用户名: 密码: 验证码:
人乳腺癌组织中mTOR-Notch通路的验证及靶向治疗方案探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是女性最常见的恶性肿瘤之一,不但严重威胁着女性的生命,对患者的心理也造成巨大的创伤。我国属于乳腺癌低发地区,但发病率正在以高于世界平均水平1-2%的速度增长,在部分城市乳腺癌已占女性恶性肿瘤之首位。虽然已知乳腺癌与遗传、激素影响、生活方式等因素有关,但具体发病机制尚不清楚。
     膜受体酪氨酸激酶(RTK)-PI3K-AKT-mTOR通路可以调节细胞增殖、分化、死亡等功能。Notch通路则是调控细胞分化的重要通路。大量研究表明在乳腺癌中这两条通路常存在异常活化,我们的前期工作表明mTOR高度活化的MEF细胞中Notch信号通路通过mTOR上调,但在肿瘤组织中尚未验证此通路存在。
     为了在乳腺癌组织中验证mTOR与Notch表达的相关性,本研究运用WesternBlot及免疫组化染色的方法检测了乳腺癌肿瘤组织中mTOR与Notch的表达水平,结果表明,在所有的样本中(Western Blot30例;免疫组化57例),mTOR与Notch的表达水平正相关,二者相关性在低分化乳腺癌和早期乳腺癌中更为显著,在具有淋巴结转移、ER(-)、HER2(+)、Ki67指数≥50%及p53(-)的乳腺癌组织中更显著,支持了乳腺癌中存在mTOR-Notch通路的假设,同时表明在恶性程度越高的乳腺癌中,mTOR与Notch的相关性越高。
     ERK/MAPK通路也是典型的受体酪氨酸激酶调节通路,与PI3K-AKT-mTOR通路之间存在着密切的联系,对肿瘤的发生发展起重要的作用。由于mTOR的抑制可以反馈性激活ERK/MAPK通路及PI3K-AKT-mTOR通路,为了探讨更好的联合靶向治疗方案,本研究第二部分以PTEN-/-MEF细胞作为肿瘤的细胞模型,联合应用PI3K、mTOR双重抑制剂BEZ235及ERK激酶MEK1/2抑制剂U0126,观察其对细胞增殖的抑制效果。结果显示:BEZ235及U0126对PTEN-/-细胞均有抑制作用,二者IC50值分别为:6.257nM及22.85μM。但联合应用BEZ235与U0126,二者表现为拮抗的作用方式,因此在PTEN-/-细胞中或PTEN突变的肿瘤的联合靶向治疗中,不推荐应用BEZ235与U0126联合使用。
     本研究进一步验证了mTOR通过上调Notch进而调节分化导致肿瘤发生的机理,并通过联合用药实验检验了常用通路抑制剂的抗肿瘤效果,将有助于加强临床治疗的针对性和有效性。
Breast cancer is one of the most common malignant tumors among women. Although the morbidity rate of breast cancer in China is relatively low comparing to the one in western countries, it is growing at a rate1-2%higher than the world average. Although genetic factors, hormonal influence and life style play important roles in the development of breast cancer, the underlying mechanism of the tumorigenesis is still largely unknown.
     The receptor tyrosine kinase (RTK)-phosphatidylinositol-3-kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) pathway regulates multiple cellular functions including proliferation, differentiation, and cell death, whereas Notch pathway plays an important role in controlling cell differentiation. Previous study in our laboratory indicates that Notch receptor is up-regulated in mTOR hyperactivated MEFs through mTOR. A large body of evidence suggests that both mTOR and Notch pathways are frequently aberrant regulated in breast cancer, however, the interaction between these two pathways exists in vivo has yet to be tested.
     Therefore Western Blot and immunohistochemistry (IHC) staining were used to examine the correlation between mTOR activation and Notch expression in breast cancer tissues. Our data confirm that mTOR and Notch have significant relevance in all breast cancer samples examined (30samples using Western Blot and57samples using IHC), especially in low grade differentiated group and early stage group. Furthermore, higher significance was observed in the sample groups with indicators of poor prognosis, such as higher lymph node metastasis, negative ER expression, positive HER2expression, higher Ki67index, and p53mutation. These. results are in agreement with the hypothesis that there is an mTOR-Notch cascade existing in breast cancer. We also conclude that concurrent activation of mTOR and Notch is more prevalent in tumors with higher malignancy.
     ERK/MAPK pathway is another classic receptor tyrosine kinase pathway which plays essential role in tumorigenisis, and has close relationship with PI3K-AKT-mTOR pathway. It was newly identified that the efficacy of mTOR inhibition could be limited by mTOR-mediated negative feed back regulation on ERK/MAPK and RTK-PI3K-AKT pathway. To develop better combined target therapy, PTEN knockout MEF cell lines were used as cellular model for malignant tumor. BEZ235, the dual inhibitor of PI3K and mTOR, and U0126, the inhibitor of MEK1/2were combined to threat the cells. The inhibitory effects to cell proliferation were monitored by MTT. Our results show that both BEZ235and U0126suppress PTEN knockout cell proliferation, and their IC50values are6.257nM and22.85μM, respectively. Surprisingly, these two drugs had antagonistic rather than synergistic effect on cell proliferation, suggesting BEZ235and U0126are not suitable for a combined target therapy regimen.
     This study provides further evidence of oncogenically activated mTOR up-regulating Notch signaling as the possible mechanism for the inhibition of differentiation and the subsequent tumorigenisis. The combinational usage of pathway inhibitors investigated the possible cancer treatment with improved specificity and effectiveness, and provided information for clinical therapy.
引文
1. Androutsellis-Theotokis, A., et al., Notch signalling regulates stem cell numbers in vitro and in vivo. Nature,2006.442(7104):p.823-6.
    2. Zweidler-McKay, P.A., Notch signaling in pediatric malignancies. Curr Oncol Rep,2008. 10(6):p.459-68.
    3. Bolos, V., J. Grego-Bessa, and J.L. de la Pompa, Notch signaling in development and cancer. Endocr Rev,2007.28(3):p.339-63.
    4. Dickson, B.C., et al., High-level JAG1 mRNA and protein predict poor outcome in breast cancer. Mod Pathol,2007.20(6):p.685-93.
    5. Santagata, S., et al., JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res,2004.64(19):p.6854-7.
    6. Ma, J.H., et al., PI3K-AKT-mTOR pathway activates Notch signaling through up-regulation of Stat3-p63-Jagl cascade, under review.
    7. Chang, J.Y., S.N. Sehgal, and C.C. Bansbach, FK506 and rapamycin:novel pharmacological probes of the immune response. Trends Pharmacol Sci,1991.12(6):p.218-23.
    8. Maira, S.M., et al., Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther,2008.7(7):p.1851-63.
    9. Favata, M.F., et al., Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem,1998.273(29):p.18623-32.
    10. Quan, H., et al., U0126 enhances the cytotoxicity of combretastatin A4 independent of mitogen-activated protein kinase kinase. J Pharmacol Exp Ther,2009.
    11. Mi, R.F., et al., Efficacy of combined inhibition of mTOR and MAPK pathways in treating a tuberous sclerosis complex cell model. Journal of Genetics and Genomics,2009.
    12. Knobbe, C.B., et al., The roles of PTEN in development, physiology and tumorigenesis in mouse models:a tissue-by-tissue survey. Oncogene,2008.27(41):p.5398-415.
    13. Zhao, L., M.GL Wientjes, and J.L. Au, Evaluation of combination chemotherapy:integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clin Cancer Res,2004.10(23):p.7994-8004.
    14. Artavanis-Tsakonas, S., M.D. Rand, and R.J. Lake, Notch signaling:cell fate control and signal integration in development. Science,1999.284(5415):p.770-6.
    15. Dancey, J.E., Recent advances of molecular targeted agents:opportunities for imaging. Cancer Biol Ther,2003.2(6):p.601-9.
    16. McKenzie, G., et al., Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals. BMC Cell Biol,2006.7:p.10.
    17. Knight, W.A.,3rd, C.K. Osborne, and W.L. McGuire, Hormone receptors in primary and advanced breast cancer. Clin Endocrinol Metab,1980.9(2):p.361-8.
    18. Wright, C., et al., Expression of c-erbB-2 oncoprotein:a prognostic indicator in human breast cancer. Cancer Res,1989.49(8):p.2087-90.
    19. Parr, C., G Watkins, and W.G Jiang, The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int J Mol Med,2004.14(5):p.779-86.
    20. Reedijk, M., et al., High-level coexpression of JAG 1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res,2005.65(18):p. 8530-7.
    21. Schnell, C.R., et al., Effects of the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 on the tumor vasculature:implications for clinical imaging. Cancer Res,2008.68(16):p.6598-607.
    22. Davies, S.P., et al., Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J,2000.351(Pt 1):p.95-105.
    23. Carracedo, A., J. Baselga, and P.P. Pandolfi, Deconstructing feedback-signaling networks to improve anticancer therapy with mTORC1 inhibitors. Cell Cycle,2008.7(24):p.3805-9.
    24. Vivanco, I. and C.L. Sawyers, The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer,2002.2(7):p.489-501.
    25. Li, G, et al., Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development,2002.129(17):p.4159-70.
    26. Ma, L., et al., Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell,2005.121(2):p.179-93.
    27. Tang, L.L., et al., PTEN sensitizes epidermal growth factor-mediated proliferation in endometrial carcinoma cells. Oncol Rep,2006.15(4):p.855-9.
    1. Katso, R., et al., Cellular function of phosphoinositide 3-kinases:implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol,2001.17:p.615-75.
    2. Cantley, L.C., The phosphoinositide 3-kinase pathway. Science,2002.296(5573):p.1655-7.
    3. Vivanco, I. and C.L. Sawyers, The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer,2002.2(7):p.489-501.
    4. Engelman, J.A., J. Luo, and L.C. Cantley, The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet,2006.7(8):p.606-19.
    5. Byfield, M.P., J.T. Murray, and J.M. Backer, hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem,2005.280(38):p.33076-82.
    6. Nobukuni, T., et al., Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A,2005.102(40):p.14238-43.
    7. Wurmser, A.E. and S.D. Emr, Novel PtdIns(3)P-binding protein Etfl functions as an effector of the Vps34 PtdIns 3-kinase in autophagy. J Cell Biol,2002.158(4):p.761-72.
    8. Kihara, A., et al., Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol,2001. 152(3):p.519-30.
    9. Diehl, J.A., et al., Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev,1998.12(22):p.3499-511.
    10. Zhou, B.P., et al., Cytoplasmic localization of p21Cipl/WAF1 by AKT-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol,2001.3(3):p.245-52.
    11. Viglietto, G, et al., Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/AKT-mediated phosphorylation in breast cancer. Nat Med,2002. 8(10):p.1136-44.
    12. Steelman, L.S., et al., Contributions of the Raf/MEK/ERK, PI3K/PTEN/AKT/mTOR and Jak/STAT pathways to leukemia. Leukemia,2008.22(4):p.686-707.
    13. Noguchi, M., et al., Proto-oncogene TCL1:more than just a coactivator for AKT. Faseb J, 2007.21(10):p.2273-84.
    14. Scheid, M.P. and V. Duronio, Dissociation of cytokine-induced phosphorylation of Bad and activation of PKB/akt:involvement of MEK upstream of Bad phosphorylation. Proc Natl Acad Sci U S A,1998.95(13):p.7439-44.
    15. Sarbassov, D.D., et al., Phosphorylation and regulation of AKT/PKB by the rictor-mTOR complex. Science,2005.307(5712):p.1098-101.
    16. Humar, R., et al., Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. Faseb J,2002.16(8):p.771-80.
    17. Jimenez, C., et al., Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. Embo J,1998.17(3):p.743-53.
    18. Hennessy, B.T., et al., Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov,2005.4(12):p.988-1004.
    19. Bachman, K.E., et al., The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther,2004.3(8):p.772-5.
    20. Samuels, Y. and V.E. Velculescu, Oncogenic mutations of PIK3CA in human cancers. Cell Cycle,2004.3(10):p.1221-4.
    21. Kang, S., et al., Mutated PI 3-kinases:cancer targets on a silver platter. Cell Cycle,2005.4(4): p.578-81.
    22. Saal, L.H., et al., PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res, 2005.65(7):p.2554-9.
    23. Dahia, P.L., et al., Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res,1997.57(21):p.4710-3.
    24. Liaw, D., et al., Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet,1997.16(1):p.64-7.
    25. Rhei, E., et al., Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in primary breast carcinomas. Cancer Res,1997.57(17):p.3657-9.
    26. Teng, D.H., et al., MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res,1997.57(23):p.5221-5.
    27. Garcia, J.M., et al., Allelic loss of the PTEN region (10q23) in breast carcinomas of poor pathophenotype. Breast Cancer Res Treat,1999.57(3):p.237-43.
    28. Minobe, K., et al., Somatic mutation of the PTEN/MMAC1 gene in breast cancers with microsatellite instability. Cancer Lett,1999.144(1):p.9-16.
    29. Dillon, R.L., D.E. White, and W.J. Muller, The phosphatidyl inositol 3-kinase signaling network:implications for human breast cancer. Oncogene,2007.26(9):p.1338-45.
    30. Stambolic, V., et al., High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/-mice. Cancer Res,2000.60(13):p.3605-11.
    31. Li, Y., et al., Deficiency of Pten accelerates mammary oncogenesis in MMTV-Wnt-1 transgenic mice. BMC Mol Biol,2001.2:p.2.
    32. Li, G., et al., Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development,2002.129(17):p.4159-70.
    33. Wang, S., et al., Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc Natl Acad Sci U S A,2006.103(5):p.1480-5.
    34. Thant, A.A., et al., Fibronectin activates matrix metalloproteinase-9 secretion via the MEK1-MAPK and the PI3K-AKT pathways in ovarian cancer cells. Clin Exp Metastasis, 2000.18(5):p.423-8.
    35. Larue, L. and A. Bellacosa, Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3'kinase/AKT pathways. Oncogene,2005.24(50):p.7443-54.
    36. Arboleda, M.J., et al., Overexpression of AKT2/protein kinase Bbeta leads to up-regulation of betal integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res,2003.63(1):p.196-206.
    37. Irie, H.Y., et al., Distinct roles of AKT1 and AKT2 in regulating cell migration and epithelial-mesenchymal transition. J Cell Biol,2005.171(6):p.1023-34.
    38. Hutchinson, J.N., et al., Activation of AKT-1 (PKB-alpha) can accelerate ErbB-2-mediated mammary tumorigenesis but suppresses tumor invasion. Cancer Res,2004.64(9):p.3171-8.
    39. Bellacosa, A., et al., Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer,1995.64(4):p.280-5.
    40. Stal, O., et al., AKT kinases in breast cancer and the results of adjuvant therapy. Breast Cancer Res,2003.5(2):p. R37-44.
    41. Nakatani, K., et al., Up-regulation of AKT3 in estrogen receptor-deficient breast cancers and androgen-independent prostate cancer lines. J Biol Chem,1999.274(31):p.21528-32.
    42. Jiang, W.G., et al., Tuberin and hamartin are aberrantly expressed and linked to clinical outcome in human breast cancer:the role of promoter methylation of TSC genes. Eur J Cancer,2005.41(11):p.1628-36.
    43. De Benedetti, A. and J.R. Graff, eIF-4E expression and its role in malignancies and metastases. Oncogene,2004.23(18):p.3189-99.
    44. Haydon, M.S., et al., Progression of eIF4e gene amplification and overexpression in benign and malignant tumors of the head and neck. Cancer,2000.88(12):p.2803-10.
    45. Li, B.D., et al., Overexpression of eukaryotic initiation factor 4E (eIF4E) in breast carcinoma. Cancer,1997.79(12):p.2385-90.
    46. Barlund, M., et al., Multiple genes at 17q23 undergo amplification and overexpression in breast cancer. Cancer Res,2000.60(19):p.5340-4.
    47. Filonenko, V.V., et al., Immunohistochemical analysis of S6K1 and S6K2 localization in human breast tumors. Exp Oncol,2004.26(4):p.294-9.
    48. Armengol, G., et al.,4E-binding protein 1:a key molecular "funnel factor" in human cancer with clinical implications. Cancer Res,2007.67(16):p.7551-5.
    49. Castellvi, J., et al., Phosphorylated 4E binding protein 1:a hallmark of cell signaling that correlates with survival in ovarian cancer. Cancer,2006.107(8):p.1801-11.
    50. Martin, M.E., et al.,4E binding protein 1 expression is inversely correlated to the progression of gastrointestinal cancers. Int J Biochem Cell Biol,2000.32(6):p.633-42.
    51. Rojo, F., et al.,4E-binding protein 1, a cell signaling hallmark in breast cancer that correlates with pathologic grade and prognosis. Clin Cancer Res,2007.13(1):p.81-9.
    52. Schaeffer, H.J. and M.J. Weber, Mitogen-activated protein kinases:specific messages from ubiquitous messengers. Mol Cell Biol,1999.19(4):p.2435-44.
    53. Chen, J., et al., Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci US A ,2001. 98(14):p.7783-8.
    54. Kyriakis, J.M. and J. Avruch, Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev,2001.81(2):p. 807-69.
    55. Krens, S.F., H.P. Spaink, and B.E. Snaar-Jagalska, Functions of the MAPK family in vertebrate-development. FEBS Lett,2006.580(21):p.4984-90.
    56. Mor, A. and M.R. Philips, Compartmentalized Ras/MAPK signaling. Annu Rev Immunol, 2006.24:p.771-800.
    57. Philips, M.R., Analysis of monomeric GTPases of the Ras and Rho families. Methods,2005. 37(2):p.129-30.
    58. Therrien, M., et al., KSR modulates signal propagation within the MAPK cascade. Genes Dev,1996.10(21):p.2684-95.
    59. Wellbrock, C., M. Karasarides, and R. Marais, The RAF proteins take centre stage. Nat Rev Mol Cell Biol,2004.5(11):p.875-85.
    60. Wu, X., et al., Selective activation of MEK1 but not MEK2 by A-Raf from epidermal growth factor-stimulated Hela cells. J Biol Chem,1996.271(6):p.3265-71.
    61. Marais, R., et al., Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem,1997.272(7):p.4378-83.
    62. Lee, M. and H.S. Yoo, Human Raf-1 proteins associate with Rad24 and Cdc25 in cell-cycle checkpoint pathway of fission yeast, Schizosaccharomyces pombe. J Cell Biochem,2007. 101(2):p.488-97.
    63. Morrison, D.K. and R.J. Davis, Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol,2003.19:p.91-118.
    64. Yoon, S. and R. Seger, The extracellular signal-regulated kinase:multiple substrates regulate diverse cellular functions. Growth Factors,2006.24(1):p.21-44.
    65. Fiddes, R.J., et al., Inhibition of the MAP kinase cascade blocks heregulin-induced cell cycle progression in T-47D human breast cancer cells. Oncogene,1998.16(21):p.2803-13.
    66. Malumbres, M. and M. Barbacid, RAS oncogenes:the first 30 years. Nat Rev Cancer,2003. 3(6):p.459-65.
    67. Spencer, K.S., et al., ErbB2 is necessary for induction of carcinoma cell invasion by ErbB family receptor tyrosine kinases. J Cell Biol,2000.148(2):p.385-97.
    68. Artavanis-Tsakonas, S., M.D. Rand, and R.J. Lake, Notch signaling:cell fate control and signal integration in development. Science,1999.284(5415):p.770-6.
    69. Rand, M.D., et al., Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol,2000.20(5):p.1825-35.
    70. Aster, J.C., et al., Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by notchl. Mol Cell Biol,2000.20(20):p.7505-15.
    71. Nichols, J.T., et al., DSL ligand endocytosis physically dissociates Notchl heterodimers before activating proteolysis can occur. J Cell Biol,2007.176(4):p.445-58.
    72. Wang, Z., et al., Down-regulation of platelet-derived growth factor-D inhibits cell growth and angiogenesis through inactivation of Notch-1 and nuclear factor-kappaB signaling. Cancer Res,2007.67(23):p.11377-85.
    73. Bolos, V., J. Grego-Bessa, and J.L. de la Pompa, Notch signaling in development and cancer. Endocr Rev,2007.28(3):p.339-63.
    74. Parr, C., G. Watkins, and W.G. Jiang, The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int J Mol Med,2004.14(5):p.779-86.
    75. Dickson, B.C., et al., High-level JAG1 mRNA and protein predict poor outcome in breast cancer. Mod Pathol,2007.20(6):p.685-93.
    76. Santagata, S., et al., JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res,2004.64(19):p.6854-7.
    77. Farnie, G. and R.B. Clarke, Mammary stem cells and breast cancer--role of Notch signalling. Stem Cell Rev,2007.3(2):p.169-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700