corrosion and Corrosion Control. New York: John Wiley and Sons, 1985, 10-15
    [26] Fontana M. Corrosion Engineering. New York: McGraw-Hill, 1986, 1-98
    [27] Moreno E I, Sol? s-carcaňo R G, L?pez-salazar l R. Carbonation -induced corrosion in urban concrete structures. Material Performance, 2006, 45(5): 56-60
    [28] Millard S G, Law D, Bungey J H, Cairns J. Environmental influences on linear polarization corrosion rate measurement in reinforced concrete. NDT&E International, 2001, 34: 409-417
    [29] Szilard R. Survey on durability of prestressed concrete structures in the United States, Canada, and Pacific and Far Eastern Countries. Prestressed Concrete InstituteJournal, 1969, 14: 62-73
    [30] Moore D G, KLodt D T, Hensen R J. Protection of steel in prestressed concrete bridges. Report 90: National Co-operative Highway Research Program, 1970, 23-78
    [31] Schupack M. A survey of durability performance of post-tensioning tendons. ACI Structural Journal, 1978, 75(10): 501-510
    [32] Dunker K F, Rabbat B G. Highway bridge type and performance patterns. Journal of Performance of Constructed Facilities, 1990, 4(3): 161-173
    [33] Nürnberger U. Corrosion induced failure mechanism of prestressing steel. Materials and Corrosion, 2002, 53: 591-601
    [34] Darmawan. Spatial time-dependent reliability of pretension prestressed concrete bridge: [PhD dissertation]. Newcastle: The University of Newcastle, 2003, 15-125
    [35] Miller M D. Durability survey of segmental concrete bridges. PCI Journal, 1995, 40(3): 110-123
    [36] Moreton A. Performance of segmental and posttensioned bridges in Europe. Journal of Bridge Engineering, 2001, 6(6): 543-555
    [37] FIP. Guide to good practice: inspection and maintenance of reinforced and prestressed concrete structures. London: Thomas Telford, 1986a, 25-65
    [38] FIP. Recommendations for the corrosion protection of unbonded tendons. London, Thomas Telford, 1986b, 78-98
    [39] FIP. Guide to good practice: grouting of tendons in prestressed concrete. London: Thomas Telford, 1989, 21-89
    [40] FIP. Recommendations for acceptance of post-tensioning systems. London: Thomas Telford, 1991, 5-78
    [41] Lopes S M R, Sim?es L M L P. Influence of corrosion on prestress strands. Canadian Journal Civil Engineering, 1999, 26: 782-788
    [42]Allam I M, Maslehuddin M, Saricimen H, Al-mana A I. Influence of atmospheric corrosion on the mechanicalproperties of reinforced steel. Construction and Building Materials, 1994, 8(1): 35-41
    [43] Saetta A V. Deterioration of reinforced concrete structures due to chemical– physical phenomena: model-based simulation. Journal of Material in Civil Engineering, 2005, 17(3): 313-319
    [44] Yoon I S, ?opuro?lu O, Park K B. Effect of global climatic change on carbonation progress of concrete. Atmospheric Environment, 2007, (41): 7274-7285
    [45] Alexander M G, Mackechnie J R, Yam W. Carbonation of concrete bridge structures in three South African localities. Cement & Concrete Composites, 2007, 29:750-759
    [46] Peng J, Shao X, Stewart M G. Design planning decision for deteriorating wearing surfaces based on whole-life design considering Life-cycle cost. In: Proc of 4th Int conf on bridge maintenance, safety and management. Seoul, 2008, 2163-2170
    [47] Stewart M G, Teply B, Krolv H. The effect of temporal and spatial variability of ambient carbon dioxide concentration on carbonation of RC structures. In: Proc of 9th Int Conf on durability of Building materials and Computers. Brisbane and Convention & Exhibition centre, 2002, 17-21
    [48] Engelfried R. Preventive prevention by low permeability coatings. In: Proc of the Concrete Society Conf on Permeability of Concrete and its Control. London, 1985, 107-117
    [49] Keeling C D, Whorf T P. Atmospheric CO2 records from sites in the SIO Air Sampling network. Tenn.: Carbon Dioxide Information Analysis Centre-oak Ridge National Laboratory-U.S. Department of Energy oak ridge, 2000, 9
    [50] Meehl G A, Stocker T F, Collins W D, Friedlingstein P, Gaye A T, Gregory J M, Kitoh A, Knutti R, Murphy J M, Noda A, Raper S C B, Watterson I G, Weaver A J, Zhao Z C. Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University Press, 2007, 789-812
    [51] CEB. New approach to durability design– an example for carbonation induced corrosion. Lausanne: Bulletin 238, 1997, 89-95
    [52] Kersner Z, Teply B, Novk D. Uncertainty in service life prediction based on carbonation of concrete. In: Proc of the 7th Int Conf on Durability of Building Materials and Components. London, 1996, 13-30
    [53] Papadakis V G, Fardis M N, Vayenas G G. Effect of composition, environmental factors and cement-lime coating on concrete carbonation. Material and Structures, 1992, (25): 293-304
    [54] Novk D, kersner Z, Teply B. Prediction of structure deterioration based on the Bayesian updating. In: Proc of the 4th Int Symposium on Natural-Draught cooling towers. Kaiserslautern, 1996, 417-421
    [55] Tuutti K. Service life of structures with regard to corrosion of embedded steel. Sweden: Quality Control of Concrete Structures, 1979, 293-301
    [56]宋晓冰.钢筋混凝土结构中的钢筋腐蚀:[清华大学博士学位论文].北京:清华大学, 1999, 20-23
    [57] Val D V, Melchers R E. Reliability of deteriorating RC slab bridges. Journal of Structural Engineering, 1997, 123(12): 1638–1644
    [58] Enright M E, Frangopol D M. Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion. Engineering Structures, 1998, 20(11): 960-971
    [59] Stewart M G. Spatial variability of pitting corrosion and its influence on structural fragility and reliability of RC beams in flexure. Structural Safety, 2004, 26(4): 453-470
    [60] Vu K A T, Stewart M G. Structural reliability of concrete bridges including improved chloride-induced corrosion models. Structural Safety, 2000, 22(4): 313-333
    [61] Li Y, Vrouwenvelder T, Wijnants G H, Walraven J. Spatial variability of concrete deterioration and repair strategies. Structural Concrete, 2004, 5(3): 121-130
    [62] Val D V. Deterioration of strength of RC beams due to Corrosion and its influence on beam reliability. Journal of Structural Engineering, 2007, 133(9): 1297-1306
    [63] Akgül F, Frangopol D M. Lifetime performance analysis of existing prestressed concrete bridge superstructures. Journal of Structural Engineering, 2004, 130(12): 1889-1903
    [64] Al_Sulaimani G J, Kaleemullah M, Basunbul I A, Rasheeduzzafar I A, Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members. ACI Structural Journal, 1990, 87(2): 220-231
    [65] Cabrera J G. Deterioration of concrete due to reinforcement steel corrosion. Cement and Concrete Composition, 1996, 18(1): 47-59
    [66] Val D V, Stewart M G, Melchers R E. Effect of reinforcement corrosion on reliability of highway bridges. Engineering Structures, 1998, 20(11): 1010-1019
    [67] Melchers R E. Structural reliability analysis and prediction. New York: John Wiley & Sons, 1999, 1-158
    [68] Stewart M G. Interaction between serviceability and strength reliabilities and expected failure costs for a reinforced concrete stochastic deterioration process. First ASRANet: International Colloquium, 2002, 5-125
    [69] Kaminker A J. Comments on corrosion of prestressing steel and its mitigation by W. Podolny Jr. PCI Journal, 1993, 38 (4): 102-103
    [70] Darmawan M S, Stewart M G. Spatial time-dependent reliability analysis of corroding pretensioned prestressed concrete bridge girders. Structural Safety, 2007, 29 (1): 16-31
    [71] Maes M A, Wei X, Dilger W H. Fatigue reliability of deteriorating prestressed concrete bridges due to stress corrosion cracking. Canadian Journal of CivilEngineering, 2001, 28: 673-683
    [72]王建秀,秦权.考虑氯离子侵蚀与混凝土碳化的公路桥梁时变可靠度分析.工程力学, 2007, 24(7):86-93
    [73] Naaman A E. Siriaksorn A. Reliability of partially prestressed beams at serviceability limit states, PCI Journal, 1982, 27(6): 66-85
    [74] Tabsh S W. Reliability based parametric study of pretensioned AASHTO Bridge Girders. PCI Journal, 1992, 56-65
    [75] Nowak A S, Park C, Casas J R. Reliability analysis of prestressed concrete bridge girders: comparison of Eurocode, Spanish Norma IAP and AASHTO LRFD. Structural Safety, 2001, 23: 331-344
    [76] Stewart M G, Rosowsky D V. Time-dependent reliability of deteriorating reinforced concrete bridge decks. Structural Safety, 1998, 20: 91-109
    [77] Williamson S J, Clark L A. Pressure required to cause cover cracking of concrete due to reinforcement corrosion. Magazine of Concrete Research, 2000, 25(6): 455-467
    [78] Allan M L, Cherry B W. Factors controlling the Amount of corrosion for cracking in reinforced concrete. Corrosion, 1992, 48(5): 426-430
    [79]Hansen E J, Saouma V E. Numerical simulation of reinforced concrete deterioration: Part 2- steel corrosion and concrete cracking. ACI materials Journal, 1999, 96(41): 331-337
    [80] Maruyama k, Takaoka Y, Shimiza K. Cracking behavior of concrete due to corrosion of reinforcing bars. Transactions of Japan Concrete Institute, 1989, 11: 163-170
    [81] Aligizaki k k. Modelling of concrete cracking due to corrosion of embedded reinforcement: [PhD dissertation]. Pennsylvania: The Pennsylvania State University. 1999, 56-89
    [82] Bazant Z P. Physical model for steel corrosion in Sea structures-theory. Journal of the Structural Division, 1979a, 105(6): 1137-1153
    [83] Andrade C, Alonso C, Molina F J. Cover cracking as a function of rebar Corrosion: Part 1- Experimental test. Material and Structures, 1993, 26: 453-464
    [84] Bradforth S A. Corrosion Control. London: Chapman and Hall, 1993, 56-98
    [85] Toribio J, Kharin A V. Factors affecting the intrinsic character of the crack growth kinetics curve in stress corrosion cracking: A review. Corrosion Reviews, 2001, 19(3-4): 207-251
    [86] Bazant Z P. Physical model for steel corrosion in Sea structures -application.Journal of the Structural Division, 1979b, 105(6): 1155-1166
    [87] Liang M T, Lin L H, Liang C H. Service life prediction of existing reinforced concrete bridges exposed to chloride environment. Journal of Infrastructure Systems, 2002, 8(3): 76-85
    [88] Liu Y, Weyers R E. Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures. ACI Materials Journal, 1998, 95(6): 675-680
    [89] Chernin L, Val D V. Prediction of cover cracking in reinforced concrete structures due to corrosion. In: Proc of 1st Int Conf on Construction Heritage in Coastal and Marine Environments. Lisbon, 2008, 1-8
    [90] El Maaddawy T, Soudki K. A model for prediction of time from corrosion initiation to corrosion cracking. Cement & Concrete Composite, 2007, 29: 168-175
    [91] Andrade C, Alonso C. Durability design based on models for corrosion rates-The Modelling of Microstructure and Its Potential for Studying Transport Properties and Durability. Kluwer: Academic Publishers, 1996, 473-492
    [92] Rodriguez J, Ortega L M, Casal J, Diez J M. Corrosion of reinforcement and service life of concrete structures. In: Proc of the 7th Int Conf on Durability of Building Materials and Components. Stockhom, 1996, 117-126
    [93] Tuutti K. Corrosion of steel in concrete. Estocolmo: Swedish Cement and Concrete Institute, 1982, 4-82
    [94] Frangopol D M, Liu M. Life-cycle cost for Highways Bridges: Accomplishment and Challenges. ASCE, 2004, 4: 1-9
    [95] Kong J S, Frangopol D M. Life-cycle reliability-based maintenance cost optimization of deteriorating structures with emphasis on bridges. Journal of Structural Engineering, 2003, 129(6): 818-828
    [96] Augusti G, Ciampoli M, Frangopol D M. Optimal planning of retrofitting interventions on bridges in a highway network. Engineering Structures, 1998, 20(11): 933-939
    [97] Liu M, Frangopol D M. Time-dependent bridge network reliability: a novel approach. Journal of Structural Engineering, 2005, 131(2): 329-337
    [98] Kong J S, Frangopol D M. Prediction of reliability and profiles of deteriorating bridges under time- and performance-controlled Maintenance. Journal of Structural Engineering, 2004, 130(12): 1865-1874
    [99] Enright M P, Frangopol D M. Service-life prediction of deteriorating concrete bridges. Journal of Structural Engineering, 1998, 124(3): 309-317
    [100] Mori Y, Ellingwood B R. Reliability-based service-life assessment of aging concrete structures. Journal of Structural Engineering, 1993, 119(5): 1600-1621
    [101] Edward C. Bridge Management System Literature Review and Search. Industry Research Laboratory: Northwestern University BIRL, 1995, 56-89
    [102]谭金华,吕秀杰,徐俊,胡志坚.欧洲桥梁管理概况.世界桥梁, 2004, 3: 52-55
    [103]毛海涛,王海兴,罗慧斌.桥梁管理应用现状与问题.辽宁省交通高等专科学校学报,2003, 5(2): 32-33
    [104]李昌铸,王晓晶,夏晓霞等.我国公路桥梁管理系统(CBMS)的开发与推广应用.公路交通科技, 1999, 20(3):84-90
    [105]魏洪昌,张劲泉.公路桥梁维修加固技术经济评价方法研究.公路交通科技, 2005, 22(3), 62-65
    [106]徐家云,邓志勇.基于时变可靠度的桥梁加固经济性评估.自然灾害学报, 2005, 14 (5): 162-165
    [107]杨伟军,张建仁,梁兴文.基于动态可靠度的服役桥梁维修加固策略.中国公路学报, 2002, 15 (3): 49-52
    [108]孙晓燕,黄承逵,赵国藩,陈宇新.基于动态可靠度和经济优化相结合的服役桥梁维修加固风险决策.工程力学, 2004, 21(5): 5-10
    [109]秦权.基于时变可靠度的桥梁检测与维修方案优化.公路, 2002, 9: 17-25
    [110]张宇贻,秦权.钢筋混凝土桥梁构件的时变可靠度分析.清华大学学报, 2001, 41(12):65-68
    [111]熊辉,史其信.混凝土桥梁面板维修的折衷规划优化.清华大学学报, 2004, 44(6): 789-792
    [112]钱令希.工程结构优化设计.北京:水利电力出版社, 1983, 3-89
    [113]程耿东.工程结构优化设计基础.北京:水利电力出版社, 1983, 1-45
    [114]王光远,董明耀.结构优化设计.北京:高等教育出版社,1987, 1-56
    [115]王光远.工程软设计理论.北京:科学出版社, 1992, 1-78
    [116]王光远,程耿东,邵卓民,陈厚群.抗震结构的最优设防烈度与可靠度.北京:科学出版社, 1999, 56-78
    [117]孙焕纯,柴山,王跃方.离散变量结构优化设计.大连:大连理工大学出版社, 1995, 21-78
    [118]傅强,张泽鹏,严学寨等.斜拉桥结构优化设计初探.湖南大学学报(自然科学版), 2001, 28(3): 109-110
    [119] Shao X, Peng J, Yan B. Bridge multi-index performance assessment model. In: Proc of the 4th China-Japan-US Symposium on Structural Control and Monitoring.Hangzhou, 2006, 423-424
    [120] Peng J, Shao X. Bridge material decision for deteriorating structures based on whole-life optimum design considering life-cycle cost. In: Proc of the 2nd Int Conf on Structural Condition Assessment, Monitoring and Improvement. Changsha, 2007, 1-8
    [121]邵旭东,彭建新,晏班夫.基于桥梁全寿命总成本优化的设计研究综述.见:第十七届全国桥梁学术会议集.北京:人民交通出版社,2006, 456-451
    [122]邵旭东,彭建新,晏班夫,刘新华.混凝土桥梁全寿命成本优化设计.见:第十八届全国桥梁学术会议论文集.北京:人民交通出版社,2008, 1-8
    [123] Podolny W Jr. Corrosion of prestressing steel and its mitigation, PCI Journal, 1992, 37(5): 34-55
    [124] Jin X, Zhang Y. Concrete Bridge Inspection. Report No HD 07-06-06-01(1): Hunan University, 2007, 25-30
    [125] Hawk H, Small E P. The BRIDGIT Bridge Management System. Structural Engineering International, Zurich, 1998, 8(4): 309-314
    [126] Small E P, Philbin T, Fraher M, Romack G. The current status of bridge management system implementation in the United States. In: Proc of the Int Bridge Management Conference. Washington D C, 1999, 1–15
    [127] Stewart M G. Workmanship and its influence on probabilistic models of concrete compressive strength. ACI Materials Journal, 1995, 92(4): 361-372
    [128] Peterson N. Should standard cube test specimens be replaced by test specimens taken from the structures. Materiaux et Constructions, 1968, 1(5): 425-435
    [129] Davis S G. Further Investigation into the strength of concrete in Structures. London: Cement and Concrete Association, 1976, 45-78
    [130] Mirza S A, Hatzinikolas M, MacGregor J G. Statistical description of strength of concrete. Journal of the Structural Division, 1979, 105(ST6): 1021-1037
    [131] Nowak A S, Szerszen M M, Szeliga E K, Podhorecki P J. Reliability based Calibration for structural Concrete. Report No: Unlce 05-03: University of Nebraska, 2005, 23-56
    [132] Mirza S A, Kikuchi D K, MacGregor J G. Flexural strength reduction factor for bonded prestressed concrete beams. ACI Materials Journal, 1980, 77(4): 237-246
    [133] Parameswaran L, Kumar R, Sahu G K. Effect of carbonation on concrete bridge service life. Journal of bridge Engineering, 2008, 13(1): 75-82
    [134] Bolzoni F, Fumagalli G, Lazzari L, Ormellese M, Pedeferri M P. Mixed–in inhibitors for concrete structures. Publications Number 38: European Federation of Corrosion, 2007, 199-201
    [135] DuraCrete. Probabilistic performance based durability design of concrete structures - statistical quantification of the variables in limit state functions. The European union-Brite EuRamШ: Project BE 95-1347, 2000, 75-96
    [136] Heiyatuduwa R, Alexander M G, Mackechnie J R. Performance of a penetrating corrosion inhibitor in concrete affected by carbonation-induced Corrosion. Journal of Material in Civil Engineering, 2006, 18(6): 842-850
    [137] Xu Y M, She H L, Miksic B A. Comparison of inhibitors MCI and NaNO2 in carbonation-induced corrosion. Materials Performance, 2004, 42: 42-46
    [138] Coronelli D, Gambarova P. Structural assessment of corroded reinforced concrete beams: modeling guidelines. Journal of Structural Engineering, 2004, 130(8): 1214-1224
    [139] Walton J C, Plansky L E, Smith R W. Models for estimation of service life of concrete barriers in low-level radioactive waste disposal. Washington D C: National Bureau of standards-U.S. Nuclear Regulatory Commission, 1990, 1-23
    [140]钱稼茹.耐久性的可靠度设计方法.混凝土结构设计规范第五批科研课题综合报告汇编.北京:中国建筑科学研究院混凝土结构设计规范国家标准管理组,1996, 10-15
    [141] Al-Khaja W A. Influence of temperature, cement type and level of concrete consolidation on chloride ingress in conventional and high-strength concretes. Construction and Building Materials, 1997, 11(1), 9-13
    [142] Daly A F. Modelling of deterioration in Bridges. BRIME: Transport Research Laboratory, 1999, 12-19
    [143] Nowak A S, Park C, Casas J R. Reliability analysis of prestressed concrete bridge girders: comparison of eurocode, Spanish Norma IAP and AASHTO LRFD. Structural Safety, 2001, 23: 331-344
    [144] FIP. Corrosion Protection of Prestressing Steel- FIP Recommendations. London: Thomas Telford, 1996, 15-49
    [145]湖南大学设计研究院.窑背大桥修改设计施工图.湖南长沙, 2006, 3-34
    [146]陈建奎.混凝土外加剂原理和应用.北京:中国计划出版社, 2004, 24-76
    [147]中华人民共和国行业标准(JTG D62—2004).公路钢筋混凝土及预应力混凝土桥涵设计规范.北京:人民交通出版社, 2004, 24-28
    [148]中国设计标准.公路工程可靠度设计标准.北京:中国规划出版社, 1999, 5-24
    [149] Hwang E S, Nowak A S. Simulation of dynamic load for bridges. Journal of Structural Engineering, 1991, 117(5): 1413-1434
    [150] Ellingwood B, Galambos T V, MacGregor J G, Cornell C A. Development of a probability-based load criterion for American National Standard A58. Washington D C: National Bureau of Standards Special Publication No. 577, 1980, 2-56
    [151] Nowak A S, Grouni H N. Calibration of the OHBDC -1991. Canadian Journal Civil Engineering, 1994, 21: 22–35
    [152] Mehta P K, Monteiro P J M. Concrete microstructure, properties and materials. Chennai, Indian Concrete Institute, 1997, 12-45
    [153] Estes A C, Frangopol D M. Bridge lifetime system reliability under multiple limit states. Journal of Bridge Engineering, 2001, 6(6): 523-528
    [154] Frier C. Sorensen J D. Stochastic analysis of the multi-dimensional effect on chloride ingress into reinforced concrete. In: Proc of Applications of Statistics and Probability in Civil Engineering. London, 2007, 36-56
    [155] Stewart M G, Rosowsky D V. Structural safety and serviceability of concrete bridges subject to corrosion. Journal of Infrastructures Systems, 1998, 4(4): 146-155
    [156] Li Y, Vrouwenvelder T, Wijnants G H, Walraven J. Spatial variability of concrete deterioration and repair strategies. Structural Concrete, 2004, 5(3): 121-130
    [157] Vu K A T, Stewart M G, Mullard J A. Corrosion-induced cracking: experimental data and predictive models. ACI Structural Journal, 2005, 102(5): 719-726
    [158] Tuutti, K. Service life of structures with regard to corrosion of embedded steel. Performance of concrete in marine environment. Michigan: American Concrete Institute, 1980, 223–236
    [159] Sudret B, Defaux G, Pendola M. Stochastic evaluation of the damage length in RC beams submitted to corrosion of reinforcing steel. Civil Engineering and Environmental Systems, 2007, 24(2): 165-178
    [160] Stewart M G. Spatial variability of pitting corrosion and its influence on structural fragility and reliability of RC beams in flexure. Structural Safety, 2004, 26(4): 453-470
    [161] Stewart M G, Al-Harthy A. Pitting corrosion and structural reliability of corroding RC structures: Experimental data and probabilistic analysis. Reliability Engineering and System Safety, 2008, 93(3): 373-382
    [162] Stewart M G. Mechanical behavior of pitting corrosion of flexural and shear reinforcement and its effect on structural reliability of corroding RC beams. Structural Safety, 2009, 31(1): 19-30
    [163] Marsh P S, Frangopol D M. Reinforced concrete bridge deck reliability model incorporating temporal and spatial variations of probabilistic corrosion rate sensordata. Reliability Engineering and System Safety, 2008, 93(3): 394-409
    [164] Peng J, Stewart M G. Climate change, deterioration and time-dependent reliability of concrete structures. In: Proc of 20th Australasian Conf on the Mechanics of Structures and Materials. Queensland, 2008, 559-565
    [165] Weyers R E. Service life model for concrete structures in chloride-laden environments. ACI Materials Journal, 1998, 95(4): 445-453
    [166] Canadian Standards Association. Design of concrete structures. Rexadle: Canadian Standards Association, 1994, 1-89
    [167] Thoft-Christensen P. Stochastic modelling of the crack initiation time for reinforced concrete structures. Philadelphia: ASCE Structures Congress, 2000, 8
    [168] Vidal T, Castel A, Francois R. Analyzing crack width to predict corrosion of reinforced concrete. Cement and Concrete Research, 2004, 34(1): 165-174
    [169] Al-Harthy A S, Mullard J, Stewart M G. Cracking in concrete due to corrosion of steel reinforcement. In: Proc of 5th Int Conf on Concrete Under Severe Conditions, Environment and Loading. Roterrdam, 2007, 383-390
    [170] Mirza S A, MacGregor J G. Variations in dimensions of reinforced concrete members. Journal of the Structural Division, 1979, 105 (ST4): 751-766
    [171]彭建新,邵旭东,晏班夫.基于概率模型的桥梁维护成本计算方法研究.湖南大学学报, 2009, 36(4): 13-18
    [172] Ditlevsen O, Madsen H O. Structural reliability methods, John Wiley & Sons, Chichester, 1996, 2-56
    [173]叶文亚,李国平,范立础.桥梁全寿命成本初步分析.公路, 2006, 6:101-104
    [174] Circular A-94: Guidelines and discount rates for benefit-cost analysis of federal program. OMB, 1992, 1-35
    [175] Hall K, Corra C, Carpenter S, Elliot R. Rehabilitation strategies for highway pavement. Final Report: NCHPP project CI-38, 2001, 1-23
    [176] Walls J, Smith M. Life-cycle cost analysis in pavement design-in search of better investment. Publication No FHWA-SA-98-079: Federal Highway Administration, 1998, 43-45
    [177] Van Noortwijk J M. Two probabilistic life-cycle maintenance models for deteriorating civil infrastructures. Probabilistic Engineering Mechanics, 2004, 19: 345-359
    [178]邵旭东.桥梁工程.北京:人民交通出版社, 2007, 3-56
    [179] Kennedy J, Eberhart R C. Partical swarm optimization. In: Proc of the IEEE IntConf on Neural Network. Perth, 1995, 1-8
    [180] Coello C A C, et al. MOPSO: a proposal for multiple objective particle swarm optimization. In: Proc of the IEEE World Congress on Computational Intelligence. Hawaii, 2002, 23-56
    [181] Venter G, et al. Particle swarm optimization. Colorado: AIAA 2002~1235, 2002, 21-45
    [182]安伟刚,李为吉.改进的粒子群优化算法及其工程应用.机械科学与技术, 2005, 24(4): 415-417
    [183]冯奇峰,李言.改进粒子群优化算法在工程优化问题中的应用研究.仪器仪表学报, 2005, 26(9): 984-988
    [184]杨俊杰,周建中,吴玮,刘芳.改进粒子群优化算法在负荷经济分配中的应用.电网技术, 2004, 1-4
    [185] Clerc M, Kennedy J. The particle swarm explosion stability and convergence in a multi- dimensional complex space. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73
    [186]蒋秀洁,乐良才.基于改进PSO算法的电力系统机组优化组合.三峡大学学报, 2005, 27(6): 504-508
    [187] Liu M, Frangopol D M. Time-dependent bridge network reliability: a novel approach. Journal of Structural Engineering, 2005, 131(2): 329-337
    [188] Liu M, Frangopol D M. Optimal bridge maintenance planning based on probabilistic performance prediction. Journal of Structural Engineering, 2005, 131(5): 833-842
    [189] Miyamoto A, Kawamura K, Nakamura H. Bridge management system and maintenance optimization foe existing bridge. Computer-aided Civil and Infrastructure Engineering, 2000, 15(6): 45-55
    [190] Liu C, Hammad A, Itoh Y. Multiobjective optimization of bridge deck rehabilitation using a genetic algorithm. Computer-aided Civil and Infrastructure Engineering, 1997, 12(1): 431-443
    [191]吴海军,彭作军,陆萍.砼桥梁耐久性设计原则与构造措施探讨.重庆交通学院学报, 2006, 25(1): 8-11
    [192]金晓勤,邵旭东,陈华辉,林辉.整体式无缝桥梁新技术初步试验研究.湖南大学学报, 2006, 33(4): 1-5
    [193]刘丹,郭磊,钟怀增.公路桥梁铰缝破坏原因浅析与预防措施.邢台职业技术学院学报, 2005, 22(3): 69-70
    [194]柴广,孙建民,郑杰.新型铰缝在重载交通道路桥梁设计中的应用.内蒙古公路与运输, 2005, 4: 20-22
    [195]吴海军,陈艾荣.桥梁耐久性设计的防水措施和原则.见:桥梁学术会议论文集.北京:人民交通出版社, 2004, 333-337
    [196]姜辉,康宗兰.美国第一座物主可“可检修”的斜拉桥.国外桥梁, 1999, 1: 71-73
    [197]耿波,王君杰,汪宏,范立础.桥梁船撞风险系统评估总体研究.土木工程学报, 2007, 40(5):34-40
    [198]项海帆,范立础,王君杰.船撞桥设计理论的现状与需进一步研究的问题.同济大学学报, 2002, 30(4): 386-393
    [199]占雪芳,刘俊珂,邵旭东.现有桥梁船撞风险评估的建议方法.见:中国桥梁年会会议论文集.北京:人民交通出版社, 2007, 1-8
    [200]杨渡军.桥梁的防撞保护系统及其设计.北京:人民交通出版社,1999,12-21
    [201] Novak D, Teply B, Kersner Z. The Role of latin hypercube sampling method in reliability engineering. In: Proc of the 7th Int Conf on Structural Safety and Reliability. Rotterdam, 1998, 403-409
    [202] Melchers R E, Ahammed M. A fast approximate methods for parameter sensitivity estimation in Monte Carlo structural reliability. Computers and Structures, 2004, (82): 55-61
    [203] Jiang Y. The effect of bridge condition prediction for bridge system benefit optimization. In: Proc of 2nd Int Conf of Bridge Maintenance, Safety, Management and Cost. Japan, 2004, 1-8
    [204]邵旭东,李立峰,张伟.二次预应力组合结构试验研究.中国公路学报, 2006, 19(1): 75-79
    [205] Rosenberg C, Hansson C, Andrade C. Mechanism of corrosion of steel in concrete. Westerville: The American Ceramic Society, 2001, 85-313
    [206] Montemor M F, Cunha M G, Ferreira M P, Simoes A M. Corrosion behavior of rebars in fly ash mortar exposed to carbon dioxide and chlorides. Cement & Concrete Composites, 2002, 24(1): 45-53
    [207]吴海军.桥梁结构耐久性设计方法研究: [同济大学博士学位论文].上海:同济大学, 2007, 86-105
    [208]马军海.桥梁全寿命设计过程及其在混凝土连续梁桥中的应用:[同济大学博士学位论文].上海:同济大学, 2008, 5-8
    [209] Palsson R, Mirza M S. Mechanical response of corroded steel reinforcement of abandoned concrete bridge. ACI Structural Journal, 2002, 99(2):157–162
    [210] Almusallam A A. Effect of degree of corrosion on the properties of reinforcingsteel bars. Construction Build Material, 2001, 15(8): 361-368
    [211] Cairns J, Plizzari G A, Du Y, Law D W, Franzoni C. Mechanical properties of corrosion-damaged reinforcement. ACI Material Journal, 2005, 102(4):256–264
    [212] Apostolopoulos C A, Michalopoulos D. The impact of corrosion on the mechanical behaviour of steel undergoing plastic deformation. Material Corrosion, 2007, 58(1):5–12.
    [213] Higgins C, Farrow W C. Tests of reinforced concrete beams with corrosion-damaged stirrups. ACI Structural Journal, 2006,103(1):133-141
    [214] Kanninen M F, Popelar C H. Advanced fracture mechanics. New York: Oxford University Press, 1985, 3-12
    [215] McGuinn K F, Elices M. Stress corrosion resistance of transverse precracked prestressing tendon. British Corrosion Journal, 1981, 16(4):187-195
    [216] Izquierdo D, Andrade C, Tanner P. Reliability analysis of corrosion in postensional tendon: case study. In: Proc Int Conf on Safety, Risk and Reliability– Trends in Engineering. Zurich, 2001,1001-1006
    [217] Jones R H, Ricker R E. Mechanism of stress-corrosion cracking. Stress-Corrosion Cracking: ASM International, 1992, 1-40
    [218] Toribio J, Lancha A M. Effect of cold drawing on environmentally assisted cracking of cold-drawn-steel. Materials and Structures, 1993, 26:30-37
    [219] Evans R H. Use of calcium chloride in prestressed concrete. In: Proc of World Conf On Prestressed Concrete. San Francisco, 1957, 5-8
    [220] Treadaway K W J. Corrosion of prestressed steel wire in concrete. British Corrosion Journal, 1971, 6: 66-72
    [221] Parkins R N, Elices M, Sanches-Galves V, Caballero L. Environment sensitive cracking of pre-stressing steels. Corrosion Science, 1982, 22: 379-405
    [222] Isecke B. The influence of constructional and manufacturing conditions on the corrosion behaviour of prestressed wires before grout injection. London: Ellis Horwood, 1983, 379-391
    [223] Nürnberger U. Corrosion induced failure mechanism. Durability of Post Tensioning Tendons Workshop: FIB– International Federation for Structural Concrete Bulletin 15, 2001, 13-89
    [224] Manning D G. Durability of prestressed concrete highway structures. Transportation Research Board: NCHRP Synthesis of Highway Practice 140, 1988, 10-15
    [225] Uhlig H H. Prestressed tendons in civil engineering. Transaction AIME, 1941,140: 411-432
    [226] Bentur A, Diamond S, Berke N S. Steel corrosion in concrete. New York: E&FN Spon, 1997, 2-16
    [227] Valiente A, Elices M. Premature failure of prestressed steel bars. Engineering Failure Analysis, 1998, 5(3): 219-227
    [228] Vermaas G, Betti R, Barton S C, Duby P, West A C. Corrosion and embrittlement of high-strength bridge wires. Long Term Durability of Structural Materials: Elsevier Science, 2001, 2-56
    [229] Pecherdchoo A. Maintaining condition and safety of deteriorating bridges by probabilistic models and optimization: [PhD dissertation]. Colorado: University of Colorado, 2006, 34-109
    [230] Clifton J R, Knab L I. Service life of concrete. Washington D C: U.S. Nuclear Regulatory Commission, 1989, 56-112
    [231] Jones N P, Ellingwood B. NDE of Concrete bridge: opportunities and research needs. Washington D C: Federal Highway Administration, 1992, 12-87
    [232] Mori Y, Ellingwood B. Methodology for reliability based condition assessment. Washington D C: U.S. Nuclear Regulatory Commission, 1993, 65-78
    [233] Puris R L, Graber D R, et al. Literature review of time-deterioration prediction techniques. Washington D C: Strategic Highway Research Program, 1992, 1-23
    [234] Thoft-Christensen P, et al. Assessment of the reliability of concrete bridges- Reliability and Optimization of Structural Systems. Oxford: Pergamon, 1992, 321-328
    [235]FHWA. Life-cycle cost analysis primer. Washington D C: Officer Asset Management, Department of Transportation, 2002, 32-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700