用户名: 密码: 验证码:
日冕物质抛射的三维数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间天气研究涵盖太阳日冕、行星际、磁层、电离层、中高层大气等物理性质不同的空间区域,空间灾害性事件的日冕-行星际过程是空间天气研究的主要内容之一,而基于磁流体力学(MHD)方程组的数值模型是研究该内容的有力工具,可以为近地空间天气变化研究提供科学输入。本文首先发展了日冕-行星际CESE模式(SIP-CESE Model),然后应用该模式模拟研究了1997年5月12日CME事件和1998年11月4-5日的三个续发CMEs事件在日冕-行星际空间的三维传播与演化过程,其中的三维背景太阳风采用磁场的观测数据做为初始输入通过时间松弛法求解3D时变MHD方程得到,行星际扰动参数尽量由观测数据决定。
     针对太阳风的球形计算区域,把整个空间剖分成非重叠的五面体网格结构,在此网格基础上,建立了基于CESE格式的日冕-行星际耦合的MHD模式(SIP-CESE MHD Model),该模式可以模拟从1Rs到近地轨道(215Rs)附近的三维背景太阳风。作为该格式的验证,分别采用多极磁场和观测的太阳表面磁场输入通过时间松弛法求解3D MHD方程组模拟了两个日冕定态解。证明该模式具有以下优点:它将时间和空间统一起来同等对待;在给出网格点物理量值的同时也给出了物理量的偏导数;可以满意地求解间断流场,具有较高的分辨率;构造比较简单,除了简单的Taylor展开之外,没有采用其他的数值方法。
     接着,用新发展的日冕-行星际CESE MHD模式模拟日地联系事件-1997年5月12日CME事件。和该事件的其它数值模拟相比,本文数值格式的主要特征是:(1)通过输入观测的光球磁场,由3D时变数值MHD模型得到背景太阳风;(2)瞬变扰动是从太阳表面触发,添加扰动的位置、角宽度和实际观测数据一致。模拟结果和WIND飞船观测数据比较相对比较满意。证明此数值模式可以基本模拟三维真实CME在日冕-行星际空间的传播和演化过程。
     Burlaga et al. (2002)指出大约仅有三分之一的对地方向的太阳物质抛射在地球附近形成磁云(MC);大部分喷发形成复杂抛射或者多重MCs(在地球附近,仍然可以区分不同的MCs)。同一活动区的多个续发CMEs提供了研究对地过程中多个CMEs相互作用的很好的例子。用新发展的日冕-行星际CESEMHD模式模拟了1998年11月4日至5日起源于8375活动区的3个连续日冕物质抛射在行星际空间的传播和相互作用并最终形成复杂抛射体的日地传输过程。三维背景太阳风用Parker一维太阳风解和太阳光球磁场观测数据作为输入得到。该模拟中,三次事件的触发位置和实际观测位置一致,CME的扰动参数,如速度、方向和角宽度由SOHO/LASCO的观测数据并结合锥模型来确定。模拟结果可以重现和解释飞船观测的复杂抛射的一些一般特征。
The space weather research includes a number of di?erent physics domains:solar corona, inner heliosphere, magnetosphere, ionosphere electrodynamics, andupper atmosphere and so on. The solar-interplanetary propagation process of thespace disaster weather is one of the most important contents of the space weatherresearch. The magnetohydrodynamic(MHD) modeling plays an very importantrole in studying the process, and can provide appropriate conditions for coupledmodel of magnetosphere, ionosphere electrodynamics, and upper atmosphere.In this paper, we develop solar-interplanetary CESE MHD model(SIP-CESEmodel). Then, we use our newly developed SIP-CESE MHD model to simu-late three-dimensional characters of the propagation and transit process of 12May 1997 CME event and three successive Coronal Mass Ejections (CMEs) ofNovember 4-5, 1998 from sun to earth. In these studies, the three-dimensionalbackground solar wind is derived from a 3D time-dependent numerical MHDmodel by input measured photospheric magnetic fields. The initiation of theseCMEs is partially determined from spacecraft observations.
     In order to establish 3D model in the spherical shell, a grid system of non-overlapped pentahedron is constructed. Based on the 3-D grid structure, weintegrate numerical models of the Solar Corona, Inner Heliosphere into a coupledmodel (SIP-CESE MHD Model). The model can simulate the three-dimensionalbackground solar wind from Sun to Earth. As validation of the SIP-CESE MHDModel, the model is applied to 3-dimensional MHD equations by time-relaxationapproach, with the purpose of modeling the steady-state solar atmospheric studyby using multipole magnetic fields and measured solar surface magnetic fields,respectively. The model has many advantages. Firstly, space and time are uni-fied and treated on the same footing. Secondly, the gradients of ?ow variablesare solved simultaneously as independent unknowns. Thirdly, It is capable ofhandling both continuous and discontinuous ?ows very well. Finally, no ap-proximation techniques other than Taylor’s series expansion are employed in this method, so the computational logic of the present method is considerably simpler.
     Afterwards, Our newly developed SIP-CESE MHD model is used to simu-late sun-earth connection event with the well-studied 12 May 1997 CME event asan example. The main features and approximations of our numerical model are(1) the background solar wind is derived from a 3D time-dependent numericalMHD model by input measured photospheric magnetic fields and (2) transientdisturbances are derived from solar surface by introducing a mass ?ow of hotplasma. In our simulation, the initial parameters of the CME, such as directionand angular size of the expanding CME, are determined from the observationdata. The numerical simulation provided us with a relatively satisfactory com-parison with the WIND spacecraft observations. This shows that this numericalmodel has capability in modeling realistic 3-dimensional CME.
     According to Burlaga et al. (2002), only about one-third of Earth directedsolar eruptions leads to the passage of an MC at Earth; the majority of the ejec-tions form either complex ejecta or multiple MCs (when the di?erent MCs in theejecta can still be distinguished at Earth). Homologous eruptions provide a goodexample of potential interactions of CMEs on their way to Earth. We present thesolar-terrestrial transit process of three successive CMEs of November 4-5, 1998originating from active region 8375 by using newly developed SIP-CESE MHDmodel. These CMEs interact with each other while they are propagating in inter-planetary space and finally form a complex ejecta. The quiet solar wind is startedfrom Parker-like 1D solar wind solution and the magnetic field map calculatedfrom the solar photospheric magnetic field data. In our simulation, the ejectionsare initiated using pulse in the real active region 8375. The initial parametersof the CMEs , such as speed, direction and angular size of the expanding CME,are determined from the SOHO/LASCO data with the Cone-model. The resultsshow that our simulation can reproduce and explain some of the general featuresobserved by satellite for the complex ejecta.
引文
Akasofu S. I. and Fry C. D., A first-generation geomagnetic storm predictionscheme, Planetary Space Sci, 34, 77-92, 1986.
    Americo Gonzalez-Esparaz J., S.Jeyakumar, Propagation and interaction of in-terplanetary transient disturbances. Numerical simulations, Advances in spaceresearch, 40, 1815-1820, 2007.
    Balsara D. S. and D. S. Spicer, A staggered mesh algorithm using high orderGodunov ?uxes to ensure solenoidal magnetic fields in magnetohydrodynamicsimulations, J. Comput. Phys., 149, 270, 1999.
    Balsara D. S. Divergence-Free Adaptive Mesh Refinement for Magnetohydrody-namics, J. Comput. Phys., 174, 614-648, 2001.
    Belcher, J. W., Davis, L. Jr., Large-amplitude Alfven waves in the interplanetarymedium, J. Geophys. Res., 76, 3534, 1971.
    Biesecker, D. A., Thompson, B. J., Gibson, S. E., Alexander, D., Fludra, A.,Gopalswamy, N., Hoeksema, J. T., Lecinski, A., & Strachan, L., The SynopticSun During the First Whole Sun Month Campaign: Aug 10-Sep 8, 1996, J.Geophys. Res., 104, 9679, 1999.
    Brackbill J. U. and D. C. Barnes, The e?ect of nonzero·B the numericalsolution of the magnetohydrodynamic equations, J. Comput. Phys., 35, 426,1980.
    Burlaga, L. F., E. Sittler, F. Mariani, and R. Schwenn, Magnetic loop behindan interplanetary shock: Voyager, helios, and IMP 8 observations, J. Geophys.Res., 86, 6673, 1981.
    Burlaga, L. F., R. Schwenn, and H. Rosenbauer, Dynamical evolution of inter-planetary magnetic-fields and ?ows between 0.3-AU and 8.5-AU-entrainment,Geophys. Res. Lett., 10, 413-416, 1983.
    Burlaga L. F. ,S. P. Plunkett, O. C. St. Cyr, Successive CMEs and complex ejecta,J. Geophys. Res., Vol.107, No.A10,1266, doi:10.1029/2001JA000255, 2002.
    Cane, H. V., and I. G. Richardson, Interplanetary coronal mass ejections inthe near-Earth solar wind during 1996-2002, J. Geophys. Res., 108(A4),1156,doi:10.1029/2002JA009817, 2003.
    Chane E., C.Jacobs, B.Van der Holst, S.Poedts, and D. Kimpe, On the e?ect ofthe initial magnetic polarity and of the background wind on the evolution ofCME shocks. A&A 432, 331-339, 2005.
    Chane E., B. Van der Holst, C.Jacobs, S.Poedts, and D.Kimpe. Inverse andnormal coronal mass ejections: evolution up to 1AU. A&A, 447, 727-733 ,2006.
    Chang S. C. The Method of Space-Time Conservation Element and SolutionElement-A New Approach for Solving the Navier-Stokes and Euler Equations,J. Comput. Phys., 119, 295-324, 1995.
    Chang S. C., Wang X. Y., Chow C. Y. The Space-Time Conservation Elementand Solution Element Method-A New High Resolution and Genuinely Multi-dimensional Paradigm for Solving Conservation Laws I. The Two DimensionalTime Marching Schemes, NASA TM-1998-208843, 1998.
    Chang S. C., Wu Y., Wang X. Y., Yang V. Local Mesh Refinement in the Space-Time Conservation Element and Solution Element Method. Proceedings of theFirst International Conference on Computational Fluid Dynamics, held July9-14, 2000, Kyoto, Japan., 2000.
    Chang, S. C., Courant Number Insensitve CE/SE Schemes, AIAA paper, 2002-3890, 2002.
    Chang S. C., Himansu, A., Loh, C. Y., Wang, X. Y., & Yu, S. T., Robust andSimple Non-Re?ecting Boundary Conditions for the Euler Equations-A NewApproach Based on the Space-Time CE/SE Method, NASA TM 2003-212495,2003.
    Chang C. L., Time-Accurate, Unstructured-Mesh Navier-Stokes Computationswith the Space-Time CESE Method, AIAA paper, 2006-4780, 2006.
    Chen, J., E?ects of toroidal forces in current loops embedded in a backgroundplasma, Astrophys. J., 338, 453-470, 1989.
    Chen J . and Garren D .A .,In terplanetary magnetic clouds: Topology anddriving mechanism, Geohophys. Res. Lett., 20 ,2319, 1993.
    Chen J., Theory of prominence eruption and propagation: Interplanetary conse-quences, J. Geophys. Res.,101,27,499, 1996.
    Chen P.F. and K.Shibata, An emerging ?ux trigger mechanism for coronal massejections, Astrophys. J., 545, 524-531, 2000.
    Chen Y. and Y. Q. Hu, A two-dimensional Alfven-wave-driven wind model, Solarphysics, 199: 371-384, 2001.
    Dai W.and P. R. Woodward, A simple finite di?erence scheme for multidimen-sional magnetohydrodynamical equations, J. Comput. Phys., 142, 331-369,1998.
    Dere K.P., Brueckner G.E., Howard R.A. et al. EIT and LASCO Observation ofthe Initiation of a Coronal Mass Ejection, Solar Phys., 175(2):601-612, 1997.
    Detman, T.R., M. Dryer, T.Yeh, S.M.Han, S.T. Wu, and D.J. McComas, Atime-dependent, three-dimensional MHD numerical study of interplanetarymagnetic draping around plasmoids in the solar wind, J. Geophys. Res., 96,9531-9540, 1991.
    Dryer, M. , Interplanetary studies: Propagation of disturbances between the Sunand the magnetosphere, Space Sci. Rev., 67(3/4), 363-419, 1994.
    Dryer, M. , Multi-dimensional MHD simulation of solar-generated disturbances:Space weather forecasting of geomagnetic storms, AIAA J., 36(3), 365-370,1998.
    Dryer, M., C.D. Fry, W. Sun, C.S. Deehr, Z. Smith, S.-I. Akasofu, and M.D.Andrews, Prediction in real-time of the 2000 July 14 heliospheric shock waveand its companions during the”Bastille”epoch, Solar Phys., 204, 267-286,2001.
    Dryer, M., C.D. Fry, W. Sun, C.S. Deehr and S.-I. Akasofu, Real-Time Pre-dictions of Interplanetary Shock Arrivals at L1 during the”Halloween 2003”Epoch, Space Weather, 2, S09001, doi:10.1029/2004SW000087, 2004.
    Evans C. R. and J. F. Hawley, Simulation of General Relativistic Magnetohydro-dynamic Flows: A Constrained Transport Method, Astrophys. J., 332, 659,1988.
    Farrugia, C., & Berdichevsky, D. , Evolutionary signatures in complex ejecta andtheir driven shocks, Annales Geophysicae, 22, 3679-3698, 2004.
    Feng, X. S., C. Q. Xiang, D. K. Zhong, & Q. L. Fan, , A comparative study on3-D solar wind structure observed by Ulysses and MHD simulation, Chin. Sci.Bull., 50(7), 672-678, 2005.
    Feng X. S., Zhao X. H. , Geoe?ective analysis of CMEs under current sheetmagnetic coordinates, Astrophys. Space Sci., doi: 10.1007/s10509-006-9039-6,2006.
    Feng, X. S., Hu Y. Q., & Wei, F. S, Modeling the resisitive MHD by the CESEmethod, Sol. Phys., 235, 235, 2006.
    Feng X.S, Zhou Y. F, and Wu S. T , A novel numerical implementation for solarwind modeling by the modified conservation element/solution element method,Astrophys. J., 655, 1110-1126, 2007.
    Fong, B., Low B. C. and Fan Y. H., Quiescent Solar Prominences and Magnetic-Energy Storage, Astrophys. J., 571(2), 987-998, 2002.
    Forbes, T. G., Numerical simulation of a catastrophe model for coronal massejections, J. Geophys. Res., 95, 11919-11931, 1990.
    Forbes, T.G. and Isenberg P.A., A catastrophe mechanism for coronal mass ejec-tions, Astrophys. J., 373, 294-307, 1991.
    Fry, C. D., W. Sun, C. S. Deehr, M. Dryer, Z. Smith, S.-I. Akasofu, M. Tokumaru,and M. Kojima, Improvements to the HAF solar wind model for space weatherpredictions, J. Geophys. Res., 106, 20,985, 2001.
    Fry C. D., Sun W., Deehr C. S., et al. Improvements to the HAF solar wind modelfor space weather predictions. J. Geophys. Res., 106(A10): 20985-21001, 2001.
    Fry, C. D., M. Dryer, Z. Smith, W. Sun, C. S. Deehr, and S.-I. Akasofu, Forecast-ing solar wind structures and shock arrival times using an ensemble of models,J. Geophys. Res., 108(A2), 1070, doi:10.1029/ 2002JA009474, 2003.
    Fry, C. D., M. Dryer, W. Sun, T. R. Detman, Z. K. Smith, C. S. Deehr, C.-C.Wu, S.-I. Akasofu, and D. B. Berdichevsky, Solar observationbased model formultiday predictions of interplanetary shock and CME arrivals at Earth, IEEETrans. Plasma Phys., 32(4), 1489, 2004.
    Fry, C. D., M. Dryer, W. Sun, C. S. Deehr, Z. Smith, T. R. Detman, A. Aran, D.Lario, B. Sanahuja, and S.-I. Akasofu, Key links in space weather: Forecastingsolar-generated shocks and proton acceleration, AIAA J., 43(5), 987, 2005.
    Fry, C. D., T.R. Detman, M. Dryer, Z. Smith, W. Sun, C.S. Deehr, S.-I. Akasofu,C.-C. Wu, S. McKenna-Lawlor, Real-time solar wind forecasting: Capabilitiesand challenges, Journal of Atmospheric and Solar-Terrestrial Physics 69 109-115, 2006.
    Gibson, S. E., & Low, B. C. , A time-dependent three-dimensional magneto-hydrodynamic model of the coronal mass ejection, Astrophys. J., 493, 460,1998.
    Gibson, S. E., Low B. C., Three-dimensional and twisted: An MHD interpre-tation of on-disk observational characteristics of coronal mass ejections, J.Geophys. Res., 105(A8), 18187-18202, 2000.
    Godunov S. K.,‘Symmetric form of the equations of magnetohydrodynamics’(in Russian). In: Numerical Methods for Mechanics of Continuum Medium,“Siberian Branch of USSR Acad. of Sci.”, 1, 26, Novosibirsk, 1972.
    Godunov, S. K., A finite di?erence method for the numerical computation ofdiscontinuous solutions of the equations of ?uid dynamics, Mat. Sb., 47, 357-393, 1959.
    Gombosi T..I., D.L.De Zeeuw, K.G.Powell, A.J.Ridley, Adaptive mesh refinementfor global magnetohydrodynamic simulation. LNP 615, 247-274, 2003.
    Gosling, J. T., Coronal mass ejections and magnetic ?ux ropes in interplanetaryspace, in Physics of Magnetic Flux Ropes, Geophys. Monogr. Ser., vol. 58,edited by C. T. Russell, E. R. Priest, and L. C. Lee, p. 343, AGU, Washington,D. C., 1990.
    Groth C.P.T., D.L.De Zeeuw and T.I.Gombosi, K.G.Powell, A parallel adaptive3D MHD scheme for modeling coronal and solar wind plasma ?ows. SpaceScience Revies 87, 193-198, 1999.
    Groth C. P.T., Darren L.De Zeeuw, and Tamas I.Gombosi, Global three-dimensional MHD simulation of a space weather event: CME formation, inter-planetary propagation, and interaction with the magnetosphere, J. Geophys.Res., Vol.105. No.A11, p 25,053-25,078, 2000a.
    Groth C.P.T., De Zeeuw D.L., Gombosi T.I., Powell K.G. Three-dimensionalMHD simulation of coronal mass ejections. Adv. Space Res.,26(5) 793-800,2000b.
    Hakamada K. and Akasofu S. I., Simulation of three-dimensional solar wind dis-turbances and resulting geomagnetic storms. Space Sci. Rev., 31: 3-70, 1982.
    Han, S. M., S. T. Wu, and M. Dryer, A three-dimensional, time-dependent numer-ical modeling of supersonic, super Alfvenic MHD ?ow, Computer and Fluids,16 , 81-103, 1988.
    Harten A., High Resolution Schemes for Hyperbolic Conservation Laws, J. Com-put. Phys., 49, 357 ,1983.
    Hayashi Keiji, M.Kojima, M.Tokumaru, and Ken’ichi Fujiki, MHD tomogrphyusing interplanetary scintillation measurement, J. Geophys. Res., Vol. 108,No.A3, 1102, doi:10.1029/2002JA009567, 2003.
    Hayashi Keiji, Magnetohydrodynamic simulation of the solar corona and solarwind using a boundary treatment to limit solar wind mass ?ux. The astro-physical journal supplement series, 161:480-494, 2005.
    Hayashi Keiji, Xue Pu Zhao, and Yang Liu, MHD simulation of twosuccessive interplanetary disturbances driven by cone-model parametersin IPS-based solar wind. Geophysical Research Letters, Vol.33, L20103,doi:10.1029/2006GL027408, 2006a.
    Hayashi Keiji, Three-dimensional time-dependent MHD simulation model of thesolar corona and solar wind. ILWS WORKSHOP 2006, GOA, February 19-20,2006b.
    Holst B.Van Der , S.Poedts, E.Chane, C.Jacobs, G.Dubey and D.Kimpe. Mod-elling of solar wind, CME initiation and CME propagation. Space ScienceReviews 121: 91-104, 2005.
    Holst B.Van Der, C.Jacobs, and S.Poedts. Simulation of a breakout coronal massejection in the solar wind, Astrophys. J., 671: L77-L80, 2007.
    Holzer,T.E., V.H.Hansteen, and E.Leer, Acceleration of the solar wind, inCosmic winds and the Heliosphere, edited by J.R.Jokipii,C.P.Sonett, andM.S.Giampapa, pp.239-257, Univ. of Ariz. Press, Tucson, 1997.
    Hu, Y. Q., & Feng, X. S., Numerical study for the bursty nature of spontaneousfast reconnection, Sol. Phys., 238: 329-345, 2006.
    Hu Y. Q., A 2.5 dimensional MHD Alfven-wave-driven solar wind model, J.Geophys. Res., Vol. 108, No. A10,1378, doi:10.1029/2003JA009889, 2003.
    Hundhausen, A. J., Coronal Expansion and Solar Wind, Springer-Verlag, NewYork, 1972.
    Hundhausen A. J., Sizes and locations of coronal mass ejections: SMM observa-tions from 1980 and 1984-1989, J. Geophys. Res., 98: 13,177-13,200, 1993.
    Illing, R. M. E., and A. J. Hundhausen, Observation of a coronal transient from1.2 to 6 Solar radii, J. Geophys. Res., 90, 275, 1985.
    Jackson, V. B., P. L. Hick, M. Kojima, and A. Yokobe, Heliospheric tomogra-phy using interplanetary scintillation observations: 1. Combined Nagoya andCambridge data, J. Geophys. Res., 103, 12,049-12,067, 1998.
    Jacobs C., S.Poedts, B.Van der Holst, and E.Chane. On the e?ect of the back-ground wind on the evolution of interplanetary shock waves. A&A 430, 1099-1107, 2005.
    Jacobs C., B.van der Holst, and S.Poedts, Comparison between 2.5D and 3Dsimulations of coronal mass ejections. A&A 470,359-365, 2007.
    Jacques, S.A., Solar wind models with Alfv′en waves, Astrophys. J., 226, 632-649,1978.
    Jorgenson, P. C. E., & Loh, Ching Y., Computing Axisymmetric Jet ScreechTones using Unstructured Grids, AIAA paper 2002-3889, 2002.
    Kojima, M., K. Fujiki, T. Ohmi, M. Tokumaru, A.Yokobe, and K. Hakamada,Latitudinal velocity structures up to the solar poles estimated from interplan-etary scintillation tomography analysis, J. Geophys. Res., 106, 15,677-15,686,2001.
    Krall J., V.B.Yurchyshyn, S.Slinker, R.M.Skoug, and J.Chen. Flux rope model ofthe 2003 october 28-30 coronal mass ejection and interplanetary coronal massejection, Astrophys. J.,642: 541-553, 2006.
    Li S. T., H. Li, A novel approach of divergence-free reconstruction for adaptivemesh refinement, J. Comput. Phys., 199, 1-15, 2004.
    Lin, J. and Forbes T.G., E?ects of reconnection on the coronal mass ejectionprocess, J. Geophys. Res., 105(A2), 2375-2392, 2000.
    Linker J. A., G. van Hoven, and D. D. Schnack, A three-dimensional simulationof a coronal streamer, Geophys. Res. Lett., 17, 2281-2284, 1990.
    Linker J. A., Z. Mikic, D. A. Biesecker, R. J. Forsyth, S. E. Gibson, A. J. Lazarus,A. Lecinski, P. Riley, A. Szabo, and B. J. Thompson, Magnetohydrodynamicmodeling of the solar corona during Whole Sun Month, J. Geophys. Res.,Vol.104, No.A5, 9809-9830, 1999.
    Loh, Ching Y., Wang, X. Y., Chang, S. C., & Jorgenson, P. C. E., Computationof Feedback Aeroacoustic System by the CE/SE Method, NASA TM 2000-210479, 2000.
    Loh, Ching Y., On a Non-Re?ecting Boundary Condition for Hyperbolic Con-servation Laws, AIAA paper, 2003-3975, 2003.
    Low, B.C., Magnetohydrodynamic processes in the solar corona: Flares, coronalmass ejections, and magnetic helicity, Phys. Plasma, 1(5), 1684-1690, 1994.
    Low, B.C. and Hundhausen, J.R., Magnetostatic structures of the solar corona. 2:The magnetic topology of quiescent prominences, Astrophys. J., 443, 818-836,1995.
    Low, B.C., Coronal mass ejections, magnetic ?ux ropes, and solar magnetism, J.Geophys. Res., 106(A11), 25141-25164, 2001.
    Low, B. C., Fong B., and Fan Y. H., The Mass of a Solar Quiescent Prominence,Astrophys. J., 594(2), 1060-1067, 2003.
    Lu, X. H., Wei, F. S., Yang, Z. L. et al., Ulysses observations and discussionsof acceleration mechanisms for the solar wind, Acta Geophysica Sinica, 41(4),437, 1998.
    Lugaz N. , W.B. Manchester IV, and T.I. Gombosi, Numerical simulation of theinteraction of two coronal mass ejections from sun to earth, Astrophys. J.,634:651-662,2005a.
    Lugaz N.,W.B.Manchester IV, and T.I.Gombosi. The evolution of coronal massejection density structures, Astrophys. J., 627: 1019-1030, 2005b.
    Lugaz N., W. B. Manchester IV, I. I. Roussev, G. Toth, and T. I. Gombosi,Numerical investigation of the homologous coronal mass ejection events fromactive region 9236, The Astrophysical Journal, 659:788-800, 2007.
    Luhmann Janet G., S. C. Solomon, J. A. Linker, J. G. Lyon, Z. Mikic, Coupledmodel simulation of a Sun-to-Earth space weather event. Journal of Atmo-spheric and Solar-Terrestrial Physics 66, 1243-1256, 2004.
    Manchester IV W.B., T.I.Gombosi, I.Roussev, A.Ridley, D.L.De Zeeuw,I.V.Sokolov, and K.G. Powell. Modeling a space weather event from the Sunto the Earth: CME generation and interplanetary propagation, J. Geophys.Res., Vol. 109, A02107, doi:10.1029/2003JA010150, 2004a.
    Manchester IV W.B., T.I.Gombosi, I.I.Roussev, D.L.De Zeeuw, I.V.Sokolov,K.G. Powell, and G. Toth. Three-dimensional MHD simulation of a ?ux ropedriven CME, J. Geophys. Res., Vol. 109, A01102, doi: 10.1029/2002JA009672,2004b.
    Manchester IV W.B., T.I.Gombosi, D.L.De Zeeuw, I.V.Sokolov, I.I.Roussev, andK.G.Powell. Coronal mass ejection shock and sheath structures relevant toparticle acceleration, Astrophys. J., 622: 1225-1239, 2005.
    Manchester IV W. B., A.J.Ridley, T.I.Gombosi, D.L.DeZeeuw, Modeling theSun-to-Earth propagation of a very fast CME. Advances in Space Research38, 253-262, 2006.
    McAllister A. H., Dryer M., McIntosh P. Singer, H. Weiss, L., A large polarcrown coronal mass ejection and a problem geomagnetic storm, J.Geophys.Res., 101(A6): 13497-13515, 1996.
    McComas, D. J., et al. Ulysses’return to the slow solar wind, Geophys. Res.Lett., 25, 1-4, 1998.
    McComas D.J., H.A.Elliott, and N.A.Schwadron, J.T.Gosling and R.M.Skoug.The three dimensional solar wind around solar maximum. Geophysical researchletters, Vol.30, No. 10, 1517, doi:10.1029/2003GL017136, 2003.
    Michalek G.,N.Gopalswamy, and S.Yashiro, A new method for estimating widths,velocities, and source location of halo coronal mass ejections, Astrophys. J.,584: 472-478, 2003.
    Mikic Z., D.C.Barnes, and D.D.Schnack, Dynamical evolution of a solar coronalmagnetic field arcade. Astrophys. J., 328: 830-847, 1988.
    Mikic, Z., Linker, J. A., Schnack, D. D., Lionello, R., & Tarditi, A., Magnetohy-drodynamic modeling of the global solar corona, Physics of Plasmas, 6, 2217,1999.
    Nakagawa Y. ,Wu S .T .and Han S .M .,Magnetohydrodynamics of atmospherictransients,III. Basic results of nonplanar two-dimensional analysis, A stro-phys.J.,224, 331, 1981a.
    Nakagawa, Y., Evolution of magnetic field and atmospheric responses. II. For-mulation of proper boundary equations, Astrophysical J. 247, 719-733, 1981b.
    Odstrcil, D., M. Dryer, and Z. Smith, Propagation of an interplanetary shockalong the heliospheric plasma sheet, J. Geophys. Res., 101(A9), 19,973-19,986,1996.
    Odstrcil D., V.J.Pizzo, Distortion of the interplanetary magnetic field by three-dimensional propagation of coronal mass ejections in a structured solar wind,J. Geophys. Res., Vol.104, No.A12, 28,225-28,239, 1999.
    Odstrcil, D., J. A. Linker, R. Lionello, Z. Mikic, P. Riley, V. J. Pizzo, and J. G.Luhmann, Merging of coronal and heliospheric numerical 2-D MHD models,J. Geophys. Res., 107(A12), 1493, doi:10.1029/ 2002JA009334, 2002.
    Odstrcil, D., Pizzo, V. J., Linker, J. A., Riley, P., Lionello, R., Mikic, Z. ,Initial coupling of coronal and heliospheric numerical magnetohydrodynamiccodes, Journal of Atmospheric and Solar-Terrestrial Physics, 66,1311-1320, doi:10.1016/j.jastp.2004.04.007, 2004a.
    Odstrcil D., P. Riley, X. P. Zhao, Numerical simulation of the 12 May1997 interplanetary CME event, J. Geophys. Res., Vol. 109, A02116,doi:10.1029/2003JA010135, 2004b.
    Odstrcil, D., Pizzo, V. J., Arge, C.N., Propagation of the 12 May 1997 interplan-etary coronal mass ejection in evolving solar wind structures,J. Geophys. Res.,110 (A02106), doi: 10.1029/2004JA010745, 2005.
    Parker E.N. Dynamics of the interplanetary gas and magnetic field. Astrophys.J., 128:664-676, 1958.
    Parker E. N., Interplanetary Dynamical processes, John Wiley and Sons, NewYork, 1963.
    Phillips, J. L., Bame, S. J., Barnes, A. et al., Ulysses solar wind plasma obser-vations from pole to pole, Geophys. Res. Lett., 22(23), 3301-3304, 1995.
    Pizzo, V. J., A three dimensional model of corotating stream in the solar wind3. Magnetohydrodynamic streams, J.Geophys. Res., 87, 4374-4394, 1982.
    Plunkett S. P., B. J. Thompson, R. A. Howared, D. J, Michels, O. C. St. Cyr,S. J. Tappin, R. Schwenn and P. L. Lamy, LASCO observations of an Earth-directed coronal mass ejection on May 12, 1997, Geophys. Res. Lett., Vol. 25,No. 14, 2477-2480, 1998.
    Powell K. G. :‘An approximate Riemann solver for magnetohydrodynamics (thatworks in more than one dimension)’. Internal report at Inst. for Comput. Appl.in Sci. and Eng., NASA Langley Space Flight Center, Hampton, Va., 94-24,1994.
    Powell K.G., Roe P.L., Linde T.J., Gombosi T.I. A Solution-Adaptive Upwindscheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284-309,1999.
    Riley P., J. A. Linker, and Z.Mikic. An empirically-driven global MHD modelof the solar corona and inner heliosphere, J. Geophys. Res., Vol. 106, No. A8,15,889-15,901, 2001.
    Riley P.,Linker J.A., Mikic Z., Odstrcil D. and Pizzo V.J., Evidence of posterup-tion reconnection associated with coronal mass ejections in the solar wind.Astrophys. J., 578: 972-978, 2002.
    Riley P., J. A. Linker, Z. Mikic, D. Odstrcil, T. H. Zurbuchen, D. Lario, andR. P. Lepping, Using an MHD simulation to interpret the global context of acoronal mass ejection observed by two spacecraft, J. Geophys. Res., Vol. 108,No. A7, 1272, doi: 10.1029/2002JA009760, 2003.
    Riley P., and N. U. Crooker, Kinematic treatment of coronal mass ejection evo-lution in the solar wind. Astrophys. J., 600: 1035-1042, 2004a.
    Riley P., J. A. Linker, Zoran Mikic, and Dusan Odstrcil, Magnetohydrodynamicmodeling of interplanetary CMEs. IEEE Transactions on plasma science, Vol.32, No.4, 2004b.
    Riley P., J. A. Linker, R. Lionello, Z. Mikic, D. Odstrcil, M. A. Hidalgo, C. Cid,Q. Hu, R. P. Lepping, B. J. Lynch, A. Rees. Fittiing ?ux ropes to a globalMHD solution: a comparison of techniques. Journal of Atmospheric and Solar-Terrestrial Physics 66, 1321-1331, 2004c.
    Roberts, D. A. , Interplanetary observational constraints on Alfven wave accel-eration of the solar wind, J. Geophys. Res., 94, 6899, 1989.
    Roussev I. I., T. I. Gombosi, I.V. Sokolov, M. Velli, W. Manchester IV, D. L.DeZeeuw, P. Liewer, G. Toth, and J. Luhmann, A three-dimensional model ofthe solar wind incorporating solar magnetogram observations. Astrophys. J.,595: L57-L61, 2003.
    Roussev I. I., I. V. Sokolov, T. G. Forbes, T.I.Gombosi, M.A.Lee, and J.I.Sakai.A numerical model of a coronal mass ejection: shock development with im-plications for the acceleration of GeV protons. Astrophys. J., 605: L73-L76,2004.
    Schmidt J. M., P. J. Cargill, Magnetic reconnection between a magnetic cloudand the solar wind magnetic field, J. Geophys. Res., Vol. 108, No. A1, 1023,doi: 10.1029/2002JA009325, 2003.
    Sheeley, Jr., N. R., Wang, Y. M., et al., Measurements of Flow Speeds in theCorona Between 2 and 30 Rs, Astrophys. J., 484, 472-478, 1997.
    Shen F., X. S. Feng, S. T. Wu, and C.Q. Xiang, Three-dimensional MHD sim-ulation of CMEs in three-dimensional background solar wind with the self-consistent structure on the source surface as input: Numerical simulation ofthe January 1997 Sun-Earth connection event, J. Geophys. Res., Vol. 112,A06109, doi:10.1029/2006JA012164, 2007.
    Sittler Edward C., Jr, and Madhulika Guhathakurta. Semiempirical two-dimensional magnetohydrodynamic model of the solar corona and interplane-tary medium. Astrophys. J., 523: 812-826, 1999.
    Smith Z. and Dryer M., MHD study of temporal and spatial evolution of simu-lated interplanetary shocks in the ecliptic plane within 1AU. Solar Phys., 129:387-405, 1990.
    Smith, E. J., Marsden, R. G., Ulysses observations from pole-topole: An intro-duction, Geophys. Res. Lett., 22(23): 3297-3300, 1995.
    Snyder C.W., Neugerbauer M. Interplanetary solar-wind measurements byMariner II. In:Proc. of 4th International Space Science Symposium, Amster-dam: North-Holland. 89-113, 1964.
    Steinolfson, R., Suess, S. T., & Wu, S. T., The steady global corona, Astrophys.J., 255, 730-742, 1982.
    Steinolfson R.S. Three-dimensional structure of coronal mass ejections.J.Geophys. Res., 97:10,811-10,824, 1992.
    Steinolfson R.S., Modeling coronal streamers and their eruption, Space Sci. Rev.,70, 289-294, 1994.
    Sterling, A. C., H. S. Hudson, B. J. Thompson, and D. M. Zarro, Yohkoh SXTand SOHO EIT observations of“sigmoid-to-arcade”evolution of structuresassociated with halo CMEs, Astrophys. J., 532: 628-674, 2000.
    Stewart, G. A., and S. Bravo, Latitudinal solar wind velocity variations frompolar coronal holes: A self-consistent MHD model, J. Geophys. Res., 102(A6),11,263-11,272, 1997.
    Suess, S. T., A. H. Wang, and S. T. Wu, Volumetric heating in coronal streamers,J.Geophys.Res. 101(A9), 19,957-19,966, 1996.
    Tanaka T., Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong back-ground potential fields. J. Comp. Phys. , 111:381-389, 1994.
    Thompson B. J., et al., SOHO/EIT observations of an Earth-directed coronalmass ejection on May 12, 1997. Geophys. Res. Lett., 25,2465-2468, 1998.
    Thompson, B. J., et al., SOHO/EIT observations of the 1997 April 7 coronaltransient: possible evidence of coronal Moreton waves, Astrophys. Lett., 517,L151-L155, 1999.
    Toth G., The constraint in Shock-Capturing Magnetohydrodynamics Codes. J.Comput. Phys., 161, 605, 2000.
    Toth G., I. V. Sokolov, T. I. Gombosi, D. R. Chesney, Space weather modelingframework: a new tool for the space science community, J. Geophys. Res.,Vol.110, A12226, doi:10.1029/2005JA011126, 2005.
    Toth G., Darren L. De Zeeuw, Tamas I. Gombosi,Ward B. Manchester, AaronJ. Ridley, Igor V. Sokolov, Sun to Thermosphere Simulation of the October28-30, 2003 Storm with the Space Weather Modeling Framework, Submittedto: SPACE WEATHER, 2006.
    Toth G., D.L. De Zeeuw, T.I.Gombosi, W.B.Manchester, A.J.Ridley, I.V.Sokolov,and I.I. Roussev. Sun-to-thermosphere simulation of the 28-30 October 2003storm with the Space Weather Modeling Framework. Space weather, Vol. 3,S06003, doi:10.1029/2006SW000272, 2007.
    Usmanov, A. V., A global numerical 3-D MHD model of the solar wind, Sol.Phys., 146, 377-396, 1993a.
    Usmanov, A. V., The global structure of the solar wind in June 1991, Sol. Phys.,148, 371-382, 1993b.
    Usmanov A. V., and M. Dryer, A global 3-D simulation of interplanetary dy-namics in June 1991. Solar physics 159: 347-370, 1995.
    Usmanov A.V., M.L.Goldstein, B.PLBesser and J.M.Fitzer, A global MHD so-lar wind model with WKB Alfven waves: Comparison with Ulysses data, J.Geophys. Res., Vol.105, No.A6, 12,675-12,695, 2000.
    Usmanov A.V. and M.L.Goldstein, A tited-dipole MHD model of the solarcorona and solar wind, J. Geophys. Res., Vol.108, No.A9, 1354, doi: 10.1029/2002JA009777, 2003a.
    Usmanov A.V. and M.L.Goldstein, Three-dimensional MHD modeling of the so-lar corona and solar wind., American Institute of Physics 0-7354-0148-9/03,393, 2003b.
    Vandas, M., Fischer, S., Dryer, M., Smith, Z., Detman, T., & Geranios, A.,MHD simulation of an interaction of a shock wave with a magnetic cloud, J.Geophys. Res., 102, 22295-22300, doi:10.1029/97JA01675, 1997.
    Vandas M., D.Odstrcil, S.Watari, Three-dimensional MHD simulation of a loop-like magnetic cloud in the solar wind, J. Geophys. Res.,2002,Vol.107,No.A9,1236, doi:10.1029/2001JA005068, 2002.
    Wang J. F., Jiang Xinjing, Xiong Donghui. Numeric studies on properties of two-?uid five-momentum solar wind plasmas. Acta Geophys. Sinica,33(3):259-266,1990.
    Wang. A.H., Wu. S.T. A two-dimensional MHD global coronal model: Steady-state streamers. Solar Phys.,147:55-71, 1993.
    Wang X. Y., Chow C. Y., Chang S. C. The Space-Time Conservation Elementand Solution Element Method - A New High-Resolution and Genuinely Multi-dimensional Paradigm for Solving Conservation Laws II. Numerical Simulaionof Shock Waves and Contact Discontinuities. NASA/TM-1998-208844, 1998.
    Wang, A. H., Wu, S. T., et al. , Global model of the corona with heat andmomentum addition, J. Geophys. Res., 103(A2), 1913-1922, 1998.
    Wang X. Y. Chang,S. C. A 2D Non-Splitting Unstructured Triangular Mesh EulerSolver Based on the Space-Time Conservation Element and Solution ElementMethod. Computational Fluid Dynamics Journal, 8(2): 309-325, 1999a.
    Wang X. Y., Chang S. C. A 3-D Structured/Unstructured Euler Solver basedon the Space-Time Conservation Element and Solution Element Method. 14thAIAA CFD Conference June 28, Norfolk, VA, 1999b.
    Wang X. Y., Chang S. C., Jorgenson P. C. E. Accuracy Study of the Space-TimeCE/SE Method for Computational Aeroacoustics Problems Involving ShockWaves. AIAA Paper 2000-0475, 2000.
    Wang C. B., Zhao J K, Chen H H, et al. Prediction of the IMF Bz using a 3-Dkinematic code. Chinese J. Geophys., (in Chinese), 45(6): 749-758, 2002.
    Wang Y. M., S. Wang and P. Z. Ye, Multiple magnetic clouds in interplanetaryspace. Solar Physics 211: 333-344, 2002.
    Wang Y. M., P. Z. Ye, S. Wang and M. Xiong, Theoretical analysis on the geo-e?ectiveness of a shock overtaking a preceding magnetic cloud. Solar Physics216: 295-310, 2003a.
    Wang Y.M., P.Z.Ye, S.Wang, and X.H.Xue, An interplanetary cause of largegeomagnetic storms: fast forward shock overtaking preceding magnetic cloud.Geophysical research letters, Vol. 30, No. 13, 1700. doi:10.1029/2002GL016861,2003b.
    Wang Y.M., P.Z.Ye, and S.Wang, Multiple magnetic clouds: Several examplesduring March-April 2001, J. Geophys. Res., Vol. 108, NO. A10 1370. 2003c.
    Wang Y., H.Zheng, S.Wang, and P.Ye. MHD simulation of the formation andpropagation of multiple magnetic clouds in the heliosphere. A&A 434, 309-3162005.
    Webb, D. F., T. G. Forbes, H. Aurass, J. Chen, P. Martens, B. Rompolt, V.Rusin, S. F. Martin, and V. Gaizauskas , Material ejection: Report of the?ares 22 workshop held at Ottawa, Canada, May 1993, Sol. Phys., 153, 73,1994.
    Webb D.F., R.P.Lepping, L.F.Burlaga, C.E.DeForest, D.E.Larson, S.F.Martin,S.P.Plunkett, and D.M.Rust. The origin and development of the May 1997magnetic cloud, J. Geophys. Res., Vol. 105, No. A12, 27,251-27,259, 2000.
    Wei F.S., Dryer, M., Propagation of solar ?are associated interplanetary shockwaves in the heliospheric meridional plane, Solar Phys., 132:373-394, 1991.
    Wei, F. S., Feng, X. S., Cai, H. C., & Zhou, Q. J. , Global distribution of coronalmass outputs and its relation to solar magnetic field structures, J. Geophys.Res., 108(A6), 1238, 2003.
    Woo R., S. R. Habbal, Connecting the Sun and the solar wind: Source regionsof the fast wind observed in interplanetary space, J. Geophys. Res., Vol. 105,No. A6, 12,667-12,674, 2000.
    Wu S. T., Nakagawa Y,Han S. M. and Dryer M,Magnetohydrodynamics ofatm os ph eric transients IV Non-plane two-dimensional analysis of energyconversion and magnetic field evolution,As trophys.J. ,262,369, 1982.
    Wu, S. T., Hu, Y. Q., Nakagawa, Y., and Tandberg-Hanssen, E., Induced massand wave motions in the lower solar atmosphere. I - E?ects of shear motion of?ux tubes, Astrophys. J. 266, 866-881, 1983.
    Wu, S. T., Hu, Y. Q., IKrall, K. R., Hagyard, M. and Smith, Jr., J. B., Modelingof Energy Buildup for a Flare-Productive Region, Sol. Phys., 90, 117, 1984.
    Wu, S. T., Nakagawa Y., and Tandberg-Hanssen, E: , Induced Mass and WaveMotions in the Lower Solar Atmosphere. II. E?ects of Converging and Diverg-ing Photospheric Motions, Astrophys. J. 306, 751, 1986.
    Wu. S.T., Wang. J.F. Numerical tests of a modified full implicit continuous eule-rian (FICE) scheme with projected normal characteristic boundary conditionsfor MHD ?ows. Comp. Meth. Appl. Mech. Eng.,64:267-282, 1987.
    Wu S.T.,Song M .T. ,Martens P .C .H .and Dryer M ., Shear Induced Instabilityand Arch Filament Eruption: A Magnetohydrodynamic (MHD) NumericalSimulation, Solar Phys.,134, 353, 1991.
    Wu S.T. and W.P.Guo and J.F.Wang, Dynamical evolution of a coronal streamer-bubble system I. A self-consistent planar magnetohydrodynamic simulation.Solar physics, 157: 325-348. 1995.
    Wu S.T., A. H. Wang and W. P. Guo, Numerical boundary conditions for solarmagnetohydrodynamic ?ows using the method of characteristics. Astrophysicsand space science 243: 149, 1996.
    Wu, S. T., W. P. Guo, and M. Dryer, Dynamical evolution of a coronal streamer-?ux rope system: II. A self-consistent non-planar magnetohydrodynamic solu-tion, Sol. Phys., 170, 265-282, 1997.
    Wu S.T. and W.P.Guo, D.J.Michels, L.F.Burlaga., MHD description of the dy-namical relationships between a ?ux rope, streamer, coronal mass ejection, andmagnetic cloud: An analysis of the January 1997 Sun-Earth connection event,J. Geophys. Res., Vol. 104, No. A7, 14,789-14,801. 1999.
    Wu S. T., H.N. Zheng, S. Wang, B.J.Thompson,S.P.Plunkett,X.P.Zhao,andM.Dryer. Three dimensional numerical simulation of MHD waves observed bythe Extreme Ultraviolet Imaging Telescope, J. Geophys. Res., Vol.106, NO.A11, PAGES 25,089-25,102, NOVEMBER 1, 2001.
    Wu, S. T., Wang, A. H., Liu Yang, & Hoeksema, J. Todd, Data-driven Magneto-hydrodynamic Model for Active Region Evolution, Astrophys. J., 652:800-811,2006.
    Wu C.C., M.Dryer. Three-dimensional MHD simulation of interplanetary mag-netic field changes at 1AU caused by a simulated solar disturbance and a tiltedheliospheric current/plasma sheet. Solar Physics 173: 391-408, 1997.
    Wu C.C., S.T.Wu and M.Dryer. Evolution of fast and slow shock interactions inthe inner heliosphere. Solar Physics 0: 1-24, 2004.
    Wu C.C., M.Dryer, and S.T.Wu. Slow shock interactions in the heliosphere usingan adaptive grid MHD model. Annales Geophysicae ,23, 1013-1023, 2005a.
    Wu C.C., S.T.Wu, M.Dryer, C.D.Fry, D.Berdichevsky, Z.Smith, T.Detman,N.Gopalswamy, R.Skoug, T.Zurbuchen, and C.Smith. Flare-generatedshock evolution and geomagnetic storms during the”Halloween 2003epoch”: 29 October to 2 November, J. Geophys. Res., Vol.110, A09S17,doi:10.1029/2005JA011011, 2005b.
    Wu C.C., X.S.Feng, S.T.Wu, M.Dryer, and C.D.Fry. E?ects of the interactionand evolution of interplanetary shocks on”background”solar wind speeds, J.Geophys. Res., Vol. 111, A12104, doi:10.1029/2006JA011615, 2006.
    Wu C.C., C. D. Fry, S. T. Wu, M. Dryer, and K. Liou, Three-dimensional globalsimulation of ICME propagation from the Sun to the heliosphere: 12 May 1997solar event, J. Geophys. Res., doi:10.1029/2006JA012211, 2007.
    Wu C.C., S.T.Wu, M.Dryer,C.D.Fry,D.Berdichevsky,Z.Smith,T.Detman, Theevolution of shocks near the surface of Sun during the epoch of Halloween2003. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 91-100, 2007b.
    Wu C.C., C.D.Fry, M.Dryer, S.T.Wu, B.Thompson, Kan Liou, X.S.Feng, Three-dimensional global simulation of multiple ICME’s interaction and propagationfrom the Sun to the heliosphere following the 25-28 October 2003 solar events.Advances in Space Research, 2007c.
    Xiong M, Zheng H N, 4-5,1998. Chinese J Wang Y M, .Geophys. et a1. Anumerical simulation on the solar-terrestrial transit time ofsuccessive CMEsduring November (in Chinese), 48(4):731-738, 2005.
    Xiong M., Huinan Zheng, Yuming Wang, and Shui Wang, Magnetohydrodynamicsimulation of the interaction between interplanetary strong shock and magneticcloud and its consequent geoe?ectiveness, J. Geophys. Res., Vol.111, A08105,doi:10.1029/2005JA011593, 2006a.
    Xiong M., Huinan Zheng, Yuming Wang, and Shui Wang, Magnetohydrodynamicsimulation of the interaction between interplanetary strong shock and magneticcloud and its consequent geoe?ectiveness: 2. Oblique collision, J. Geophys.Res., Vol. 111, A11102, doi:10.1029/2006JA011901, 2006b.
    Xiong M., Huinan Zheng, S.T.Wu, Yuming Wang, and Shui Wang, Magnetohy-drodynamic simulation of the interaction between two interplanetary magneticclouds and its consequent geoe?ectiveness, J. Geophys. Res., Vol. 112, A11103,doi:10.1029/2007JA012320, 2007.
    Yang D., Yu S., Zhao J. Convergence and Error Bound Analysis for The Space-time CESE Method. Numerical Methods for Partial Di?erential Equations, 17:64-78, 2001.
    Ye Z.Y. et al. Application of a non-oscillatory, non-free parameter scheme inthree dimensional solar wind ?ow simulations. Chin. J.Space. Sci.,20(3):208-215, 2000.
    Ye Z.Y. et al. Application of NND scheme on MHD equations, Acta Mech. Sinica,33(3):301-308, 2001.
    Ye Z.Y., Wei Fengsi, Feng Xueshang. Numerical research on the interaction be-tween coronal mass ejection and streamer. Science in China , Vol. 45 No.2,2002.
    Yu, S. T., & Chang, S. C. , Treatments of sti? source terms in conservation lawsby the method of space-time conservation element and solution element, AIAApaper, 97-0435, 1997.
    Zhang J. H., Wei Fengsi, The interaction between solar wind background andmagnetic field in the meridional plane. Sci. China(A), 23(4):427-436, 1993.
    Zhang B. C. and Jing Fang Wang, The simulation of the coronal mass ejection-shock system in the inner corona, J. Geophys. Res., Vol. 105, No. A6, 12,593-12,603, 2000.
    Zhang, Z. C., & Yu, S. T., Shock capturing without riemann solver– A modifiedspace-time CE/SE method for conservation laws, AIAA paper 99-0904, 1999.
    Zhang, Z. C., John Yu, S. T., Chang, S. C., Himansu, A., & Jorgenson, P. C. E.,A modified space-time CE/SE method for Euler and Navier-Stokes equations,AIAA paper, 99-3277, 1999.
    Zhang Z. C., Yu S. T. J., Chang S. C. A Space-Time Conservation Elementand Solution Element Method for Solving Two- and Three-Dimensional Un-steady Euler Equations Using Quadrilateral and Hexahedral Meshes. Journalof Computational Physics, 175: 168-199, 2002.
    Zhang, M. J., Henry Lin, S. C., & John Yu, S. T., Application of the space-timeconservation element and solution element method to the ideal magnetohydro-dynamics equations, AIAA paper, 2002-3888, 2002.
    Zhang, M. J., & John Yu, S. T. , Direct calculation of the ideal MHD equationsby the CESE method without special treatment of constraint of·B, AIAApaper, 2003-0324, 2003.
    Zhang, M. J., John Yu, S. T., Henry Lin, S. C., Chang, S. C., & Blankson, I. ,J. Comput. Phys., 214, 599, 2006.
    Zhao, X. P., S. P. Plunkett, and W. Liu, Determination of geometrical and kine-matical properties of halo coronal mass ejections using the cone model, J.Geophys. Res., 107(A8), 1223, doi:10.1029/2001JA009143, 2002.
    林元章,太阳物理导论,第一版,北京,科学出版社, 2000.
    涂传诒等,日地空间物理学,科学出版社, 1988.
    汪毓明,行星际磁云及其相关事件的综合研究,中国科学技术大学博士论文,合肥, 2003.
    魏奉思,关于耀斑-激波非对称传播的统计研究,中国科学(A辑), 30: 186-193,1987.
    向长青, CME在有结构太阳风中的传播,中国科学院空间科学与应用研究中心博士后士学位论文,北京, 2003.
    张增产,沈孟育.改进的时-空守恒元和解元方法.清华大学学报, 37(8): 65-68,1997a.
    张增产,沈孟育.一种严格保证时-空守恒律的数值方法.计算物理, 14(6):835-840, 1997b.
    张增产,沈孟育.求解二维Euler方程的时-空守恒格式.力学学报, 31(2): 152-158, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700