用户名: 密码: 验证码:
太阳爆发中的激波电子加速和辐射研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳爆发活动是指太阳大气中剧烈的能量释放过程,主要包括日冕物质抛射(CME)和耀斑。CME是短时间内由太阳抛出的巨大磁化等离子体物质,是太阳系中尺度最大的爆发现象。耀斑是太阳色球日冕局部区域发生的多波段瞬间增亮现象。典型的CME和耀斑爆发期间所释放的能量约1031-1032尔格,同时会加速产生大量的高能粒子,伴随从射电到γ射线全波段的电磁辐射增强,能对地球的空间环境造成强烈的扰动。目前普遍认为爆发能量主要来自日冕磁场能量的释放,但粒子加速的物理机制仍是未完全解决的问题。太阳爆发活动可在日冕和行星际空间中驱动磁流体力学激波,而激波被认为是空间中粒子加速的有效场所。太阳爆发-日冕激波-粒子加速-电磁辐射是日地空间物理研究中一个重要的连锁物理过程。在本论文中,我们主要关注激波对电子的加速,以及高能电子激发的Ⅱ型射电暴和硬X射线-γ射线辐射。在第二章和第三章,我们研究了冕流对日冕激波的电子加速和日冕Ⅱ型射电暴的可能作用;在第四章和第五章,我们研究了耀斑辐射能谱高能区硬化现象和耀斑终止激波的电子加速。
     我们发现、定义并解释了Ⅱ型射电暴“断谱”特征。对于发生在2011年3月27日的Ⅱ型暴事件,我们发现其射电动态频谱上具有两段完全不同频漂的谱形,即在正常缓慢漂移的Ⅱ型暴辐射后紧接有一段快漂射电谱。根据等离子体辐射机制,我们认为射电断谱的产生是由激波上的射电辐射源区从冕流内部穿出时跨越冕流边界的密度陡降区造成的。另外,根据激波传播速度、频率漂移大小和断点后射电辐射的持续时间,可以简单估算冕流密度边界的宽度和密度梯度的大小,得到冕流边界处的密度在约0.1R⊙的距离上下降约3倍。考虑到激波传播方向可能并非与冕流密度边界垂直,上述距离应视为产生密度下降的上限。尽管如此,所估算的密度梯度与以往观测数据的测量结果基本一致。将射电频谱特征(如断谱)与爆发成像观测进行物理关联为推断Ⅱ型暴射电辐射源区的性质提供了新的工作思路。
     我们还研究了发生于2011年3月25日的日冕Ⅱ型暴事件,发现两事件具有一些共同的观测特征:(1)两事件对应的CME爆发于同一冕流结构底部的活动区,并且可以清楚地看到扰动亮沿逐步扫过冕流;(2)由成像观测数据得到的CME前沿高度与拟合Ⅱ型暴动态谱得到的射电源区高度基本一致;(3)在观测精度范围内,CME前沿(激波)扫过冕流尖点区域时,射电辐射截止。这些观测结果表明,两个Ⅱ型射电暴均是由发生于冕流内部的爆发所驱动的激波产生的。基于这一观测结论,我们猜测激波在向外传播时扫过冕流闭场的过程形成了可有效加速粒子的塌缩磁阱系统,对激发Ⅱ型暴的高能电子的加速可能有所贡献。
     我们进一步构建了一个简单的激波-冕流模型,用试验粒子方法进行了电子加速的模拟。模拟结果表明,只有在冕流闭合磁场区注入的电子才能得到有效的加速。电子在运动的激波与冕流闭合磁力线形成的磁约束位形以及电子散射效应下,能够多次返回到激波面被反射和加速。因此,在本文模型中冕流大尺度闭合磁场对激波的电子加速起着重要的作用。我们还得到高能电子的位置分布(推测为射电辐射源区)位于靠近冕流对称轴的激波上游及紧邻区域(即闭合磁力线的顶部区域)、宽度约为0.1-0.2R⊙等。这些模拟结果需要未来能覆盖米波段(对应日冕太阳爆发过程)且具有高空间分辨能力的射电日像仪进一步验证。众所周知,大多数的太阳爆发活动起源于闭合磁场结构下方的活动区。因此,本文提出的日冕激波电子加速图景可能具有更为普遍的意义,可用来理解更多的日冕Ⅱ型暴事件的起源。另外,本工作为日冕Ⅱ型暴与行星际Ⅱ型暴之间的不连续性提供了一种可能的解释。
     迄今为止,很多不同的卫星都观测到了耀斑的硬X射线和γ射线轫致辐射连续谱在几百keV以上的硬化现象,但目前对这一观测还没有让人信服的解释。我们通过浏览SMM/GRS仪器的耀斑辐射观测数据(300keV-10MeV),发现其中23个事件具有明显的高能硬化现象并分别对其进行了双幂律谱的拟合。然后我们对前人文献中的15个事件和新确定的23个事件进行了统计分析,发现断点前谱指数γ1分布在2.5-4.5(37/38),断点后谱指数γ2多数分布在1.5-2.5(31/34),并有7个事件的γ1-γ2≥2;断点前谱指数γ1与断点能量∈b和断点能量之上的光子数所占比例Fr均有很好的反相关性,但谱指数γ1和,γ2之间没有好的相关性。统计分析结果可以检验和约束各种理论解释,比如大于2的谱指数变化不能仅由对轫致辐射截面的相对论修正和电子-电子轫致辐射的贡献来解释(仅能使谱指数变硬~0.5)。
     我们认为耀斑辐射高能硬化现象很可能直接反映了被加速的高能电子本身具有高能硬化的能谱特征。为此,我们提出了一个基于耀斑终止激波的扩散激波电子加速模型。我们假设电子扩散系数κ是由耀斑粒子加速区的等离子体湍动强度决定的,并且具有类似太阳风中的湍动功率谱形式。根据共振条件,低能量区间的电子只能与耗散区的湍动(如哨声波)发生共振相互作用,而高能量区间(几百keV以上)的电子可以与惯性区的湍动相互作用。由于不同波数区间湍动串级幂率谱的不同,通过数值求解一维时变的Parker粒子输运方程,得到了在高能区硬化的电子能谱。我们将耗散区的湍动幂律谱指数固定为∈d=2.7,并考虑三种情况,分别将惯性区谱指数取为∈i=5/3(Kolmogorov型)、1.5(Iroshnikov-Kr aichnan型)和1.0(Bohm diffusion型)。我们发现,不同情况下得到的电子能谱均可以很好的用双幂律谱进行拟合,并且拟合所得幂律谱指数和断点能量等参数与观测得到的耀斑辐射能谱的相应参数基本吻合。通过简单的定性分析,我们发现所提出的理论模型可以解释耀斑能谱硬化现象的一些观测分析结果。因此,本研究为耀斑辐射能谱的高能区硬化现象提供了一种更为直接的和合理的解释,这对认识耀斑中的电子加速机理具有重要意义。
Solar eruptions are intense energy release activities in the solar atmosphere. Coronal mass ejections (CMEs) and flares are the most important ones. CMEs are large amount of magnetized plasma ejected from the Sun, representing the largest-scale eruptive phenomenon in the solar system. Flares are sudden and intense brightening in the chromosphere and the corona. When a CME or flare occurs, energy up to1031-1032erg is released rapidly and transformed to the acceleration of particles, heating of the plasma, and radiation across the entire electromagnetic spectrum. It can also have serious impacts on the Earth's s-pace environment. It is widely believed that the released energy is magnetic energy accumulated in the corona. However, the physical mechanism of particle acceleration remains unclear. Magnetohydrodynamic shocks are driven by solar eruptions both in the coronal and interplanetary space, known to be efficient accelerators in the space. Solar eruptions-coronal shocks-particle acceleration-electromagnetic radiation are the most important physical processes in solar-terrestrial studies. In this thesis, we focus on electron acceleration at coronal shocks, and type Ⅱ radio bursts and hard X-ray and γ-ray emissions produced by energetic electrons. In chapters2and3, we explore the roles of streamers in electron acceleration by shocks and excitation of type Ⅱ bursts; in chapters4and5, we study the spectral hardening at high energies observed in flare continuum emissions and electron acceleration at flare termination shock.
     We report an intriguing type Ⅱ radio burst that occurred on2011March27. Its dynamic spectrum was featured by a sudden spectral break on the well-observed harmonic branch. Based on plasma emission mechanism, we suggest that the slow-drift period before the break was generated inside the streamer by a coronal eruption driven shock, and the spectral break is a consequence of the radio source region at the shock front crossing the streamer boundary where density drops abruptly. Using the measurements of the shock speed, the radio frequency drift and the temporal duration of the radio emission after the break, one can estimate the thickness and the electron density gradient at the streamer boundary. We find that the density drops from~5×106cm-3to~2×106cm-3at a distance of~0.1RQ(?)。Considering the shock may not propagate perpendicularly across the streamer boundary, this distance should be considered as an upper limit of the above density drop. In spite of this, it is comparable to the electron density measurements in previous observations. We suggest that it is a promising approach to diagnose the properties of the radio emission region by combining specific morphological features of type Ⅱs with imaging observations of solar eruptions.
     We also examine the other coronal type Ⅱ event occurring on2011March25. Some common observational features of the two events are summarized as follows:(1) Both CMEs erupted from the same active region beneath a well-observed helmet streamer, and the sweeping process of the CME front through the streamer structure can be observed clearly;(2) the heights of CME front obtained from coronagraph imaging observations are consistent with that deduced from the type Ⅱ spectral fitting using a reasonable density model;(3) type Ⅱ radio emission ended when CME/shock fronts passed the streamer cusp region, subject to observational uncertainty. These observational results indicate that both type Ⅱ bursts were possibly related to the shock-streamer interaction. Based on this observational deduction, we suggest that an effective particle acceleration system is established when the shock propagating outward and sweeping through the closed field of the streamer, which may contribute to the acceleration of energetic electrons accounting for type Ⅱ bursts.
     We further develop a simplified shock-streamer model and carry out a test-particle simulation to study the energization of electrons. Simulation results show that only those electrons that are injected within the closed field region-s can be accelerated efficiently. The shock-streamer trapping effect allows the trapped electrons to return to the shock front multiple times and be repetitive-ly accelerated. Therefore, the shock-streamer configuration plays an important role in our study. Our simulation also shows that electrons which are energetic enough to excite radio bursts, mainly concentrate in the shock upstream within its immediate neighborhood, and around the tip of relevant closed field lines. The locations of energetic electrons can serve as a proxy of the type II radio bursts. This prediction needs to be further verified by future high-spatial resolution ra-dioheliographs at the appropriate metric wavelength. Considering the fact that most solar eruptions originate from closed field regions, electron acceleration by a shock propagating in a closed field structure may be important to the generation of metric type Ⅱs in a general manner. This scenario also provides an alternative explanation to the long-standing issue of the disconnection between metric and interplanetary type Ⅱ bursts.
     The observed hard X-ray and γ-ray continuum in solar flares are interpreted as bremsstrahlung emissions of accelerated non-thermal electrons. It has been noted for a long time that in many flares the energy spectra show a hardening at energies around or above300keV. We perform a systematic examination of185flares from the SMM/GRS γ-ray detector and identify23electron-dominated events whose energy spectra show clear double power-laws. We then conduct a statistical study of these events and15spectral hardening events that were studied in previous literature. For38events that have γ1, all but one are in the range of2.5to4.5. For34events that have γ2,31of them are in the range of1.5to2.5. In7events we have γ1—γ2>2. It is also found that the spectral index below the break (γ1) anti-correlates with the break energy (εb). Furthermore, γ1also anti-correlates with Fr, the fraction of photons above the break to the total non-thermal photons. The statistical results provide a stringent constraint on the underlying electron acceleration mechanism. Spectral breaks as large as2are hard to explain by merely including electron-electron bremsstrahlung or relativistic correction of the electron-nucleon cross section.
     We suggest that the hardening in photon spectrum reflects an intrinsic hard-ening in the source electron spectrum. Then we propose an electron acceleration model based on diffusive shock acceleration mechanism at a finite-width flare ter-mination shock. The intensity of the turbulence I(k) determines the magnitude of the diffusion coefficient k, which in turn controls whether a spectral hard-ening will occur. At low energies electrons resonate with the dissipation range turbulence, while at high energies electrons resonate with the inertial range tur-bulence. As a result of the difference of the turbulence spectral indices between the dissipation range and inertial range, we obtain a broken electron spectrum with hardening at high energies by numerically solving the1-D time-dependent Parker's particle transport equation. We assume the turbulence spectral index in the inertial range εd=2.7, and consider three cases for the dissipation range∈i.5/3,1.5and1.0. We find that in these three cases, the obtained electron spectra can be well fit by a double-power-law, and the fitted parameters are consistent with those observed in flare emission spectra. We also find that the proposed scenario can explain some of the observational results. Therefore we offer a direct and promising explanation for the observed spectral hardening in solar flares.
引文
林元章,太阳物理导论,科学出版社,1998.
    章振大,日冕物理,科学出版社,2000.
    方成,丁明德,陈鹏飞,太阳活动区物理,南京大学出版社,2008.
    Ackermann, M., Ajello, M., Allafort, A., et al., Fermi Detection of γ-Ray Emis-sion from the M2 Soft X-Ray Flare on 2010 June 12, Astrophys. J.,2012, 745,144
    Alexandrova, O., Lacombe, C., Mangeney, A., Grappin, R., Maksimovi, M., Solar Wind Turbulent Spectrum at Plasma Kinetic Scales, Astrophys. J., 2012,760,121
    Antiochos, S. K., DeVore, C. R., Klimchuk, J. A., A Model for Solar Coronal Mass Ejections, Astrophys. J.,1999,510:485.
    Armstrong, T. P., Pesses, M. E.,& Decker, R. B., Shock drift acceleration, Washington DC American Geophysical Union Geophysical Monograph Se-ries,1985,35,271-285
    Asai, A., Kiyohara, J., Takasaki, H., et al., Temporal and Spatial Analyses of Spectral Indices of Nonthermal Emissions Derived from Hard X-Rays and Microwaves, Astrophys. J.,2013,763,87
    Aurass, H., Vrsnak, B.,& Mann, G., Shock-excited radio burst from reconnec-tion outflow jet?, Astron. Astrophys.,2002,384,273
    Aurass, H., Signatures of magnetic reconnection in solar radio observations?, Adv. Spa. Res.,2007,39,1407
    Axford,W. I., Leer, E.,& Skadron,G., The acceleration of cosmic rays by shock waves, in Proc.15th Int.Cosmic-Ray Conf. (Plovdiv:Bulgarian Academy of Sciences),1977,11,132
    Axford, W.I., The acceleration of galactic cosmic rays, IAUS,1981,94,339
    Axford, W. I., Leer, E.,&; McKenzie, J. F., The structure of cosmic ray shocks, Astron. Astrophys.,1982,111,317
    Bain, H. M., Krucker, S., Glesener, L., Lin, R. P., Radio imaging of shock-accelerated electrons associated with an erupting plasmoid on 2010 Novem-ber 3, Astrophys. J.,2012,750:44.
    Bale, S. D., Reiner, M. J., Bougeret, J. L., Kaiser, M. L., Krucker, S., Larson, D. E., Lin, R. P., The source region of an interplanetary type II radio burst, Geophys. Res. Lett,1999,26:1573.
    Balikhin, M. A., Krasnosselskikh, V.,& Gedalin, M., The scales in quasiper-pendicular shocks. Adv. Spa. Res.,1995,15,247
    Ball, L.,& Melrose, D. B.. Shock Drift Acceleration of Electrons, Pro. Astron. Soc. Aus.,2001,18,361
    Barta, M., Karlicky, M., Zemlicka, R., Plasmoid Dynamics in Flare Reconnec-tion and the Frequency Drift of the Drifting Pulsating Structure, Solar Phys.,2008,253:173-189
    Bavassano, B., Woo, R., Bruno, R., Heliospheric plasma sheet and coronal streamers, Geophys. Res. Lett.,24,13,1655-1658
    Banaszkiewicz, M., Axford, W. I., McKenzie, J. F., An analytic solar magnetic field model., Astron. Astrophys.,1998,337:940-944
    Bell, A. R., The acceleration of cosmic rays in shock fronts. I, Mon. Not. Roy. Astron. Soc,1978,182,147
    Bemporad, A., Sterling, A. C., Moore, R. L., Poletto, G., A new variety of coro-nal mass ejection:streamer puffs from compact ejective flares, Astrophys. J.,2005,635:189.
    Bemporad, A., Poletto, G., Landini, F.,&:Romoli, M., Magnetic reconnection processes induced by a CME expansion, Ann. Geophys.,2008,26:3017.
    Bemporad, A., Mancuso, S., First Complete Determination of Plasma Physical Parameters Across a Coronal Mass Ejection-driven Shock, Astrophys. J., 2010,720,130
    Bemporad, A., Soenen, A., Jacobs, C., Landini, F., Poedts, S., Side magnetic reconnections induced by coronal mass ejections:observations and simula-tions, Astrophys. J.,2010,718:251.
    Billings, D. E., A Guide to the Solar Corona (New York:Academic),1966
    Boldyrev, S., and Perez, J. C., Spectrum of Kinetic-Alfven Turbulence, Astro-phys. J. Lett,2012,758, L44.
    Bougeret, J. L., Kaiser, M. L., Kellogg, P. J., Manning, R., Goetz, K., Monson, S. J., Monge, N., Friel, L., Meetre, C. A., Perche, C., Sitruk, L., Hoang, S., WAVES:the radio and plasma wave investigation on the wind spacecraft, Space Sci. Rev.,1995,71:231.
    Bougeret, J. L., Goetz, K., Kaiser, M. L., et al., S/WAVES:The Radio and Plasma Wave Investigation on the STEREO Mission,2008, Space Sci. Rev.,136,487-528
    Brown, J.C., The Deduction of Energy Spectra of Non-Thermal Electrons in Flares from the Observed Dynamic Spectra of Hard X-Ray Bursts, Solar Phys.,1971,18,489-502
    Brueckner, G. E., Howard, R. A., Koomen, M. J., Korendyke, C. M., Michels, D. J., Moses, J. D., Socker, D. G., Dere, K. P., Lamy, P. L.,& Llebaria, A. et al. The Large Angle Spectroscopic Coronagraph (LASCO), Solar Phys., 1995,162:357.
    Burgess, D., Simulations of Electron Acceleration at Collisionless Shocks:The Effects of Surface Fluctuations, Astrophys. J.,2006,653,316
    Burgess, D., Particle Acceleration at the Earth's Bow Shock, Lecture Notes in Physics,2007,725, pp 161-191
    Cairns, I. H., Coherent Radio Emissions Associated with Star System Shocks, The Sun, the Solar Wind, and the Heliosphere (New York:Springer),2011, 269
    Cairns, I. H., Robinson, R. D., Herringbone bursts associated with type II solar radio emission, Solar Phys.,1987,111:365.
    Cairns, I. H., k. Knock, S. A., Predictions for Dynamic Spectra and Source Re-gions of Type II Radio Bursts in the Inhomogenous Corona and Solar Wind, Planetary Radio Emissions VI Proceedings, ed. H. Rucker, W. Kurth,&: G. Mann (Verlag:Ost. Akad. Wissenschaften),2006,419
    Cane, H. V.,& Erickson, W. C., Solar Type Ⅱ Radio Bursts and IP Type Ⅱ Events, Astrophys. J.,2005,623:1180.
    Carmichael, H., A Process for Flares, in The Physics of Solar Flares, Proceedings of the AAS-NASA Symposium held 28-30 October,1963 at the Goddard Space Flight Center, Greenbelt, MD, (Ed.) Hess, W.N., vol. SP-50 of NASA Special Publicsations, p.451, NASA Science and Technical Information Division, Washington, DC.,1964
    Chen, C. H. K., Horbury, T. S., Schekochihin, A. A., et al., Anisotropy of Solar Wind Turbulence between Ion and Electron Scales, Phys. Rev. Lett.,2010, 104,255002
    Chen, P. F., Coronal mass ejections:Models and their observational basis, Living Rev Sol Phys,2011,8:1
    Chen, P.F., & Shibata, K., An Emerging Flux Trigger Mechanism for Coronal Mass Ejections, Astrophys. J.,2000,545,524-531
    Chen, Y., A review of recent studies on coronal dynamics:Streamers, coronal mass ejections, and their interactions, Chinese Science Bulletin,2013,58, 14, pp 1599-1624
    Chen, Y.,& Hu, Y. Q., A Two-Dimensional AlfV6n-Wave-Driven Solar Wind Model, Solar Phys.,2001,199:371.
    Chen, Y., Hu, Y. Q., Sun, S. J., Catastrophic eruption of magnetic flux rope in the corona and solar wind with and without magnetic reconnection, Astrophys. J.,2007,665:1421.
    Chen, Y., Li, X., Song, H. Q., Shi, Q. Q., Feng, S. W.,& Xia, L. D., Intrinsic instability of coronal streamers, Astrophys. J.,2009,691:1936.
    Chen, Y., Song, H. Q., Li, B., Xia, L. D., Wu, Z., Fu, H., Li, X., Streamer waves driven by coronal mass ejections, Astrophys. J.,2010,714:644.
    Chen, Y., Feng, S. W., Li, B., Song, H. Q., Xia, L. D., Kong, X. L., Li, X., A coronal seismological study with streamer waves, Astrophys. J.,2011, 728:147.
    Chen, Y., Du, G. H., Feng, L., Feng, S. W., Kong, X. L., Guo, F., Wang, B., & Li, G., A solar type II radio burst from CME-coronal ray interaction: simultaneous radio and EUV imaging,2014, Astrophys. J.,787,59 (7pp)
    Cheng, X., Zhang, J., Liu, Y.,& Ding, M. D., Observing Flux Rope Formation During the Impulsive Phase of a Solar Eruption, Astrophys. J. Lett,2011, 732, L25 (6pp)
    Cheng, X., Zhang, J., Saar, S. H.,&; Ding, M. D., Differential Emission Measure Analysis of Multiple Structural Components of Coronal Mass Ejections in the Inner Corona, Astrophys. J.,2012,761,62
    Cho, K.-S., Moon, Y.-J., Dryer, M., et al., Examination of type Ⅱ origin with SOHO/LASCO observations, J. Geophys. Res.,2005,110, A12101
    Cho, K. S., Lee, J., Moon, Y. J., et al., A study of CME and type Ⅱ shock kinematics based on coronal density measurement, Astron. Astrophys., 2007a,461,1121-1125
    Cho, K. S., Lee, J., Gary, D. E., Moon, Y. J., Park, Y. D., Magnetic field strength in the solar corona from type Ⅱ band spltting, Astrophys. J., 2007b,665:799.
    Cho, K. S., Bong, S. C., Kim, Y. H., Moon, Y. J., Dryer, M.. Shanmugaraju, A., Lee, J.,& Park, Y. D., Low coronal observations of metric type Ⅱ associated CMEs by MLSO coronameters, Astron. Astrophys.,2008,491: 873.
    Cho, K. S., Bong, S. C., Moon, Y. J., Shanmugaraju, A., Kwon, R. Y., Park, Y. D., Relationship between multiple type Ⅱ solar radio bursts and CME observed by STEREO/SECCHI, Astron. Astrophys.,2011,530:16.
    Oliver, E. W., Webb, D. F.,& Howard, R. A., On the origin of solar metric type II bursts, Solar Phys.,1999,187:89.
    Oliver, E. W.,& Ling, A. G., Low-Frequency Type Ⅲ Bursts and Solar Ener-getic Particle Events, Astrophys. J.,2009,690,598
    Dauphin, C., Vilmer. N., Krucker, S., Observations of a soft X-ray rising loop associated with a type Ⅱ burst and a coronal mass ejection in the 03 Novem-ber 2003 X-ray flare, Astron. Astrophys.,2006,455:339.
    Decker, R. B., Particle acceleration at shocks with surface ripples, J. Geophys. Res.,1990,95,11993
    Decker, R. B., Shock drift acceleration, in American Institute of Physics Con-ference Series, Vol.264, Particle Acceleration in Cosmic Plasmas, ed. G. P. Zank k T. K. Gaisser,1992,183-188
    Dennis, B., Solar flare hard X-ray observations, Solar Phys.,1988,118,49
    Du, G. H., Chen, Y., et al., Temporal Spectral Shift of Band-splitting Type Solar Radio Bursts,2014, in preparation
    Drury, L. O'C., Voelk, J. H., Hydromagnetic shock structure in the presence of cosmic rays, Astrophys. J.,1981,248,344
    Drury, L. O'C., Axford, W. I., Summers, D., Particle acceleration in modified shocks, Mon. Not. Roy. Astron. Soc.,1982,198,883
    Dulk, G. A.,& Mclean, D. J., Coronal magnetic fields, Solar Phys.,1978,57: 279.
    Eddy, J. A., A nineteenth-century coronal transient, Astron. Astrophys.,1974, 34,235-240
    Elmore, D. F., Burkepile, J. T., Darnell, J. A., Lecinski, A. R.,& Stanger, A. L., Calibration of a ground-based solar coronal polarimeter, Proc. SPIE, 2003,4843.
    Erdos, G. & Balogh, A., Drift acceleration at interplanetary shocks, Astrophys. J. Suppl. Ser.,1994,90,553
    Ergun, R. E., Larson, D., Lin, R. P., et al., Wind Spacecraft Observations of Solar Impulsive Electron Events Associated with Solar Type Ⅲ Radio Bursts, Astrophys. J.,1998,503,435
    Erickson, W. C, The Bruny Island radio spectrometer,1997, Pro. Astron. Soc. Aus.,14,3:278.
    Feng, S. W., Chen, Y., Li, B., Song, H. Q., Kong, X. L., Xia, L. D., & Feng, X. S., Streamer wave events observed in solar cycle 23, Solar Phys.,2011, 272:119.
    Feng, S. W., Chen, Y., Kong, X. L., Li, G., Song, H. Q., Feng, X. S.,& Liu, Y., Radio signatures of CME-streamer interaction and source diagnostics of type Ⅱ radio burst,2012, Astrophys. J.,753,21 (6pp)
    Feng, S. W., Chen, Y., Kong, X. L., Song, H. Q., Feng, X. S.,& Guo, F., Diagnostics on the source properties of a type Ⅱ radio burst with spectral bumps,2013, Astrophys. J.,767,29 (8pp)
    Filippov, B., Srivastava, A. K., Delfection of coronal rays by romote CMEs: shock wave or magnetic pressure?, Solar Phys.,2010,266:123.
    Fisk, L. A., Increases in the low-energy cosmic ray intensity at the front of propagating interplanetary shock waves, J. Geophys. Res.,1971,76,1662
    Florens, M. S. L., Cairns, I. H., Knock, S. A.,& Robinson, P. A., Data-driven solar wind model and prediction of type II bursts, Geophys. Res. Lett., 2007,34,4104
    Floyd, O., Lamy, P., Llebaria, A., The Interaction Between Coronal Mass Ejec-tions and Streamers:A Statistical View over 15 Years (1996-2010), Solar Phys.,2014,289,1313-1339
    Forbes, T. G., Fast-shock formation in line-tied magnetic reconnection models of solar flares, Astrophys. J.,1986,305,553
    Forbes, T. G., Shocks produced by impulsively driven reconnection, Solar Phys., 1988,117,97
    Forbes, T.G., A review on the genesis of coronal mass ejections, J. Geophys. Res.,2000,105.23153-23166
    Galtier, S., Wave turbulence in incompressible Hall magnetohydrodynamics, J. Plasmas Phys.,2006,72,721
    Giacalone, J., Shock drift acceleration of energetic protons at a planetary bow shock, J. Geophys. Res.,1992,97,8307
    Gibson, S. E., Foster, D., Burkepile, J., de Toma, G.,& Stanger, A., The Calm before the Storm:The Link between Quiescent Cavities and Coronal Mass Ejections, Astrophys. J.,2006,641,590
    Ginzburg, V. L.,& Zhelezniakov, V. V., On the Possible Mechanisms of Sporadic Solar Radio Emission (Radiation in an Isotropic Plasma), SvA,1958,2: 653.
    Golub, L., Deluca, E., Austin, G., et al., The X-Ray Telescope (XRT) for the Hinode Mission,2007, Solar Phys.,2243,63-86
    Gopalswamy, N., Kaiser, M. L., Lepping, R. P., et al., Origin of Coronal and interplanetary shocks-A new look with WIND spacecraft data, J. Geophys. Res.,1998,103:307
    Gopalswamy, N., Lara, A., Kaiser, M. L.,& Bougeret, J.-L., Near-Sun and near-Earth manifestations of solar eruptions,2001,106,25261
    Gopalswamy, N., Mikic, Z., Maia, D. et al., The Pre-CME Sun, Space Sci. Rev.,2006,123,303
    Gopalswamy, N., Thompson, W. T., Davila, J. M., et al., Relation Between Type Ⅱ Bursts and CMEs Inferred from STEREO Observations, Solar Phys.,2009,25,227
    Gopalswamy, N. & Yashiro, S., The Strength and Radial Profile of the Coronal Magnetic Field from the Standoff Distance of a Coronal Mass Ejection-driven Shock, Astrophys. J. Lett,2011,736,17
    Gopalswamy, N., Nitta, N., Akiyama, S. et al., Coronal Magnetic Field Mea-surement from EUV Images Made by the Solar Dynamics Observatory, Astrophys. J.,2012.744,72
    Gordon, B. E., M. A. Lee, and E. Mobius, Coupled hydromagnetic wave exci-tation and ion acceleration at interplanetary traveling shocks and Earth's bow shock revisited, J. Geophys. Res.,1999,104,28263-28277.
    Gosling, J. T., Hildner, E., Macquees, R. M., et al., The speeds of coronal mass ejection events, Solar Phys.,1976,48,389
    Gosling, J. T., D. N. Baker, S. J. Bame, W. C. Feldman, R. D. Zwickl, and E. J. Smith, Bidirectional solar wind electron heat flux events, J. Geophys. Res.,1987,92(A8),8519-8535
    Gruber, D. E., Peterson, L. E., Vette, J. I., Observation of MeV Gamma-ray Events During May 1967 from ERS-18, High Energy Phenomena on the Sun, Edited by R. Ramaty and R.G. Stone. NASA SP-342., p.147,1973
    Guo, F., Jokipii, J., & Giacalone, J.,Particle acceleration by collisionless shocks containing large-scale magnetic-field variations, Astrophys. J.,2010,725, 128
    Guo, F.,& Giacalone, J., The Effect of Large-scale Magnetic Turbulence on the Acceleration of Electrons by Perpendicular Collisionless Shocks, Astrophys. J.,2010,715:406.
    Guo, F.,& Giacalone, J., Particle Acceleration at a Flare Termination Shock: Effect of Large-scale Magnetic Turbulence, Astrophys. J.,2012,753,28
    Habbal, S. R., Woo, R., Fineschi, S., O'Neal, R., Kohl, J., Noci, G.,& Ko-rendyke, C., Origins of the Slow and the Ubiquitous Fast Solar Wind, Astrophys. J.,1997,489:103.
    Hara, H., Watanabe, T., Harra, L. K., Culhane, J. L., & Young, P. R., Plasma Motions and Heating by Magnetic Reconnection in a 2007 May 19 Flare, Astrophys. J.,2011,741,107
    Harrison. R. A., The nature of solar flares associated with coronal mass ejection, Astron. Astrophys.,1995,304,585
    Hayes, A. P., Vourlidas, A., Howard, R. A., Deriving the electron density of the solar corona from the inversion of total brightness measurement, Astrophys. J.,2001,548:1081.
    He, H.,& Wang, H. N., Nonlinear force-free coronal magnetic field extrapolation scheme based on the direct boundary integral formulation, J. Geophys. Res.,2008,113:A05S90.
    Hillan, D. S., Cairns, Ⅰ. H.,& Robinson, P. A., Type Ⅱ solar radio bursts: Modeling and extraction of shock parameters, J. Geophys. Res.,2012a, 117,3104
    Hillan, D. S., Cairns, Ⅰ. H.,& Robinson, P. A., Type Ⅱ solar radio bursts:2. Detailed comparison of theory with observations, J. Geophys. Res.,2012b, 117,6105.
    Hirayama, T., Theoretical Model of Flares and Prominences. I:Evaporating Flare Model, Solar Phys.,1974,34,323-338
    Holman, G. D.,& Pesses, M. E., Solar type Ⅲ radio emission and the shock drift acceleration of electrons, Astrophys. J.,1983,267:837.
    Holman, G. D., Aschwanden, M. J., Aurass, H., et al., Implications of X-ray Observations for Electron Acceleration and Propagation in Solar Flares, Space Sei. Rev.,2011,159,107
    Howard, R. A., Koomen, M. J., Observation of sectored structure in the outer solar corona-Correlation with interplanetary magnetic field, Solar Phys., 1974,37:469.
    Howard, R. A., Sheeley, N. R. Jr., Michels, D. J., Koomen, M. J., Coronal mass ejections:1979-1981, J. Geophys. Res.,198590,8173
    Howard, R. A., Moses, J. D., Vourlidas, A., Newmark, J. S., Socker, D. G., Plunkett, S. P.,& Korendyke, C. M., et al., Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI), Space Sci. Rev.,2008,136:67.
    Howes, G. G., Tenbarge, J. M.,& Dorland, W., A weakened cascade model for turbulence in astrophysical plasmas, Phys. Plasmas,2011,18,102305
    Hu, Y. Q., Li, G. Q.,&:Xing, X. Y., Equilibrium and catastrophe of coronal flux ropes in axisymmetrical magnetic field, J. Geophys. Res.,2003a,108(A2), 1072
    Hu, Y. Q., Habbal, S. R., Chen, Y.,& Li, X., Are coronal holes the only source of fast solar wind at solar minimum? J. Geophys. Res.,2003b,108(A10), 1377
    Huang, G. L., The Direct Amplification of Electromagnetic Waves by Electron Beams:an Alternate Explanation for Solar Type Ⅲ Bursts, Astrophys. J.,1998,498,877
    Hundhausen, A. J., Sizes and locations of coronal mass ejections-SMM obser-vations from 1980 and 1984-1989, J. Geophys. Res.,1993,98:13177.
    Hundhausen, A. J., An Introduction, Coronal Mass Ejections, in AGU Geophys-ical Monograph, Vol.99, An Introduction, Coronal Mass Ejections, ed. N. Crooker et al. (Washington,1997, DC:AGU)
    Ming, R. M. E. & Hundhausen, A. J., Observation of a coronal transient from 1.2 to 6 solar radii, J. Geophys. Res.,1985,90(A1),275-282
    Ming, R. M. E., Hundhausen, A. J., Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection, J. Geophys. Res.,1986, 91,10951
    Imada, S., Aoki, K., Hara, H., et al., Evidence for Hot Fast Flow above a Solar Flare Arcade, Astrophys. J.,2013,776,111
    Ingleby, L. D., Spangler, S. R., Whiting, C. A., Probing the Large-Scale Plas-ma Structure of the Solar Corona with Faraday Rotation Measurements, Astrophys. J.,2007.668:520.
    Innes, D. E., McKenzie, D. E.,& Wang, T.,Observations of 1000 km s-1 Doppler shifts in 107 K solar flare supra-arcade, Solar Phys.,2003,217,267
    Ip, W.-H.,& Axford, W. I., Particle acceleration up to 1020 eV. In G. P. Zank, & T. K. Gaisser (Eds.), AIP Conference Proceedings 264 on Particle Ac-celeration in Cosmic Plasmas (pp.400-405). American Institute of Physics, New York.,1992
    Ji, H., Wang, H., Schmahl, E.J., Moon, Y., Jiang, Y., Observations of the Failed Eruption of a Filament, Astrophys. J. Lett,2003,595,135
    Jian, L., Russel, C. T., Luhmann, J. G.,& Skoug, R. M., Multi-Spacecraft Observations:Stream Interactions and Associated Structures, Solar Phys., 2006,259,345
    Jiang, C. W. & Feng, X. S., A New Implementation of the Magnetohydrodynamics-relaxation Method for Nonlinear Force-free Field Extrapolation in the Solar Corona, Astrophys. J.,2012,749,135
    Jones, F. C.& Ellison, D. C., The plasma physics of shock acceleration, Space &. Rev.,1991,58,259
    Jokipii, J., Cosmic-Ray Propagation. I. Charged Particles in a Random Mag-netic Field, Astrophys. J.,1966,146,480.
    Kawate, T., Nishizuka, N., Oi, A., Ohyama, M.,& Nakajima, H., Hard X-Ray and Microwave Emissions from Solar Flares with Hard Spectral Indices, Astrophys. J.,2012,747,131
    Kerdraon, A.& Delouis, J.-M., The Nancay Radioheliograph, in Lecture Notes in Physics, Berlin Springer Verlag, Coronal Physics from Radio and Space Observations, ed.G. Trottet, Vol.483,192,1997
    Kliem, B., Karlicky, M., Benz, A.O., Solar flare radio pulsations as a signature of dynamic magnetic reconnection, Astron. Astrophys.,2000,360,715
    Knock, S. A., Cairns, I. H., Robinson, P. A., Kuncic, Z., Theory of type Ⅱ solar radio emission from the foreshock region of an interplanetary shock, J. Geophys. Res.,2001,106,25041
    Knock, S. A., Cairns, I. H., Robinson, P. A.,& Kuncic, Z., Theoretically pre-dicted properties of type Ⅱ radio emission from an interplanetary foreshock, J. Geophys. Res.,2003a,108,1126
    Knock, S. A., Cairns, I. H., Robinson, P. A., Type Ⅱ radio emission predictions: multiple shock ripples and dynamic spectra, J. Geophys. Res.,2003b,108, 1361
    Knock, S. A.,& Cairns, I. H., Type Ⅱradio emission predictions:Sources of coronal and interplanetary spectral structure, J. Geophys. Res.,2005,110, 1101
    Kong, X. L., Chen, Y., Li, G., Feng, S. W., Song, H. Q., Guo, F., Jiao, F. R., A broken dynamic spectrum of solar type Ⅱ radio burst induced by a coronal shock propagating across the streamer boundary, Astrophys. J.,2012,750: 158.
    Kontar, E. P., Emslie, A. G., Massone, A. M., et al., Electron-Electron Bremsstrahlung Emission and the Inference of Electron Flux Spectra in Solar Flares, Astrophys. J.,2007,670,857
    Kopp, R.A. & Pneuman, G.W., Magnetic reconnection in the corona and the loop prominence phenomenon, Solar Phys.,1976,50,85-98
    Krishan, V.& Mahajan, S. M., Magnetic fluctuations and Hall magnetohy-drodynamic turbulence in the solar wind, J. Geophys. Res.,2004,109, A11105
    Krucker, S., Hurford, G. J., MacKinnon, A. L., Shih, A. Y., & Lin, R. P., Coro-nal γ-Ray Bremsstrahlung from Solar Flare-accelerated Electrons, Astro-phys. J. Lett.,2008; 678, L63
    Kumar, P.. Manoharan, P. K., Eruption of a plasma blob, associated M-class flare, and large-scale extreme-ultraviolet wave observed by SDO, Astron. Astrophys.,2013,553, A109
    Kundu, M. R., White, S. M., Gopalswamy, N., Lim, J., Millimeter, microwave, hard X-ray, and soft X-ray observations of energetic electron populations in solar flares, Astrophys. J. Suppl. Ser.,1994,90,599-610
    Kwon, R.-Y., Ofman, L., Olmedo, O., et al., STEREO Observations of Fast Magnetosonic Waves in the Extended Solar Corona Associated with EIT/EUV Waves, Astrophys. J.,2013a,766,55
    Kwon, R.-Y., Kramar, M., Wang, T. J., et al., Global Coronal Seismology in the Extended Solar Corona through Fast Magnetosonic Waves Observed by STEREO SECCHI COR1, Astrophys. J.,2013b,776,55
    Lee, M. A.& Fisk, L. A., Shock acceleration of energetic particles in the helio-sphere, Space Sci. Rev.,1982,32,205
    Lee, M. A., Acceleration of energetic particles on the Sun, in the Heliosphere, and in the Galaxy, in American Institute of Physics Conference Series, Vol. 528, Acceleration and Transport of Energetic Particles Observed in the Heliosphere, ed. R. A. Mewaldt, J. R. Jokipii, M. A. Lee, E. Mobius,& T. H. Zurbuchen,3-18,2000
    Leamon, R. J., Smith, C. W., Ness, N. F., Matthaeus, W. H., Wong, H. K., Observational constraints on the dynamics of the interplanetary magnetic field dissipation range, J. Geophys. Res.,1998,103,4775
    Leamon, R. J., Smith, C. W., Ness, N. F., Wong, H. K., Dissipation range dynamics:Kinetic Alfven waves and the importance of βe, J. Geophys. Res.,1999,104,22331
    Leamon, R. J., Matthaeus, W. H., Smith, C. W., et al., MHD-driven Kinetic Dissipation in the Solar Wind and Corona, Astrophys. J.,2000,537,1054
    Lemen, J. R.., Title, A. M., Akin, D. J., et al., The Atmospheric Imaging Assem-bly (AIA) on the Solar Dynamics Observatory (SDO), Solar Phys.,2012, 275,17
    Li, B., Li, X.,& Labrosse, N., A global 2.5-dimensional three fluid solar wind model with alpha particles, J. Geophys. Res.,2006,111 (A8), A08106.
    Li, G., & Zank, G. P., Particle acceleration at a rippling termination shock, in American Institute of Physics Conference Series, Vol.858, Physics of the Inner Heliosheath, ed. J. Heerikhuisen, V. Florinski, G. P., Zank, & N. V. Pogorelov,183-189,2006
    Li, G., Zank, G. P., Rice, W. K. M., Acceleration and transport of heavy ions at coronal mass ejection-driven shocks, J. Geophys. Res.,2005,110, A06104
    Lin, J.,& Forbes, T.G., Effects of reconnection on the coronal mass ejection process, J. Geophys. Res.,2000,105,2375-2392
    Lin, J., Raymond, J. C,& van Ballegooijen, A. A., The Role of Magnetic Reconnection in the Observable Features of Solar Eruptions, Astrophys. J.,2004,602,422
    Lin, R. P., Dennis, B. R., Hurford, G. J., et al., The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), Solar Phys.,2002,210,3
    Lin, R. P., Krucker, S., Hurford, G. J., et al., RHESSI Observations of Particle Acceleration and Energy Release in an Intense Solar Gamma-Ray Line Flare, Astrophys. J.,2003,595, L69
    Lin, R. P., Energy Release and Particle Acceleration in Flares:Summary and Future Prospects, Space Sci. Rev.,2011,159:421-445
    Liu, R., Lee, J., Wang, T., et al., A Reconnecting Current Sheet Imaged in a Solar Flare, Astrophys. J. Lett,2010,723, L28
    Liu, W., Petrosian, V., Dennis, B. R.. k, Jiang, Y. W., Double Coronal Hard and Soft X-Ray Source Observed by RHESSI:Evidence for Magnetic Re-connection and Particle Acceleration in Solar Flares, Astrophys. J.,2013, 676,704
    Liu, W., Chen, Q. R., Petrosian, V., Plasmoid Ejections and Loop Contractions in an Eruptive M7.7 Solar Flare:Evidence of Particle Acceleration and Heating in Magnetic Reconnection Outflows,2013, Astrophys. J.,767,168
    Liu, Y., Luhmann, J.G., Bale, S.D., Lin, R.P., Relationship Between a Coronal Mass Ejectioin-Driven Shock and a Coronal Metric Type II Burst, Astro-phys. J.,2009,691:151.
    Llebaria, A., Saez, F., Lamy, P., Robelus, S., Boursier, Y., SOHO-17.10 Years of SOHO and Beyond, ESA SP-617,135.1 (in CDROM),2006
    Low, B. C., Models of partially open magnetospheres with and without magne-todisks, Astrophys. J.,1986,310,953
    Low, B. C., Hundhausen, J. R., Magnetostatic structures of the solar corona. II. The magnetic topology of quiescent prominences, Astrophys. J.,1995, 443:818-836
    Ma, S., Raymond, J. C., Golub, L., et al., Observations and Interpretation of a Low Coronal Shock Wave Observed in the EUV by the SDO/AIA, Astrophys. J.,2011,738160
    Magdalenic, J., Vrsnak, B., Pohjolainen, S., Temmer, M., Aurass, H., Lehtinen, N. J., A Flare-Generated Shock during a Coronal Mass Ejection on 24 December 1996, Solar Phys.,2008,253:305.
    Magdalenic, J., Marque, C., Zhukov, A. N., Vrsnak, B., Zic, T. Origin of Coronal Shock Waves Associated with Slow Coronal Mass Ejections, Astrophys. J., 2010,718:266.
    Maia, D., Pick, M., Vourlidas, A., Howard, R., Development of Coronal Mass Ejections:Radio Shock Signatures, Astrophys. J.,2000,528:49.
    Malitson, H. H., Fainberg, J., Stone, R. G., Observation of a Type Ⅱ Solar Radio Burst to 37 R(?), Astrophysical Letters,1973,14:111
    Mancuso, S., Abbo, L., Bifurcation of the metric type Ⅱ radio emission associ-ated with the giant solar flare of April 2 2001, Astron. Astrophys.,2004, 415:17.
    Mancuso, S.,&; Raymond, J. C., Coronal transients and metric type Ⅱ radio bursts I. Effects of geometry, Astron. Astrophys.,2004,413,363
    Mann, G., Klassen. A., Estel, C.,&:Thompson, B. J., Coronal Transient Waves and Coronal Shock Waves, ESA Special Publications. Edited by J.-C. Vial and B. Kaldeich-Schumann,1999,446,477
    Mann, G., Klassen, A., Aurass, H.,& Classen, H.-T., Formation and develop-ment of shock waves in the solar corona and the near-Sun interplanetary space, Astron. Astrophys.,2003,400,329
    Mann, G., & Klassen, A., Electron Beams Generated by Shock Waves in the Solar Corona, Astron. Astrophys.,2005,441,319
    Mann, G., Warmuth, A.,& Aurass, H., Generation of highly energetic electrons at reconnection outflow shocks during solar flares, Astron. Astrophys., 2009,494,669
    Maricic, D., Vrsnak, B., Stanger, A. L., et al., Acceleration Phase of Coronal Mass Ejections:Ⅱ. Synchronization of the Energy Release in the Associated Flare, Solar Phys.,2007,241,99
    Marsch, E., Kinetic Physics of the Solar Corona and Solar Wind, Living Rev. in Solar Phys.,2006,3,1
    Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., Ogawara, Y., A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection, Nature,1994,371,495-497
    McAllister, A. H., Hundhausen, A. J., The Relation of YOHKOH Coronal Ar-cades Events to Coronal Streamers and CMEs, In:Balasubramanian, K.S., Keil, S.L., Smartt, R.N. (eds.) Solar Drivers of the Interplanetary and Ter-restrial Disturbances, ASP Conf. Ser.95,171,1996
    McKenzie, D. E., Supra-arcade Downflows in Long-Duration Solar Flare Events, Solar Phys.,2000,195,381
    McLean, D. J., Band splitting in type Ⅱ solar radio, Pro. Astron. Soc. Aus., 1967,1:47.
    McLean, D. J.,&:Labrum, N. R., Solar radiophysics:studies of emission from the sun at metre wavelengths, Cambridge University Press,1985
    Melrose, D. B., Brown, J. C., Precipitation in trap models for solar hard X-ray bursts, Mon. Not. Roy. Astron. Soc.,1976,176,15-30
    Miller, J. A., Larosa, T. N., Moore, R. L., Stochastic Electron Acceleration by Cascading Fast Mode Waves in Impulsive Solar Flares, Astrophys. J., 1996,461,445
    Miller, J. A., Cargill, P. J., Emslie, A. G., et al., Critical issues for understanding particle acceleration in impulsive solar flares, J. Geophys. Res.,1997,102, 14631
    Minoshima, T., Yokoyama, T., Mitani, N., Comparative Analysis of Nonthermal Emissions and Electron Transport in a Solar Flare, Astrophys. J.,2008, 673,598
    Moore, R.L.&:LaBonte, B.J., The filament eruption in the 3B flare of July 29, 1973:Onset and magnetic field configuration, in Solar and Interplanetary Dynamics, Cambridge, Mass., USA, August 27-31,1979, (Eds.) Sheridan, K.V., Dulk, G.A., vol.91 of IAU Symposia,1980, pp 207-210
    Moses, D., Droge, W., Meyer, P.,&; Evenson, P., Characteristics of energetic solar flare electron spectra, Astrophys. J.,1989,346,523
    Nakajima, H., Nishio, M., Enome, S., et al., The Nobeyama radioheliograph, Proc. IEEE,1994,82,701
    Nelson, G. J., & Melrose, D. B., Type II bursts,1985, in Solar Radiophysics, ed.
    Newbury, J. T., Russell, C. T., and Gedalin, M., The ramp widths of high-Mach-number, quasi-perpendicular collisionless shocks, J. Geophys. Res., 1998,103,29581
    Newkirk, G. Jr., The Solar Corona in Active Regions and the Thermal Origin of the Slowly Varying Component of Solar Radio Radiation, Astrophys. J., 1961,133:983.
    Nishizuka, N., & Shibata, K., Fermi Acceleration in Plasmoids Interacting with Fast Shocks of Reconnection via Fractal Reconnection, PRL,2013,110, 051101
    Ontiveros, V.,& Vourlidas, A., Quantitative Measurements of Coronal Mass Ejection-Driven Shocks from LASCO Observations, Astrophys. J.,2009, 693,267
    Ohyama, M.,& Shibata, K., X-Ray Plasma Ejection Associated with an Im-pulsive Flare on 1992 October 5:Physical Conditions of X-Ray Plasma Ejection, Astrophys. J.,1998,499,934
    Oka, M., Terasawa, T., Seki, Y., et al., Whistler critical Mach number and electron acceleration at the bow shock:Geotail observation, Geophys. Res. Lett,2006,33, L24104
    Park, B. T., Petrosian, V., Schwartz, R. A., Stochastic Acceleration and Photon Emission in Electron-dominated Solar Flares, Astrophys. J.,1997,489,358
    Parker, E. N., Dynamics of the Interplanetary Gas and Magnetic Fields., As-trophys. J.,128,664,1958
    Parker, E. N., The passage of energetic charged particles through interplanetary space, Planetary and Space Science,1965,13,9-49
    Patzold, M., Bird, M. K., Volland, H., Levy, G. S., Seidel, B. L., Stelzried, C. T., The mean coronal magnetic field determined from HELIOS Faraday rotation measurements, Solar Phys.,1987,109:91.
    Payne-Scott, D. E., Yabsley, R., Bolton, J. G., Relative Times of Arrival of Bursts of Solar Noise on Different Radio Frequencies, Nature,1947,160, 256
    Pesses, M.E., Eichler, D., Jokipii, J.R., Cosmic ray drift, shock wave accelera-tion, and the anomalous component of cosmic rays,1981, Astrophys. J., 246L,85
    Press, W. H., Flannery, B. P., Teukolsky, S. A.,& Vetterling, W. T., Numerical Recipes (Cambridge:Cambridge Univ. Press),1986
    Pick, M.,& Vilmer, N., Sixty-five years of solar radioastronomy:flares, coronal mass ejections and Sun Earth connection, AARv,2008,16:1.
    Pizzo, V. J., Interplanetary shocks on the large scale-A retrospective on the last decade's theoretical efforts, in AGU Geophys. Monograph 35, Colli-sionless Shocks in the Heliosphere:Reviews of Current Research, ed. B. T. Tsurutani & R. G. Stone (Washington, DC:AGU),1985,51.
    Prestage, N. P., Luckhurst, R. G., Paterson, B. R., Bevins, C. S.,& Yuile, C. G., A new radiospectrograph at Culgoora, Solar Phys.,1994,150,393
    Pulupa, M.,& Bale, S. D., Structure on Interplanetary Shock Fronts:Type Ⅱ Radio Burst Source Regions, Astrophys. J.,2008,676,1330
    Pulupa, M., Langmuir Waves and Electron Acceleration at Heliospheric Shocks, PhD thesis, University of California, Berkeley,2010
    Qiu, J., Wang, H. M.. Cheng, C. Z.,& Gary, D. E., Magnetic Reconnection and Mass Acceleration in Flare-Coronal Mass Ejection Events, Astrophys. J., 2004,604,900
    Qiu, J., Yurchyshyn, V. B., Magnetic Reconnection Flux and Coronal Mass Ejection Velocity, Astrophys. J.,2005,634, L121-L124
    Ramesh, R., Kathiravan, C., Sastry, Ch. V., Estimation of Magnetic Field in the Solar Coronal Streamers Through Low Frequency Radio Observations, Astrophys. J.,2010,711:1029.
    Rice, W. K. M., Zank, G. P., Li, G., Particle acceleration and coronal mass ejection driven shocks:Shocks of arbitrary strength, J. Geophys. Res., 2003,108,1082
    Rieger, E.,& Marschhauser, H.1990, in Proc. of the Third Max'91 Workshop, ed. R. M. Wingler & A. L. Kiplinger,68
    Rieger, E., Gan, W. Q., Marschhauser, H., Gamma-Ray Line Versus Continuum Emission of Electron-Dominated Episodes During Solar Flares, Solar Phys., 1998,183,123
    Reiner, M. J., Vourlidas, A., & Cyr, O. C. St. et al., Constraints on Coronal Mass Ejection Dynamics from Simultaneous Radio and White-Light Ob-servations, Astrophys. J.,2003,590:533.
    Reiner, M. J., Krucker, S., Gary, D. E, et al., Radio and White-Light Coronal Signatures Associated with the RHESSI Hard X-Ray Event of 2002 July 23, Astrophys. J.,2007,657,1107-1116
    Richardson, I. G., Energetic Particles and Corotating Interaction Regions in the Solar Wind, Space Sci. Rev.,2004,111,267
    Roussev, I. I., Sokolov, I. V., Forbes, T. G., et al., A Numerical Model of a Coronal Mass Ejection:Shock Development with Implications for the Acceleration of GeV Protons, Astrophys. J.,2004,605, L73
    Saito, K., A non-spherical axisymmetric model of the solar K corona of the minimum type, Ann. Tokyo Astr. Obs.,1970,12:53.
    Saito, K., Poland, A. I.,& Munro, R. H.,A study of the background corona near solar minimum, Solar Phys.,1977,55:121.
    Sastry, Ch. V.,, Polarization of the Thermal Radio Emission from Outer Solar Corona, Astrophys. J.,2009,697:1934.
    Schmit, D. J., Gibson, S. E., Tomczyk, S. et al., Large-Scale Flows in Promi-nence Cavities, Astrophys. J. Lett,2009,700, L96
    Schmidt, J. M.,& Gopalswamy, N., Synthetic radio maps of CME-driven shocks below 4 solar radii, J. Geophys. Res.,2008,113:A08104
    Schmidt, J. M.,& Cairns, I. H., Type Ⅱ radio bursts:1. New entirely analytic formalism for the electron beams, Langmuir waves, and radio emission,,, J. Geophys. Res.,2012a,117,4106
    Schmidt, J. M.,& Cairns, I. H., Type Ⅱ radio bursts:2. Application of the new analytic formalism, J. Geophys. Res.,2012b,117,11104
    Schmidt, J. M., Cairns, I. H.,& Hillan, D.S., Prediction of Type II Solar Ra-dio Bursts by Three-dimensional MHD Coronal Mass Ejection and Kinetic Radio Emission Simulations, Astrophys. J. Lett,2013,773, L30
    Schmidt, J. M.,& I. H. Cairns, Type II solar radio bursts predicted by 3-D MHD CME and kinetic radio emission simulations, J. Geophys. Res.,2014,119, 69-87
    Sheeley, N. R. Jr., et al., Measurements of Flow Speeds in the Corona between 2 and 30 R(?), Astrophys. J.,1997,484:472.
    Schatten, K. H., Wilcox, J. M., Ness, N. F., A model of interplanetary and coronal magnetic fields, Solar Phys.,1969,6:442.
    Scholer, M., & Burgess, D., Transition scale at quasiperpendicular collisionless shocks:Full particle electromagnetic simulations, Phys. Plasmas,2006,13, 062101
    Schrijver, C. J.,& De Rosa, M. L., Photospheric and heliospheric magnetic fields, Solar Phys.,2003,212:165.
    Schwartz, S. J., Henley, E., Mitchell, J., Krasnoselskikh, V., Electron Temper-ature Gradient Scale at Collisionless Shocks, PRL,2011,107,215002
    Schwenn, R., Inhester, B., Plunkett, S. P. et al., First view of the extended green-line emission corona at solar activity minimum using the Lasco-C1 coronagraph on SOHO, Solar Phys.,1997,175:667-684
    Scudder, J. D., Aggson, T. L., Mangeney, A., et al., The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. II-Dissipative fluid electrodynamics, J. Geophys. Res.,1986,91,1053
    Shanmugaraju, A., Moon, Y. J., Dryer, M., Umapathy, S., An Investigation of Solar Maximum Metric Type II Radio Bursts:do two Kinds of Coronal Shock Sources Exist?, Solar Phys.,2003,215,161
    Shanmugaraju, A., Moon, Y. J., Cho, K. S., et al, Multiple type Ⅱ solar radio bursts, Solar Phys.,2005,232:87.
    Share, G. H., Murphy, R. J., Skibo, J. G., et al., High-Resolution Observation of the Solar Positron-Electron Annihilation Line, Astrophys. J.,2003,595, L85
    Share, G. H.& Murphy R. J., Gamma Radiation From Flare-Accelerated Par-ticles Impacting the Sun, Geophys. Monogr. Ser., vol.165, edited by N. Gopalswamy, R. Mewaldt, and J. Torsti, pp.177-188, AGU, Washington, D. C.,2006
    Sheeley, N. R., Jr., Walters, J. H., Wang, Y. M.,& Howard, R. A., Continu-ous tracking of coronal outflows:Two kinds of coronal mass ejections, J. Geophys. Res.,1999,104,24739
    Sheeley, N. R., Hakala, W. N., Wang, Y. M., Detection of coronal mass ejection associated shock waves in the outer corona, J. Geophys. Res.,2000.105: 5081.
    Sheeley, N. R., Wang, Y. M., In/out paris and the detachment of coronal stream-er, Astrophys. J.,2007,655:1142.
    Sheeley, N. R., Jr., Lee, D. D.-H., Casto, K. P., Wang, Y.-M., Rich, N. B., The Structure of Streamer Blobs, Astrophys. J.,2009,694,1471-1480
    Shen, C. L., Liao, C. J., Wang, Y. M., Ye, P. Z., & Wang, S., Source Re-gion of the Decameter-Hectometric Type Ⅱ Radio Burst:Shock-Streamer Interaction Region, Solar Phys.,2013,282:543.
    Shih, A. Y., Lin, R. P., & Smith, D. M., RHESSI Observations of the Pro-portional Acceleration of Relativistic>0.3 MeV Electrons and>30 MeV Protons in Solar Flares, Astrophys. J. Lett,2009,698, L152
    Shiota, D., Yamamoto, T. T., Sakajiri, T., et al., Slow and Fast MHD Shocks Associated with a Giant Cusp-Shaped Arcade on 1992 January 24, Pub. Astron. Soc. Japan,2003,55, L35
    Silva, A. V. R., Gary, D. E., White, S. M., Lin, R. P., de Pater, I, First Images of Impulsive Millimeter Emission and Spectral Analysis of the 1994 August 18 Solar Flare, Solar Phys.,1997,175,157
    Silva, A. V. R., Wang, H.,& Gary, D. E., Correlation of Microwave and Hard X-Ray Spectral Parameters, Astrophys. J.,2000,545,1116
    Smerd, S. F., Sheridan, K. V.,& Stewart, R. T., On Split-Band Structure in Type II Radio Bursts from the Sun (presented by S.F. Smerd), in IAU Symp.57, ed. G. A. Newkirk,1974,389.
    Smith, E. J.,&:Wolfe, J. H., Observations of interaction regions and corotating shocks between one and five AU-Pioneers 10 and 11, Geophys. Res. Lett., 1976,3,137
    Smith, C. W., Mullan, D. J., Ness, N. F., Skoug, R. M., Steinberg, J., Day the solar wind almost disappeared:Magnetic field fluctuations, wave refraction and dissipation, J. Geophys. Res.,2001,106,18625
    Somov, B. V.,& Kosugi, T., Collisionless Reconnection and High-Energy Par-ticle Acceleration in Solar Flares, Astrophys. J.,1997,485,859
    Song, H. Q., Chen, Y., Liu, K., Feng, S. W., & Xia, L. D., Quasi-Periodic relases of streamer blobs and velocity variability of the slow solar wind near the sun, Solar Phys.,2009,258:129.
    Song, H. Q., Kong, X. L., Chen, Y., Li, B., Li, G., Feng, S. W.,& Xia, L. D., A Statistical Study on the Morphology of Rays and Dynamics of Blobs in the Wake of Coronal Mass Ejections, Solar Phys.,2012,276:261.
    Song, H. Q., Chen, Y., Ye, D., A Study of Fast Flareless Coronal Mass Ejections, Astrophys. J.,2013,773,129
    Spangler, S. R., The Strength and Structure of the Coronal Magnetic Field, Space Sci. Rev.,2005,121:189.
    Stawicki,O., Gary, S. P., Li, H., Solar wind magnetic fluctuation spectra:Dis-persion versus damping, J. Geophys. Res.,2001,106,8273
    Strachan, L., Suleiman, R., Panasyuk, A. V., Biesecker, D. A.,& Kohl, J. L., Empirical Densities, Kinetic Temperatures, and Outflow Velocities in the Equatorial Streamer Belt at Solar Minimum, Astrophys. J.,2002,571: 1008.
    St. Cyr, O. C., Plunkett, S. P., Michels, D. J., et al., Properties of coronal mass ejections:SOHO LASCO observations from January 1996 to June 1998, J. Geophys. Res.,2000,105(A8),18169-18185
    Sturrock, P. A., Model of the high-energy phase of solar flares, Nature,1966, 211:695.
    Su, Y., Veronig, A. M., Holman, G. D., et al., Imaging coronal magnetic-field reconnection in a solar flare, Nature Physics,2013,9,489-493
    Subramanian, P., Dere, K. P., Rich, N. B., Howard, R. A., The ralationship of coronal mass ejections to streamers, J. Geophys. Res.,1999,104:22321.
    Sui, L.,& Holman, G. D., Evidence for the Formation of a Large-Scale Current Sheet in a Solar Flare, Astrophys. J.,2003,596, L251
    Suri, A. N., Chupp, E. L., Forrest, D. J., Reppin, C., Observations of solar gamma ray continuum between 360 keV and 7 MeV on August 4 1972, Solar Phys.,1975,43,415
    Tang, J. F., Wu, D. J., Tan, C. M., Electron Cyclotron Maser Emission in Coronal Arches and Solar Radio Type V Bursts, Astrophys. J.,2013,779, 83
    Tousey, R., in Space Research ⅪⅢ, Vol.2, p.713-730, ed. M. J. Rycroft & S. K. Runcorn,1973,713
    Treumann, R. A.,&; Labelle, J., Band splitting in solar type II radio bursts, Astrophys. J.,1992,399, L167
    Trottet, G., Vilmer, N., Barat, C., et al., A multiwavelength analysis of an electron-dominated gamma-ray event associated with a disk solar flare, As-tron. Astrophys.,1998,334,1099
    Tsuneta, S., Hara, H., Shimizu, T., et al., Observation of a solar flare at the limb with the YOHKOH Soft X-ray Telescope, Pub. Astron. Soc. Japan, 1992,44, L63
    Tsuneta, S.& Naito, T., Fermi Acceleration at the Fast Shock in a Solar Flare and the Impulsive Loop-Top Hard X-Ray Source, Astrophys. J. Lett., 1998,495, L67
    Uzzo, M., Strachan, L., Vourlidas, A., Ko, Y. K., Raymond, J. C., Physical properties of a 2003 april quiescent streamer, Astrophys. J.,2006,645: 720.
    van de Hulst, H. C., The electron density of the solar corona, Bull. Astron. Inst. Neth.,1950,11:135.
    Vestrand, W. T., High-energy continuum emission from solar flares, Solar Phys., 1988,118,95
    Vestrand, W. T., Share, G. H., Murphy, R. J., et al., The Solar Maximum Mission Atlas of Gamma-Ray Flares, Astrophys. J. Suppl. Ser.,1999,120, 409
    Vilmer, N., Trottet, G., Barat, C., et al., Hard X-ray and gamma-ray obser-vations of an electron dominated event associated with an occulted solar flare, Astron. Astrophys.,1999,342,575
    Vladimirov, A., Modeling Magnetic Field Amplification in Nonlinear Diffusive Shock Acceleration, PhD thesis, North Carolina State University,2009
    Vourlidas, A., Wu, S. T., Wang, A. H., Subramanian, P.,& Howard, R. A., Direct Detection of a Coronal Mass Ejection-Associated Shock in Large Angle and Spectrometric Coronagraph Experiment White-Light Images, Astrophys. J.,2003,598:1392.
    Vrsank, B., Aurass, H., Magdalenic, J., Gopalswamy, N., Band-splitting of coro-nal and interplanetary type Ⅱ bursts. I. Basic properties, Astron. Astro-phys.,2001,337:321.
    Vrsnak, B., Magdalenic, J., Aurass, H., Mann, G., Band-splitting of coronal and interplanetary type Ⅱ bursts. Ⅱ. Coronal magnetic field and Alfv6n velocity, Astron. Astrophys.,2002,396:673.
    Vrsnak, B., Magdalenic, J., Zlobec, P., Band-splitting of coronal and inter-planetary type Ⅱ bursts. Ⅲ. Physical conditions in the upper corona and interplanetary space, Astron. Astrophys.,2004,413:753.
    Vrsnak, B., Sudar, D.,& Ruzdjak, D., The CME-flare relationship:Are there really two types of CMEs?, Astron. Astrophys.,2005,435.1149
    Vrsank, B., Oliver, E. W., Origin of Coronal Shock Waves, Solar Phys.,2008, 253:3.
    Wang, Y. M., Sheeley, N. R., Rich, N. B., Evolution of coronal streamer struc-ture during the rising phase of solar cycle 23, Geophys. Res. Lett.,2000a, 27:149.
    Wang, Y. M., Sheeley, N. R., Socker, D. J., Howard, R. A., Rich, N. B., The dynamical nature of coronal streamers, Geophys. Res. Lett,2000b,105: 25133.
    Wang, Y. M., Sheeley, N. R. Jr., & Rich, N. B., Coronal Pseudostreamers, Astrophys. J.,2007,658:1340.
    Wang, Y. M., Sheeley, N. R. Jr., Spinning Motions in Coronal Cavities, Astro-phys. J. Lett,2010,719, L181
    Wang, Y. M., & Zhang, J., A Comparative Study between Eruptive X-Class Flares Associated with Coronal Mass Ejections and Confined X-Class Flares, Astrophys. J.,2007,665,1428
    Warmuth, A., Mann, G., A model of the Alfven speed in the solar corona, Astron. Astrophys.,2005,435:1123.
    Warmuth, A., Mann, G., Aurass, H., Modelling shock drift acceleration of elec-trons at the reconnection outflow termination shock in solar flares. Obser-vational constraints and parametric study, Astron. Astrophys.,2009,494, 677
    White, S. M., Krucker, S., Shibasaki, K., et al., Radio and Hard X-Ray Images of High-Energy Electrons in an X-Class Solar Flare, Astrophys. J.,2003, 595,111
    White, S. M., Bastian, T. S., Bradley, R., Parashare, C.,& Wye, L., in ASP Conf. Ser.237345, From Clark Lake to the Long Wavelength Array:Bill Erickson's Radio Science,238 ed. N Kassim et al. (San Francisco:ASP), 176,2006
    White, S. M., Solar Radio Bursts and Space Weather, Asian Journal of Physics, 2007,16,189-207
    White, S. M., Benz, A. O., Christe, S., et al., The Relationship Between Solar Radio and Hard X-ray Emission, Space Sci. Rev.,2011,159,225
    Wiegelmann, T., Nonlinear force-free modeling of the solar coronal magnetic field, J. Geophys. Res.,2008,113:A03S02.
    Wild, J. P.,& McCready, L. L., Observations of the Spectrum of High-Intensity Solar Radiation at Metre Wavelengths. I. The Apparatus and Spectral Types of Solar Burst Observed, Aust. J. of Phys.,1950,3:387.
    Wild, J. P., Murray, J. D., Rowe, W. C., Harmonics in the Spectra of Solar Radio Disturbances, Aust. J. of Phys.,1954,7:439.
    Wilson, L. B., Ⅲ, Koval, A., Szabo, A., et al., Observations of electromagnetic whistler precursors at supercritical interplanetary shocks, Geophys. Res. Lett,2012,39, L08109
    Workman, J. C., Blackman, E. G.,&; Ren, C., Simulations reveal fast mode shocks in magnetic reconnection outflows, Phys. Plasmas,2011,18,092902
    Wu, C. S., A fast Fermi process-Energetic electrons accelerated by a nearly perpendicular bow shock, J. Geophys. Res.,1984,89:8857.
    Wu, C. S., Kinetic cyclotron and synchrotron maser instabilities-Radio emis-sion processes by direct amplification of radiation, Space Sci. Rev.,1985, 41,215-298
    Wu, C. S., Wang, C. B., Yoon, P. H., Zheng, H. N.,& Wang, S., Generation of Type Ⅲ Solar Radio Bursts in the Low Corona by Direct Amplification, Astrophys. J.,2002,575,1094
    Wu, C. S., Reiner, M. J., Yoon, P. H., Zheng, H. N., & Wang, S., On Low-Frequency Type Ⅲ Solar Radio Bursts Observed in Interplanetary Space, Astrophys. J.,2004.605,503
    Wu, C. S., Wang, C. B., Zhou, G. C., Wang, S., & Yoon, P. H., Altitude-dependent Emission of Type Ⅲ Solar Radio Bursts, Astrophys. J.,2005, 621,1129
    Yan, Y. H., & Sakurai, T., New Boundary Integral Equation Representation for Finite Energy Force-Free Magnetic Fields in Open Space above the Sun, Solar Phys.,2000,195:89.
    Yashiro, S., Gopalswamy, N., Michalek, G., & Howard, R. A., Properties of coronal mass ejections and relationship with solar flares, Bulletin of the American Astronomical Society,2002,34,695
    Yashiro, S., Gopalswamy, N., Akiyama, S., Michalek, G., & Howard, R. A., Vis-ibility of coronal mass ejections as a function of flare location and intensity, J. Geophys. Res.,2005,110, A12S05
    Yeh, C. T., Ding, M. D., & Chen, P. F., Kinetic Properties of CMEs Corrected for the Projection Effect, Solar Phys.,2005,229,313
    Yokoyama, T., Akita, K., Morimoto, T., Inoue, K.,& Newmark, J., Clear Evidence of Reconnection Inflow of a Solar Flare, Astrophys. J. Lett., 2001,546, L69
    Yokoyama, T.,& Shibata, K., Magnetohydrodynamic Simulation of a Solar Flare with Chromospheric Evaporation Effect Based on the Magnetic Re-connection Model, Astrophys. J.,2001,549,1160
    Yoshimori, M., Watanabe, H., Nitta, N., Observations of solar flare photon spectra from 20 keV to 7 MeV, JPSJ,1985,54,4462
    Yoshimori, M., Okudaira, K., Hirasima, Y., et al., The Wide Band Spectrometer on the SOLAR-A, Solar Phys.,1991,136, p69-88
    Yoshimori, M., Takai, Y., Morimoto, K., Suga, K., Ohki, K., Characteristics of two gamma-ray flares observed with the Wide-Band Spectrometer aboard YOHKOH, Pub. Astron. Soc. Japan,1992,44, L107
    Yoon, P. H., Wu, C. S.,& Wang, C. B., Generation of Type Ⅲ Solar Radio Bursts in the Low Corona by Direct Amplification. Ⅱ. Further Numerical Study, Astrophys. J.,2002,576,552
    Zank, G. P., Rice, W. K. M., le Roux, J. A. and Matthaeus, W. H., The Injection Problem for Anomalous Cosmic Rays, Astrophys. J.,2001,556,494
    Zimovets, I., Vilmer, N., Chian, A. C.-L., Sharykin, Ⅰ., Struminsky, A., Spatially resolved observations of a split-band coronal type Ⅱ radio burst, Astron. Astrophys.,2012,547:6.
    Zlotnik, E. Ya., Klassen, A., Klein, K.-L., Aurass, H., Mann, G., Third harmonic plasma emission in solar type Ⅱ radio bursts, Astron. Astrophys.,1998, 331:1087.
    Zhang, J., Dere, K. P., Howard, R. A., Kundu, M. R., White, S. M., On the Temporal Relationship between Coronal Mass Ejections and Flares, As-trophys. J.,2001,559:452.
    Zhang, J., Cheng, X., & Ding, M. D., Observation of an Evolving Magnetic Flux Rope Before and During A Solar Eruption, Nature Communications, 2012,3,747 (5pp)
    Zhao, G. Q., Chen, L., Yan, Y. H., Wu, D. J., Effects of Alfven Waves on Electron Cyclotron Maser Emission in Coronal Loops and Solar Type I Radio Storms, Astrophys. J.,2013a,770,75
    Zhao, G. Q., Chen, L., Wu, D. J., Solar Type Ⅲ Radio Bursts Modulated by Homochromous Alfven Waves, Astrophys. J.,2013b,779,31
    Zharkova, V. V., Arzner, K., Benz, A. O., et al., Recent Advances in Under-standing Particle Acceleration Processes in Solar Flares. Space Sci. Rev., 2011.159,357

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700