用户名: 密码: 验证码:
光纤光栅传感特性与多点复用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤光栅传感技术是近年来传感技术领域发展的一个新方向,它具有质量轻、抗电磁干扰、耐腐蚀、易于组成光纤传感网络等优点,广泛地应用到航空航天、石油、电力、土木工程、生物化学以及医学等领域。本文首先从光纤光栅理论出发,建立光纤光栅时分复用模型,其次在研究光纤光栅的各种复用技术的基础上,提出一种大容量的光纤光栅复用技术方案,分析其原理并通过实验验证其性能,其主要工作如下:
     1.根据光纤光栅耦合模理论,研究光纤光栅的计算方法和光谱特性,以及传感器反射率和光栅长度,折射率调制深度的关系。建立了光纤光栅时分复用模型,研究传感器的反射率与传感器复用数量的关系,并且分析光谱阴影效应和多次反射效应对传感信号造成的串扰,通过仿真计算分析传感器的反射率与串扰程度的关系。
     2.以光纤光栅的时分复用模型为基础,提出了基于半导体光放大器(SOA)共振腔的时分复用方案。通过采用不同频率的脉冲信号驱动SOA实现各传感器的寻址,研究脉冲信号宽度与传感器信号串扰的关系,以及腔内衰减与复用数量的关系。结合SOA共振腔技术,提出TDM+WDM混用技术方案,传感器阵列由多组传感器构成,组间以TDM方式访问,组内以WDM方式访问,传感器复用数量为两种复用方式数量的乘积,以实现TDM技术复用能力的倍增。
     3.对光纤光栅传感特性进行分析,根据其对温度与应变具有交叉敏感特点,对传感器进行封装,研制基于光纤光栅的温度、应变、压力传感器,并对其相关系数进行标定。
     4.研制基于SOA共振腔的时分复用传感系统,并搭建时分复用传感试验装置,在单根光纤上串联5个温度传感器和4个应变传感器,采用时分复用方式分别对温度和应变测量点进行监测,通过实验验证系统的多点复用能力。以TDM+WDM混用技术为基础,构建5×5的二维光纤传感网络,测量在不同加载/加热情况下铝板的应力/温度分布场。
In recent years, Fibre Bragg grating sensor technology has become a newdevelopment orientation in the sensoring field. It has some performances such aslight weight, electromagnetic immunity, corrosion resistant, easy to access into fiberoptic sensor networks etc., It’s widely used in aerospace, oil and electric power, civilengineering, biochemistry and medicine. In this paper, firstly, based on the theory offiber Bragg grating, a time-division multiplexed (TDM) model of fiber Bragg gratinghas been built up. Secondly, followed on the basis of a variety of fiber Bragg gratingmultiplexing technology, a large capacity multiplexing scheme of fiber Bragg gratingis put forward, it’s principle is analyzed and its performance is verified byexperiments. The main works are as follows:
     1. Based on Fibre Bragg grating coupled theory, calculation methods and spectralcharacteristics of fibre Bragg grating is studied, and the relationship betweenreflectivity and refractive index modulation depth, length of grating is obtained.A time division multiplexing model is established, and the relationship betweenthe reflectivity and the number of sensors is studied. The crosstalk caused byspectral shadow and multiple reflection effect between the FBGs is analyzed.
     2. Based on the TDM model, the author proposes a time-division multiplexingscheme using SOA resonant cavity, in which each of sensor is addressed byusing pulse singal with different frequency. The relationship between crosstalkof sensor and width of pulse, and the relationship between attenuation of cavityand the capacity of sensor are also studied, respectively. Combined the SOAresonant cavity technology, a large capacity multiplexing technology with mixedtime-division and wave-division multiplexing (TDM+WDM) is proposed. It’ssensor array consists of different groups and each group comprises of fewsensors, the group is addressed by TDM mode and each sensor is accessed byWDM mode, the total multiplexing capacity is multiplication of TDM andWDM.
     3. Sensing characteristics and packaging technology of FBG is studied accordingto the performance of corss sensitivity characteristics to temperature and strain,a temperature, strain, pressure sensors is developed respectively, and theircoefficients are calibrated.
     4. A time-division multiplexing sensing system is developed based on SOAresonant cavity. Experimental setups of TDM sensor system are built up.Temperatures and strains are monitored by using the TDM methord with5 temperature sensors and4strain sensors in a monofilament fiber. The multi-point multiplexing capability of TDM system is verifed by monitoring eachsensing point. A two dimensional FBG sensing network with5×5sensors arrayis set up based on TDM+WDM technology. The stress/temperature distributionin a aluminum plate is measured under different loading/heating by using thisFBG sensing network.
引文
[1] S. Takeda, Y. Aoki, T. Ishikawa, N. Takeda, H. Kikukawa. Structural healthmonitoring of composite wing structure during durability test. CompositeStructures.2007,79(1):133~139
    [2] S. Yashiro, T. Okabe, N. Toyama, N. Takeda. Monitoring damage in holed CFRPlabinates using embedded chirped FBG sensors. International Journal of Solidsand Structures.2007,44(2):603~613
    [3] Y. Zhao, C. B. Yu, Y. B. Liao. Differential FBG sensor for temperature-compensated high-pressure measurement. Optics&Laser Technology.2004,36(1):39~42
    [4] L. H. Liu, H. Zhang, Q. D. Zhao,Y. L. Liu, F. Li. Temperature-independent FBGpressure sensor with high sensitivity. Optical Fiber Technology.2007,13(1):78~80
    [5] S. Takashima, H. Asanuma, H. Niitsuma. A water flowmeter using dual fiberBragg grating sensors and cross-correlation technique. Sensors and Actuators A:Physical.2004,120(1):66~74
    [6] K. R. Sohn, Liquid sensors using refractive intensity at the end-face of a glassfiber connected to fiber-Bragg grating. Sensors and Actuators A: Physical.2010,158(2):193~197
    [7]刘敏敏,周峰,杜志顺.光纤传感器在使用测井中的应用.光学与光电技术.2008,6(3):18~21
    [8]李朝辉.光纤传感技术在燃气流量计研制中的应用.计量技术.2006,50(4):13~14
    [9] Z. Haneed, Y. S. Hong, Y. M. Cho,S. H. Ahh, C. K. Song. Condition monitoringand fault detection of wind turbines and telated algorithms: A review. Renewableand Sustainable Energy Reviews.2009,13(1):1~39
    [10]姜德生,何伟.光纤光栅传感器应用概括.光电子·激光.2002,13(4):421~430
    [11] A. F. Picanco, M. L. B. Martinez, P. C. Rosa, Bragg system for temperaturemonitoring in distribution transformers. Electric Power Systems Research.2010,80(1):77~83
    [12] M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta. FibreBragg gratings in structural health monitoring-Present status and applications.Sensors and Actuators A:Physical.2008,147(1):150~164
    [13] C. Rodrigues, A. Félix, J. Figueiras. Development of a long-term monitoringsystem based on FBG sensors applied to concrete bridges. EngineeringStructures.2010,32(8):1993~2002
    [14] Li Sun, H. N. Li, L. Ren, Q. Jin. Dynamic response measurement of offshoreplaform model by FBG sensors. Sensors and Actuators A: Physical.2007,136(2):572~579
    [15]蒋洪涛,张岩,光纤传感器在桥梁健康监测中的应用.北方交通.2006,29(10):56~59.
    [16]饶志强,黄祥,光纤传感器在岩土工程中应用.岩土力学.2007,28(1):209~212
    [17] C. K. Kao, G. A. Hockham, Dielectric fiber surface waveguides for opticalfrequencies. Proc. IEE.1966,113(7):1151~1158
    [18]廖延彪.光纤光学.2000,北京:清华大学出版社
    [19] K. O. Hill, Y. Fujii, D. C. Johnson. Photosensitivity in optical fiber waveguides:Application to reflection filter fabrication. Applied Physics Letter.1978,32(10):647~649
    [20] G. Meltz, W. W. Morey, W. H. Glenn. Formation of Bragg graatings in opticalfibers by a transverse holographic method. Optics Letters.1989,14:823~825
    [21] K.O. Hill. Bragg gratings fabricated in monomode photosensitive optical fibre byUV expose through a phase mask. Applied Physics Letter.1993,62(10):1035~1037
    [22] F. Ouellette. Dispersion cancellation using linearly chirped Bragg grating filtersin optical waveguides. Optics Letters.1987,12(10):847~849
    [23] M. Y. Fu, C. M. Lin, W. F. Liu, L. Ai. The induced cladding modes of asuperstructure fier grating. Optical Fiber Technology.2008,14(1):16~19
    [24] G. P. Agrawal, S. Radic. Phase-shifted fiber Bragg gratings and their applicationsfor wavelength demultiplexing. IEEE Photonics Technology Letters.1994,6(8):995~997
    [25] V. Mizrahi, J. E. Sipe. Optical properties of photosensitive fiber phase gratings.Lightwave Technology.1993,11(10):1513~1517
    [26] C. R. Giles. Lightwave application of fiber Bragg gratings. LightwaveTechnology.1997,15(88):1391~1404
    [27] T. Erdogan, J. E. Sipe. Tilted fiber phase gratings. Optical Society of America A.1996,13(2):296~313
    [28] F. M. Araújo, L. A. Ferreira, J. L. Santos, F. Farahi. Temperature and straininsensitive bending measurements with D-type fibre Bragg gratings.Measurement Science and Technology.2001,12(7):829~833
    [29]王义平.新型长周期光纤光栅特性研究.重庆大学博士论文.2003
    [30]秦海琨,张敏,刘育梁.光纤光栅生物传感器的研究进展综述.激光杂志.2008,29(5):99~103
    [31]杜善义,冷劲松,王殿富.智能材料系统和结构.2001,北京:科学出版社
    [32] J. S. Leng, A. Asundi. Structural health monitoring of smart composite materialsby using EFPI and FBG sensors. Sensors and Actuators A: Physical.2003,103(3):330~340
    [33] C. Schizas, D. Karalekas. FBG-based monitoring of solidification straindevelopment in a microstereolithography photocurable resin. MaterialsProcessing Technology.2009,209(5):2349~2355
    [34] E. Kirkby, R. de Oliveira, V. Michaud. Impact loaclisation with FBG for self-healing carbon fibre composite structure. Composite structures.2011,94(1):8~14
    [35] B. W. Jang, J. R. Lee, S. O. Park, C. G. Kim. A health management algorithm forcomposite train carbody based on FEM/FBG hybrid method. Compositestructures.2010,92(4):1019-1026
    [36] R. de Oliveira, C. A. Ramosc, A. T. Marques. Health monitoring of compositestructures by embedded FBG and interferometric Fabry–Pérot sensors.Computers&Structrues.2008,86(3):340~346
    [37] Z. W. Zhu, D. Y. Liu, Q. Y. Yuan, B. Liu, J. C. Liu. A novel distributed opticfiber transduser for landslides monitoring. Optics and Lasers in Engineering.2011,49(7):1019~1024
    [38] A. Kerrouche, W. J. O. Boyle, T. sun, K. T. V. Grattan. Design and in-the-fieldperformance evaluation of compact FBG sensor system for structural healthmonitoring applications. Sensors and Actuators A: Physical.2009,151(2):107~112
    [39] Y. Fan, M. Kahrizi. Characterization of a FBG strain gage array embedded incomposite structure. Sensors and Actuators A: Physical.2005,121(2):297~305
    [40] W. Chen, X. P. Dong. Modification of wavelength-strain coefficient of FBG forprediction of steel bar corrosion embedded in concrete. Optical Fiber Technology.2012,18(1):47~50
    [41] Junqi Gao, J.W., Jun Li,Xinming Zhao, Monitoring of corrosion in reinforcedconcrete structure using Bragg grating sensing. NDT&E International,2011.44(2): p.202~205.
    [42] B. Malo, K.O. Hill, F. Bilodeau, D. C. Johnson, J. Albert. Point-by-pointfabrication of micro-Bragg gratings in photosensitive fibre using single excimerpulse refractive index modification techniques. Electronics Letters.1993,29(18):1668~1669
    [43] N. Song, J. Mu. W. P. Huang, Application of the Complex Coupled-Mode Theoryto Optical Fiber Grating Structures. Lightwave Technology.2010,28(5):761~767
    [44] T. Erdogan. Cladding-mode responances in short-and long-period fiber gratingfilters. Optical Society of America A.1997,14(8):1760~1773
    [45] W. P. Huang. Coupled-mode theory for optical waveguides:an overview. OpticalSociety of America A.1994,11(3):963~983
    [46] T. Erdogan. Fiber Grating Spectra. Lightwave Technology.1997,15(8):1277~1294.
    [47]廖帮全,赵启大,冯德军.光纤耦合模理论及其在光纤布拉格光栅上的应用.光学学报.2002,22(11):1340~1344
    [48] M. Yamada, K. Sakuda. Analysis of almost-periodic distributed feedback slabwaveguides visa a fundamental matrix approach. Applied Optics.1987,26(16):3474~3478
    [49] M. S. Mueller, H. J. El-Khozondar, A. Bernardini, A. W. Koch, G. P. Agrawal,Transfer Matrix Approach to Four Mode Coupling in Fiber Bragg Gratings.Quantum Electronics.2009,45(9):1142~1148
    [50] J. L. Frolik, A. E. Yagle. An Asymmetric discrete-time approach for the designand analysis of periodic waveguide gratings. Lightwave Technology.1995,13(5):175~185
    [51] Y. J. Rao. Recent progress in applications of in-fibre Bragg grating sensors.Optics and Lasers in Engineering.1999,31(4):297~324
    [52] A. D. Kersey, M. A. Davis, H. J. Pactrick, Fiber grating Sensors. LightwaveTechnology.1997,15(8):1442~1463
    [53] K. T. V. Gratan, T. Sun. Fiber optic sensor technology:an overview. Sensors andActuators A: Physical.2000,82(3): p.40~61
    [54] E. Udd, W. L. Schulz, J. M. Seim, E. Haugse. Multidimensional strain fieldmeasurements using Fibre Optic Grating Sensors. Proceedings of SPIE.2000,3986:254.
    [55] W. L. Schulz, E. Udd, J. M. Seim, A. Trego, I. M. Perez. Progress on monitoringof adhesive joints using multiaxis Fibre Grating Sensor. Proceedings of SPIE.2000,3991:52
    [56] M. N. Trutzel, K.Wauer, L. Staudigel, O. Krumpholz. Smart sensing of aviationstructures with fiber optic Bragg grating sensors. Proceedings of SPIE.2000,3986:134
    [57] P. Ferdinand, S. Magne, V. Dewynter-Marty, C. Martinez. Application of BraggGrating Sensors in Europe. Proc. of the12th International Conference on OpticalFibre Sensors, Williamsburg,Virginia,USA,1997.
    [58] P. Moyo, J. M. W. Brownjohn, R. Suresh, S. C. Tjin. Development of fiber Bragggrating sensors for monitoring civil infrastructure. Engineering Structures.2005,27(12):1828~1834
    [59] T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu. Fibre Bragg grating sensorsfor structural health monitoring of Tsing Ma bridge: Background andexperimental. Engineering Structures.2006,28(5):648~659
    [60] P. Biswas, S. Bandyopadhyay, K. Kesavan, S. Parivallal, B. Arun Sundaram,Investigation on packages of fiber Bragg grating for use as embeddable strainsensor in concrete structure. Sensors and Actuators A: Physical.2010,157(1):77~83
    [61] Y. M. Gebremichael, W. Li, W. J. O. Boyle, B. T. Meggitt, K. T. V. Grattan, B.Mckinley, Integration and assessment of fibre Bragg grating sensors in an all-fibre reinforced polymer composite road bridge. Sensors and Actuators A:Physical.2005,118(1):78~85
    [62] P. Fribele. Fibre Bragg Grating:presenst and future applications in smartstructures. Opitcs and Photonics News.1998,9(8):33~37
    [63] R. Massakant, T. Alavie, R. M. Measures, G. Tadros. Fibre-optic Bragg gratingsensors for bridge monitoring. Cement and Concrete Composites.1998,19(1):21~23
    [64]欧进萍,周智,武湛君,赵雪峰,莫淑华.黑龙江呼兰河大桥的光纤光栅智能检测技术.土木工程学报.2004,37(1):45~49
    [65]宋晓辉,徐飞萍,李静.济南黄河大桥健康监测系统.山东交通科技.2007,4:62~64
    [66]姜德生,郝义昶,刘胜春.光纤Bragg光栅测力环在系杆拱桥中的应用.仪器仪表与传感器.2006,(2):43~44
    [67]贾书丽,姚国珍,光纤光栅传感器在电力电缆测温系统中应用.广东电力,2011.24(6):61~64
    [68]马国明,全江涛,李成榕.输电线路覆冰载荷监测用光纤光栅称重传感器的设计.高压电技术.2010,36(9):2225~2230
    [69] S. E. U. Lima, O. Frazao, M. A. Francisco. Extrinsic and intrinsic fiber opticinterferometric sensors for acoustic detection in high-volotage enviroments.Optical Engineering.2009,48(2)
    [70]周王民,魏志武,李文博.温度不敏感光纤光栅大电流传感器.高压电技术.2009,35(9):2133~2137
    [71] Y. Q. Li, W. L. Chen. A novel temperature monitoring system based on FBG forSwitchgear. Power and energy engineering conference,Chengdu,2010:1~4
    [72] Ogawa Y, I.J. Iwasaki, Nakamura K., A multiplexing load monitoring system ofpower transmission lines using fibre Bragg grating. Proceedings of12thInterernational Conference on OFS, USA:468~471,1997
    [73] V. V. Spirin, M. G. Shlyagin, S.V. Miridonov. Fiber Bragg grating sensor forpetroleum hydrocarbon leak detection. Optics and Lasers in Engineering.1999,32(5):497~503
    [74] Y. W. Tang, T. Peng, J. Sirkis, Characterization of a fiber Bragg grating (FBG)-based palladium tube hydrogen sensor. Proceedings of SPIE.1999,3670:532~540
    [75] K. Schroeder, W. Ecke, R. Willsch. Optical fiber Bragg grating hydrogen sensorbased on evanescent-field interaction with palladium thim-film transducer.Optics and Lasers in Engineering.2009,47(10):1018~1022
    [76]姜德生,梅加纯,陈宏波,范典.一种编码式光纤光栅温度传感监测系统的研制.武汉理工大学学报.2004,26(10):21~23
    [77]李志全,汤敬,许明妍.分布式光纤光栅传感网络的复用解调技术.光电子技术与信息.2005,18(2):53~58
    [78] G. Breglio, A. Cusano, A. Irace. Fiber optic sensor arrays:a new method toimprove multiplexing capability with a low complexity approach. Sensors andActuators A:Physical.2004,100(2):147~150
    [79] Y. H. Hung, C. Lug, P. Wai, H. Y. Tam. Large-scale FBG sensors utilizing codedivision multiplexing in Lasers and Electro-Optics. Conference on QuantumElectronics and Laser Science.2008
    [80] Q. Z. Sun, D. Liu, L. Xia, J. Wang, H. Liu. Experimental demonstraion ofmultipoint temperature warning sensor using a multichannel matched fiber Bragggrating. Photonics Technology Letters, IEEE.2008,20(11):933~935
    [81] G. A. Johnson, M. D. Todd, B. L. Althouse, C. C. Chan, Fiber Bragg gratinginterrogation and multiplexing with a3x3coupler and a scanning filter.Lightwave Technology.2000,18(8):1101~1105
    [82] C. S. Kim, T. H. Lee, Y. S. Yu. Multi-point interrogation of FBG sensors usingcascaded flexible wavelength-division Sagnac loop filters. Optics Express.2006,14(19):8546~8551
    [83] L. Li, Y. L. Fiber Bragg grating sensing multiplexing system based oninterferometric demodulation technique. International Conference ComputerApplication and system modeling(ICCASM),2010:699~701
    [84] A. D. Kersey, T. A. Berkoff, W. W. Morey. Multiplexed fibre Bragg gratingstrain-sensor system with a fibre Fabry-Perot wavelength filter. Optics Letters.1993,18:1370~1372
    [85] N. Zeng, C. Z. Shi, C. C. Chan, M. Zhang. Enhancement of the measurementrange of FBG sensors in a WDM network: a self-organizing network solution.Sensors and Actuators A: Physical.2005,118(2):133~137
    [86] J. S. Liu, Z. Jiang, X. Li. Study on multiplexing ability of identical Fibre BraggGrating in a single fiber. Chinese Journal of Aeronautics.2011,24(5):607~612
    [87] L. C. S. Nunes, B. S. Olivieri, C. C. Kato, L. C. G. Valente. FBG sensormultiplexing system based on the TDM and fixed filters approach. Sensors andActuators A: Physical.2007,138(2):341~349
    [88] R. S. Weis, A. D. Kersey. A four-element fibre grating sensor array with phase-sensitive detection. Photonics Technology Letters, IEEE.1994,6:1469~1472
    [89] A. D. Kersey, A. Dandridge. Low crosstalk code dibision multiplexinginterferometric array. Electronics Letters.1992,28:351~352
    [90] M. A. Davis, D.G. Bellemore, A. D. Kersey. Structure strain maping using awavelength/time division addressed fibre Bragg grating array. Proc.2nd Euro.Conf. on smart structures and materials, Glasgow, U.K.,1994: p.342~345.
    [91] C. C. Chan, W. Jin, M. S. Demokan. Experimental investigation of a4-FBGTDM sensor array with a tunable laser source. Microwave and OpticalTechnology Letters.2001,33(1):435~437
    [92] C. C. Chan, W. Jin, H. L. Ho, M. Suleyman Demokan, Performance analysis of atime-division-multiplexed fiber Bragg grating sensor array by use of a tunablelaser source. Quantum Electronics, IEEE.2000,6(5):741~749
    [93] B. Dong, S. He, S. Y. Hu, D. Tian, J. F. Lv, Q. D. Zhao, Time-DivisionMultiplexing Fiber grating sensor with a tunalble pulsed laser. PhotonicsTechnology Letters, IEEE.2006,18(24):2620~2622
    [94] C. C. Chan, W. Jin, D. N. Wang, M. S. Demokan. Intrinsic crosstalk analysis of aserial TDM FBG sensor array by using a tunable laser. Lasers and Electro-OpticsSociety2000Annual Meeting, LEOS2000,2:533~534
    [95] L. C. G Velente, A. M. B. Braga, A. S. Ribeiro, R. D. Regazzi, Time andwavelength multiplexing of fiber Bragg grating sensors using a commercialOTDR, in Optical Fiber Sensors Conference Technical Digest,2002, OFS.2002,151~154
    [96] Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. H. Bi, A. B. Wang, A Quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings.Photonics Technology Letters, IEEE.2011,23(2):70~72
    [97] Y. J. Rao, K. Kalli,G. Brady. Spatially multiplexed fiber-optic Bragg gratingstrain and temperature sensor system based on interferometric wavelength-shiftdetection. Electronics Letters.1995,31:1099~1010
    [98] L. Li, H. He, Y. C. Lin. Study on the Spatial Division Multiplexing Technique ofFiber Bragg Grating Sensors. Photonics and Optoelectronics.2009,32(2):1~3
    [99] Y. J. Rao, A. B. L. Ribeiro, D. A. Jackson, L. Zhang, I. Bennion. Simultaneousspatial, time and wavelength division multiplexed in-fiber grating sensingnetwork. Optics Communications.1996,125(1-3):53~58
    [100] Y. J. Rao, A. B. L. Ribeiro, D. A. Jackson, L. Zhang. In-fiber grating sensingnetwork with a combined SDM,TDM,and WDM topology, in Lasers and Electro-Optics,Conference on CLEO.1996: Anaheim,CA,USA.244~248
    [101]饶云江,王义平.光纤光栅传感器原理与应用.2006:科学出版社
    [102] G. W. Chern, L. A. Wang. Transfer-matrix method based on perturbationexpansion for periodic and quasi-periodic binary long-period gratings. OpticalSociety of American.1999,16(11):2675~2689
    [103] H. Ke, J. H. M. Peng, C. C. Fan. Analysis of long-period fiber grating with fast-barying parameters and its Optimization by Genetic Algorithm. APOC2001,Proc. of SPIE,2001.4579:274~281
    [104]刘德力.碳纤维复合材料封装FBG传感器研究.武汉理工大学硕士论文.2007
    [105] Y. B. Dai, Y. J. Liu, J. S. Leng. A novel time-division multiplexing fiber Bragggrating sensor interrogator for structrual health monitoring. Optics and Lasers inEngineering.2009,47(10):1028~1033
    [106] G. D. Lloyd, L. A. Everal, K. Sugden, I. Bennion. Resonant cavity time-division-multiplexed fiber Bragg grating sensor interrogator. IEE PhotonicsTechnology Letters.2004,16(10):2323~2325
    [107] C. G. Askins, M. A. Putnam. Optical spectrometer with improved geometry anddata processing for monitoring fibe optic Bragg gratings. US patent6,233,373,2001
    [108] M. Z. Jiang, E. Gerhard. A simple strain sensor using a thin film as a low-finessefiber-optic Fabry-Perot interferometer. Sensors and Actuators A: Physical,2001.88(1):41~46
    [109]韩金婷.超快非线性干涉仪的分析和研究.天津大学硕士论文.2003
    [110] http://www.inphenix.com/pdfdoc/SOA_Device_Switch-type.pdf
    [111] A. Kerrouche, W.J.O. Boyle, T. Sun, K. T. V. Grattan. Enhanced FBG sensor-based system performance assessment for monitoring strain along a prestressedCFRP rod in structural monitoring. Sensors and Actuators A: Physical.2009,151(2):127~132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700