用户名: 密码: 验证码:
天冬酰胺合成酶在肝细胞癌中的表达与预后分析及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝细胞癌(HCC)是世界范围内最常见恶性肿瘤,其发病率在所有恶性肿瘤中排第五位,死亡率位于第三位。HCC也是我国常见高发肿瘤之一,每年新增患者占全世界新增患者的一半,且发病率逐年上升。HCC高复发、高转移、对化疗敏感性低、预后差,是全球最常见的致死性恶性肿瘤之一。HCC同乙型肝炎病毒(HBV)感染、丙型肝炎病毒(HCV)感染、酗酒以及黄曲霉毒素污染等因素相关,其发生与发展是由体内多种基因参与的,多种步骤协同作用的一个复杂过程。
     手术切除、肝脏移植、局部消融以及经皮肝动脉化疗栓塞术(TACE)是目前HCC的常用治疗方法,其中,外科根治性切除是目前HCC首选治疗方法之一,但术后极易复发,并成为死亡的主要原因。手术切除及肝移植是目前治疗HCC最为有效的方法,但是HCC患者在患病早期症状并不明显,并且缺少特异性高的肿瘤标志物以及供肝缺乏等原因,只有少数病人能够获得手术切除或者肝移植的机会,加之HCC具有高度恶性的生物学行为,手术后容易出现肿瘤的复发以及转移,从而影响患者生存率,在全世界范围内,HCC的5年生存率仅有3%-5%,HCC术后5年生存率也仅有30%-40%。此外,对化疗药物的不敏感,也是HCC患者生存率低的一个原因。目前临床上常用的TNM分期和BCLC分期,是HCC预后的重要参考指标,但传统的临床分期来预测肝癌的预后是有缺陷的,HCC的预后,与其自身分子生物学行为密切相关。此外,传统的HCC病理学诊断、分型以及分类方法也存在局限性,无法从分子水平上体现肝癌的生物学行为,无法充分反映HCC的真实本质,更无法准确预测HCC的分子生物学行为。因此,寻找能够反映HCC分子生物学特征的标志,并对其功能进行研究,是目前肝癌研究的重要方向。
     天冬酰胺合成酶(ASNS)主要定位于胞浆中,依赖ATP催化天冬氨酸与谷氨酰胺生成天冬酰胺与谷氨酸。ASNS在仓鼠的ts11细胞中发挥促进细胞通过G1期从而完成细胞周期的作用;ASNS过表达可以减轻胰腺癌细胞因为葡萄糖剥夺或者顺铂诱导的肿瘤细胞的凋亡,提示其在胰腺癌细胞中可能起到抗凋亡的作用;ASNS在急性淋巴细胞白血病以及部分急性髓性细胞白血病对天冬酰胺酶治疗耐药的病人中的表达升高,故ASNS的表达强弱被认为同天冬酰胺酶是否耐药相关;ASNS也可以作为在卵巢癌及胰腺癌的细胞系中天冬酰胺酶治疗敏感性的生物学标志,ASNS低表达的肿瘤细胞对天冬酰胺酶更敏感;此外,还有研究认为ASNS在去势手术耐受的前列腺癌(CRPC)中高表达,利用ASNS抑制剂来耗竭天冬酰胺可能是治疗CRPC病人的一个新的方法策略。
     我们前期通过蛋白组学技术筛选出ASNS在肝细胞癌肿瘤组织中特异性高表达,提示ASNS可能在肝细胞癌的发生发展中发挥作用。目前对ASNS在肝细胞癌中的表达情况、预后分析以及功能研究尚无文献报道。因此,本研究的目的一方面研究ASNS在肝癌中的表达情况并结合临床资料探讨其表达与肝癌发生发展的关系;另一方面研究ASNS在肝癌中的生物学作用及机制;为深入了解肝细胞癌的生物学行为以及为可能的靶向治疗提供理论依据。
     实验方法:
     1.运用real-timePCR、westernblot以及IHC等方法检测肝细胞癌、癌旁及正常肝组织中ASNS的表达情况;
     2.IHC方法检测大鼠DEN诱癌过程中ASNS在肝脏中表达的动态变化过程;
     3.结合临床资料统计分析ASNS与相关临床指标及预后之间的关系;
     4.资料收集及统计方法:
     (1)随机选取2002-2007年在我院行肝癌根治术的原发性肝细胞癌患者标本269例,制作组织芯片,并收集完善病史及随访资料;以免疫组化方法检测组织芯片标本中ASNS的表达,并统计分析ASNS的表达与肝癌患者各项临床特征(肿瘤大小、血管侵犯、肝内播散和远处转移等)及远期生存(无瘤生存率、总生存率和生存时间等)的关系。
     (2)用SPSS17.0软件进行统计分析。结果以median(Q1-Q3)表示。χ2检验或Fisher确切概率法用来进行定性资料的比较。组间定量分析用wilcoxon配对秩检验。相关性分析采用spearman秩相关。累计生存和复发率的计算采用Kaplan-Meier,生存曲线用Log-rank绘制并进行生存分析。P<0.05视为统计显著。
     5.构建ASNS过表达及RNA干扰质粒并转染肝癌细胞系,westernblot鉴定效果;构建ASNSRNA干扰慢病毒并感染肝癌细胞系,获得ASNS稳定敲减的MHCC97H及MHCCLM3细胞株。
     6.CCK-8方法检测ASNS高低表达对多种肝癌细胞系增殖的影响;
     7.平板克隆形式实验检测ASNS高低表达细胞株的克隆形成能力;
     8.Transwell方法检测ASNS高低表达细胞株的迁移及侵袭能力;
     9.spheroid克隆形成实验检测ASNS高低表达对细胞株的干细胞自我更新能力的影响;
     10.用westernblot检测在TNFα与CHX刺激下ASNS高低表达对细胞凋亡的影响;
     11.扩增ASNS高低表达稳转细胞系行裸鼠皮下荷瘤,观察肿瘤生长情况;
     12.ASNS高低表达稳转细胞株行裸鼠尾静脉注射,观察肺转移情况及裸鼠生存情况;
     13.CCK-8方法检测ASNS高低表达细胞株在天冬酰胺酶处理后的增殖能力;
     14.裸鼠皮下荷瘤后腹腔内注射天冬酰胺酶,观察ASNS高低表达细胞株肿瘤生长情况;
     15.观察高低表达ASNS肝癌细胞对抗外界刺激能力(H2O2)的影响;
     实验结果:
     1.ASNS在肝癌组织中高表达:
     (1)ASNS在58例原发性肝细胞癌组织中的mRNA表达水平显著高于及癌旁组织样本中,两者差别具有统计学意义(P=0.0008)。与18例正常肝组织相比,58对原发性肝细胞癌及癌旁组织样本中ASNS的mRNA表达水平显著增高,差别均有统计学意义(P=0.0036,P=0.0258)。58对原发性肝癌与癌旁组织中,ASNS的mRNA表达水平,癌组织中高于癌旁组织的有44对(44/58,76%)。
     (2)ASNS在10对肝癌及其癌旁组织样本中的蛋白表达,7对(70%)在癌组织中表达高于癌旁组织。
     (3)在269例肝癌病人组织芯片标本中,ASNS在肝癌组织中蛋白水平的表达高于癌旁组织及正常肝脏组织,差别具有统计学意义(P<0.01,P<0.01);
     2.在大鼠DEN诱癌过程中,ASNS在肝脏中的表达逐渐升高:IHC显示随着DEN诱癌时间延长,ASNS表达逐渐升高,在晚期肝硬化期及早期肝癌期ASNS的表达水平达到最高,随着时间的延长与肿瘤的进展,ASNS的表达水平下降,而对照组大鼠肝脏ASNS的表达无明显变化,始终低于DEN组。
     3.临床资料统计分析:
     (1)卡方检验显示ASNS在肝细胞癌中的表达水平与血清AFP水平、肿瘤直径、镜下血管侵犯、肿瘤包膜完整性、BCLC分期及TNM分期负相关,与术前白蛋白水平正相关;
     (2)ASNS表达与1,3,5年生存时间呈正相关并具有统计学意义,ASNS是影响肝癌患者术后总体生存率的独立预后保护因素(Hazardration0.744,95%CI0.565-0.979)。
     4.构建了ASNS过表达及RNA干扰质粒,构建了ASNS的RNA干扰慢病毒并分别构建和鉴定了MHCCLM3及MHCC97H高低表达的稳定细胞系;
     5.ASNS的差异表达对肝癌生物学功能的影响:
     (1)瞬时转染过表达ASNS抑制肝癌细胞增殖,ASNS敲减促进肝癌细胞增殖;
     (2)ASNS敲减增强肝癌细胞克隆隆形成能力;
     (3)ASNS过表达下调CyclinD1表达并引起细胞周期阻滞于G1期;ASNS敲减促进细胞周期的进展并上调CyclinD1表达;
     (4)ASNS敲减促进皮下荷瘤裸鼠的肿瘤增殖能力;
     (5)ASNS敲减增强肝癌细胞迁移能力及侵袭能力(P<0.01),过表达ASNS抑制肝癌细胞的迁移能力(P<0.01);
     (6)ASNS敲减增强尾静脉注射裸鼠的肝癌细胞的肺转移能力(P<0.01),增加其死亡率(P<0.05);
     (7)ASNS敲减抑制肝癌细胞的凋亡;
     (8)ASNS敲减可减轻肝癌细胞中的氧化应激;
     (9)ASNS敲减可增强肝癌细胞的自我更新能力(P<0.01)。
     6.ASNS敲减增强肝癌细胞对天冬酰胺酶的敏感性:
     (1)天冬酰胺酶对ASNS低表达的SMMC7721与PLC细胞株增殖的抑制明显强于ASNS高表达的MHCCLM3与MHCC97H细胞株;在天冬酰胺酶处理下,ASNS敲减的肝癌细胞增殖能力显著低于对照细胞株(P<0.01);
     (2)皮下注射ASNS敲减肝癌细胞的裸鼠经腹腔注射天冬酰胺酶,其肿瘤体积较皮下注射对照细胞组裸鼠显著减小(P<0.01)。
     结论:
     本研究发现ASNS在肝癌组织中高表达,与血清AFP水平、术前白蛋白水平、肿瘤直径、镜下血管侵犯、肿瘤包膜完整性、BCLC分期及TNM分期密切相关。ASNS是肝癌患者术后生存的独立预后因素,有望成为肝癌预后评估的一项有前景的指标。进一步体内和体外实验研究表明ASNS在肝癌发生过程中起抑制肿瘤细胞增殖、迁移、侵袭及自我更新,促进凋亡与增强氧化应激的作用,其抑制增殖可能通过抑制细胞周期素CyclinD1的表达而发挥其生物学作用。另外,ASNS的表达与天冬酰胺酶处理的敏感性有关,提示ASNS有可能成为肝细胞癌用天冬酰胺酶治疗的一个潜在的标志性分子。
Hepatocellular carcinoma (HCC) is one of the most common malignant neoplasms and the third leading cause of death from cancer worldwide. Despite many kinds of treatments, such as surgical resection, local ablation, transplantation, transcatheter arterial chemoembolization (TACE) and so on, the prognosis still remains dismal. Across all countries,5-year overall survival of HCC is only3-5%. The poor prognosis of patients with HCC is largely due to the high frequency of recurrence and metastasis after surgical resection, in addition to resistance to systemic chemotherapy. Therefore, the limited therapeutic options and poor prognosis have triggered the search for molecular markers related to clinical outcomes, which will provide new targets for intervention of progression of HCC.
     The asparagine synthetase (ASNS) gene, encoding the enzyme that catalyzes the biosynthesis of asparagine from aspartate in an ATP-dependent reaction for which glutamine is the nitrogen source. The transcription of ASNS gene is highly regulated by the nutritional status of the cell. Early studies showed that elevated expression of ASNS was correlated with drug resistance of leukemic cells to L-asparaginase, which is a universally used component of childhood acute lymphoblastic leukemia (ALL) and some forms of acute myeloblastic leukemia (AML) treatments. Similarly, ASNS was considered as a causal, predictive biomarker for L-asparaginase activity in ovarian cancer cell. Furthermore, it has also been showed that enhanced expression of ASNS protects pancreatic cancer cells from apoptosis induced by glucose deprivation and cisplatin. Recent studies suggested that ASNS was up-regulated in castration-resistant prostate cancer (CRPC) and depletion of asparagine using ASNS inhibitors might be a novel strategy for targeting CRPC cells. However, the expression and the functional roles of ASNS in solid tumours still remain uncertain, especially in HCC. The significance of ASNS expression level in the prognostic evaluation of HCC patients who undergo hepatectomy has not been reported yet. By proteomics approach, we identified ASNS higher expressed in HCC tumour tissues compared with normal liver specimens. Hence, it is meaningful to investigate the clinical significance and biological function of ASNS in the development of HCC.
     This study aimed to investigate the ASNS expression pattern and determine its contribution to HCC progression and clinical prognostic values. In addition, the functional role of ASNS in HCC development and its therapeutic potential were also addressed. The results indicated that expression of ASNS was significantly correlated with clinical characteristics, predicting HCC patients'outcome after surgical resection and chemotherapy target for HCC.
     In the present study, we investigated ASNS is overexpressed in HCC tumour specimens.By proteomics approach, we identified that ASNS protein level was much higher in HCC tumour tissues than normal liver specimens. Real-time RT-PCR assay was performed for transcripts of ASNS from frozen paired samples derived from58patients with HCC and18normal live tissues. The expression of ASNS mRNA varied greatly between tumour and their adjacent tissues, with76%(44of58) tumour tissues expression higher than normal like tissues. The upregulation of ASNS was further confirmed by Immunoblotting and immuneohistochemistry assay.
     ASNS protein was stained in liver tissues of the DEN carcinogenesis rat by immuneohistochemistry to observe the dynamic expression of ASNS in the process from hepatitis, cirrhosis to HCC. ASNS expression was significantly higher in DEN treated liver than control group after injecting DEN for8weeks, and up to highest expression in12-14weeks, which period is advanced cirrhosis and early HCC stage. While the ASNS expression was moderately decreased in16-20weeks, which period is advanced HCC stage. In accordance with the findings in animal model experiments, in clinical samples, high expression of ASNS was associated with smaller tumour size and early tumour stage and low ASNS expression was correlated with larger tumour size and advanced tumour stage.
     The relationship between ASNS expression levels in tumour tissues and the clinicopathological characteristics of269patients was examed in the TMA analysis. Pearson χ2test indicated that expression of ASNS was significantly correlated with serum AFP level (P=0.040), tumour size (P=0.002), microscopic vascular invasion (P=0.003), tumour encapsulation (P=0.007), TNM stage (P=0.039) and BCLC stage (P=0.039). Other clinical characteristics were not closely related to the expression of ASNS, including age, gender, tumour number, intrahepatic metastasis, distant metastasis, portal venous invasion, cirrhosis, and hepatitis background. Kaplan-Meier survival curves with comparisons of high ASNS expression versus low expression in269HCC patients are shown. ASNS expression levels were negatively correlated with1-year,3-year and5-year survival rates (52.6%,29.2%and25.3% for high ASNS expression versus37.4%,20.0%and13.9%for low expression; P=0.002,0.005and0.002). Additionally, the1-year,3-year and5-year disease-free survival rates in high ASNS expression patients were lower than those in low ASNS expression patients, however, no significant difference was observed.Univariate analysis of recurrence-related and survival-related clinicopathological variables revealed that ASNS and serum AFP levels were predictors for OS. Gender, HBV, tumour size, intrahepatic metastasis, portal venous invasion, distant metastasis, microscopic vascular invasion, encapsulation, TNM stage and BCLC stage were statistically correlated with both recurrence and survival. These individual parameters were further subjected to multivariate Cox proportional hazards model, which demonstrated that ASNS expression level, together with HBV, intrahepatic metastasis, microscopic vascular invasion and BCLC stage was strongly associated with OS. ASNS was an independent prognostic indicator for the survival of HCC patients (HR0.744,95%CI0.565-0.979, P=0.035).
     We used lentivirus delivered shRNA targeting ASNS to infect HCC cells, and constructed stably transfected cells. Also, HCC cells were transient transfected with GV142/ASNS vector. We found that overexpression of ASNS in HCC cells suppressed cell proliferation by CCK-8assay. Furthermore, ASNS knockdown revealed increased proliferation and colony formation in ASNS knockdown cells compared with that of control cells. The Cell cycle distribution demonstrated ASNS knockdown could hasten cell cycle progression In addition, we found Cyclin Dl protein decreased in overexpressed ASNS cells, while increased in knockdown cells. Stably transfected HCC cells were inoculated into flanks of nude mice and the effect of ASNS on xenograft tumour growth was also observed. Compared with control cells, ASNS knockdown cells showed a significant increase in tumour size. These results indicated that ASNS knockdown promoted HCC growth both in vitro and in vivo.
     Transwell experiments showed that depletion of ASNS markedly increased cell migration and invasion capacity. Restoration of ASNS expression in SMMC7721cells repressed cell migration. For further examining the effect of ASNS knockdown, stably transfected MHCC97H cells were injected into tail vein of nude mice. Six weeks later, ASNS knockdown resulted in significantly increased number and sizes of pulmonary metastatic lesions. Furthermore, ASNS knockdown group had a shorter survival period in comparison with control group. These results demonstrate an enhanced metastatic potential in low ASNS expression HCC cells. HCC cells were treated with L-asparaginase and cell proliferation was detected by CCK-8. Compared with cells with high ASNS (MHCCLM3and MHCC97H), L-asparaginase exerted a much higher effect on cells with low ASNS expression (SMMC7721and PLC). Moreover, in the detection of stably transfected HCC cells, it showed decreased proliferation in ASNS knockdown cells in the presence of L-asparaginase compared with control. Futhermore, the effect of L-asparaginase was also observed in vivo. Nude mice bearing MHCCLM3tumour xenografts were treated with L-asparaginase every other day by intraperitoneal injection. ASNS knockdown group revealed a delayed tumour formation and a significant reduction in tumour size compared with that of control group. These results revealed an increased sensitivity of low ASNS expression cells to L-asparaginase.
     In this study, we presented the upregulation of ASNS at both mRNA and protein levels in HCC. The association of ASNS expression with clinicopathological features was further investigated in HCC patients by TMA, which showed a significant correlation of ASNS expression with many clinical features, indicating low expression of ASNS was associated with malignant clinicopathological characteristics. In DEN carcinogenesis rat, ASNS was high expressed from inflammation stage to advanced HCC stage and reached a peak at advanced cirrhosis and early HCC stage. Moreover, moderated decreased ASNS expression was observed in advanced cancer stage in comparison with early cancer stage, which was validated by human HCC clinical specimens. The Kaplan-Meier analysis showed that patients with HCC, who had high ASNS expression in general, had better prognosis than those with low expression. Multivariate analysis revealed that ASNS expression level was an independent and significant prognostic indicator affecting survival after surgical resection.
     In further confirming the role of ASNS in HCC, the result showed increased proliferation and colony formation ability in vitro and elevated tumourigenicity of xenografts in nude mice in low ASNS cells. In accordance with correlation analysis, these results imply that ASNS is a tumour growth suppressor in HCC. Overexpression of ASNS severely inhibited the migration capacity and ASNS knockdown significantly increased migration and invasion abilities in vitro. The result was further confirmed by pulmonary metastatic model in vivo.
     In later investigations, we also observed that ASNS overexpression increased apoptosis sensitivities of cells upon various stimuli. HCC cells with low ASNS expression were more sensitive to L-asparaginase than that exhibit high ASNS expression both in vitro and in vivo.
     In conclusion, this study explored the effects of ASNS in tumour progression and prognosis significant in HCC patients. ASNS expression level was an independent and significant prognostic indicator affecting survival after surgical resection. Low expression of ASNS might be an indicator for the patients treated with L-asparaginase.
引文
[1]. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics,2002. CA Cancer J Clin.2005;55(2):74-108.
    [2]. Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer:worldwide incidence and trends. Gastroenterology.2004;127(5Suppl1):S5-S16.
    [3]. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet.2003;362(9399):1907-17.
    [4]. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in2008:GLOBOCAN2008. Int J Cancer.2010;127(12):2893-917.
    [5]. Shariff MI, Cox IJ, Gomaa AI, Khan SA, Gedroyc W, Taylor-Robinson SD. Hepatocellular carcinoma:current trends in worldwide epidemiology, risk factors, diagnosis and therapeutics. Expert Rev Gastroenterol Hepatol.2009;3(4):353-67.
    [6]. Lai EC, Lau WY. The continuing challenge of hepatic cancer in Asia. Surgeon.2005;3(3):210-5.
    [7]. Sobin LH, Wittekind C. TNM classification of malignant tumours.6th ed./edited by L.H. Sobin and Ch. Wittekind. ed. New York;[Chichester]:Wiley-Liss;2002.
    [8]. Bruix J, Sherman M, Llovet JM, Beaugrand M, Lencioni R, Burroughs AK, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000EASL conference. European Association for the Study of the Liver. J Hepatol.2001;35(3):421-30.
    [9]. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology.2005;42(5):1208-36.
    [10].Abbatiello SE, Pan YX, Zhou M, Wayne AS, Veenstra TD, Hunger SP, et al. Mass spectrometric quantification of asparagine synthetase in circulating leukemia cells from acute lymphoblastic leukemia patients. J Proteomics.2008;71(1):61-70.
    [11].Richards NG, Schuster SM. Mechanistic issues in asparagine synthetase catalysis. Adv Enzymol Relat Areas Mol Biol.1998;72:145-98.
    [12].Barbosa-Tessmann IP, Chen C, Zhong C, Schuster SM, Nick HS, Kilberg MS. Activation of the unfolded protein response pathway induces human asparagine synthetase gene expression. J Biol Chem.1999;274(44):31139-44.
    [13].Barbosa-Tessmann IP, Chen C, Zhong C, Siu F, Schuster SM, Nick HS, et al. Activation of the human asparagine synthetase gene by the amino acid response and the endoplasmic reticulum stress response pathways occurs by common genomic elements. J Biol Chem.2000;275(35):26976-85.
    [14].Zhong C, Chen C, Kilberg MS. Characterization of the nutrient-sensing response unit in the human asparagine synthetase promoter. Biochem J.2003;372(Pt2):603-9.
    [15].Leung-Pineda V, Kilberg MS. Role of Sp1and Sp3in the nutrient-regulated expression of the human asparagine synthetase gene. J Biol Chem.2002;277(19):16585-91.
    [16].Siu F, Chen C, Zhong C, Kilberg MS. CCAAT/enhancer-binding protein-beta is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem.2001;276(51):48100-7.
    [17].Siu F, Bain PJ, LeBlanc-Chaffin R, Chen H, Kilberg MS. ATF4is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem.2002;277(27):24120-7.
    [18].Gong SS, Guerrini L, Basilico C. Regulation of asparagine synthetase gene expression by amino acid starvation. Mol Cell Biol.1991;11(12):6059-66.
    [19].Peng H, Shen N, Qian L, Sun XL, Koduru P, Goodwin LO, et al. Hypermethylation of CpG islands in the mouse asparagine synthetase gene:relationship to asparaginase sensitivity in lymphoma cells. Partial methylation in normal cells. Br J Cancer.2001;85(6):930-5.
    [20].Ren Y, Roy S, Ding Y, Iqbal J, Broome JD. Methylation of the asparagine synthetase promoter in human leukemic cell lines is associated with a specific methyl binding protein. Oncogene.2004;23(22):3953-61.
    [21].Greco A, Ittmann M, Basilico C. Molecular cloning of a gene that is necessary for G1progression in mammalian cells. Proc Natl Acad Sci U S A.1987;84(6):1565-9.
    [22].Greco A, Gong SS, Ittmann M, Basilico C. Organization and expression of the cell cycle gene, tsll, that encodes asparagine synthetase. Mol Cell Biol.1989;9(6):2350-9.
    [23].Prager MD, Bachynsky N. Asparagine synthetase in asparaginase resistant and susceptible mouse lymphomas. Biochem Biophys Res Commun.1968;31(1):43-7.
    [24].Hutson RG, Kitoh T, Moraga Amador DA, Cosic S, Schuster SM, Kilberg MS. Amino acid control of asparagine synthetase:relation to asparaginase resistance in human leukemia cells. Am J Physiol.1997;272(5Pt1):C1691-9.
    [25].Aslanian AM, Fletcher BS, Kilberg MS. Asparagine synthetase expression alone is sufficient to induce1-asparaginase resistance in MOLT-4human leukaemia cells. Biochem J.2001;357(Pt1):321-8.
    [26].Amylon MD, Shuster J, Pullen J, Berard C, Link MP, Wharam M, et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma:a Pediatric Oncology Group study. Leukemia.1999;13(3):335-42.
    [27].Pui CH, Relling MV, Campana D, Evans WE. Childhood acute lymphoblastic leukemia. Rev Clin Exp Hematol.2002;6(2):161-80; discussion200-2.
    [28].Zwaan CM, Kaspers GJ, Pieters R, Hahlen K, Janka-Schaub GE, van Zantwijk CH, et al. Different drug sensitivity profiles of acute myeloid and lymphoblastic leukemia and normal peripheral blood mononuclear cells in children with and without Down syndrome. Blood.2002;99(1):245-51.
    [29].Hermanova I, Zaliova M, Trka J, Starkova J. Low expression of asparagine synthetase in lymphoid blasts precludes its role in sensitivity to L-asparaginase. Exp Hematol.2012;40(8):657-65.
    [30].Appel IM, den Boer ML, Meijerink JP, Veerman AJ, Reniers NC, Pieters R. Up-regulation of asparagine synthetase expression is not linked to the clinical response L-asparaginase in pediatric acute lymphoblastic leukemia. Blood.2006;107(11):4244-9.
    [31].den Boer ML, Evans WE, Pieters R. TELAML1-positive ALL:a discordant genotype. Cell Cycle.2005;4(8):997-8.
    [32].Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest.2007;117(4):1049-57.
    [33].Lorenzi PL, Reinhold WC, Rudelius M, Gunsior M, Shankavaram U, Bussey KJ, et al. Asparagine synthetase as a causal, predictive biomarker for L-asparaginase activity in ovarian cancer cells. Mol Cancer Ther.2006;5(11):2613-23.
    [34].Lorenzi PL, Llamas J, Gunsior M, Ozbun L, Reinhold WC, Varma S, et al. Asparagine synthetase is a predictive biomarker of L-asparaginase activity in ovarian cancer cell lines. Mol Cancer Ther.2008;7(10):3123-8.
    [35].Cui H, Darmanin S, Natsuisaka M, Kondo T, Asaka M, Shindoh M, et al. Enhanced expression of asparagine synthetase under glucose-deprived conditions protects pancreatic cancer cells from apoptosis induced by glucose deprivation and cisplatin. Cancer Res.2007;67(7):3345-55.
    [36].Dufour E, Gay F, Aguera K, Scoazec JY, Horand F, Lorenzi PL, et al. Pancreatic tumor sensitivity to plasma L-asparagine starvation. Pancreas.2012;41(6):940-8.
    [37].Sircar K, Huang H, Hu L, Cogdell D, Dhillon J, Tzelepi V, et al. Integrative molecular profiling reveals asparagine synthetase is a target in castration-resistant prostate cancer. Am J Pathol.2012;180(3):895-903.
    [1]. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics,2002. CA Cancer J Clin.2005;55(2):74-108.
    [2]. Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer:worldwide incidence and trends. Gastroenterology.2004;127(5Suppl1):S5-S16.
    [3]. Portolani N, Coniglio A, Ghidoni S, Giovanelli M, Benetti A, Tiberio GA, et al. Early and late recurrence after liver resection for hepatocellular carcinoma:prognostic and therapeutic implications. Ann Surg.2006;243(2):229-35.
    [4]. Bruix J, Boix L, Sala M, Llovet JM. Focus on hepatocellular carcinoma. Cancer Cell.2004;5(3):215-9.
    [5]. Poon RT, Fan ST, Lo CM, Liu CL, Wong J. Intrahepatic recurrence after curative resection of hepatocellular carcinoma:long-term results of treatment and prognostic factors. Ann Surg.1999;229(2):216-22.
    [6]. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet.2003;362(9399):1907-17.
    [7]. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in2008:GLOBOCAN2008. Int J Cancer.2010;127(12):2893-917.
    [8]. Shariff MI, Cox IJ, Gomaa AI, Khan SA, Gedroyc W, Taylor-Robinson SD. Hepatocellular carcinoma:current trends in worldwide epidemiology, risk factors, diagnosis and therapeutics. Expert Rev Gastroenterol Hepatol.2009;3(4):353-67.
    [9]. El-Serag HB. Hepatocellular carcinoma. N Engl J Med.2011;365(12):1118-27.
    [10].El-Serag HB, Davila JA, Petersen NJ, McGlynn KA. The continuing increase in the incidence of hepatocellular carcinoma in the United States:an update. Ann Intern Med.2003;139(10):817-23.
    [11].El-Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology.2008;134(6):1752-63.
    [12].Lai EC, Lau WY. The continuing challenge of hepatic cancer in Asia. Surgeon.2005;3(3):210-5.
    [13].Sobin LH, Wittekind C. TNM classification of malignant tumours.6th ed./edited by L.H. Sobin and Ch. Wittekind. ed. New York;[Chichester]:Wiley-Liss;2002.
    [14].Bruix J, Sherman M, Llovet JM, Beaugrand M, Lencioni R, Burroughs AK, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000EASL conference. European Association for the Study of the Liver. J Hepatol.2001;35(3):421-30.
    [15].Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology.2005;42(5):1208-36.
    [16].Richards NG, Schuster SM. Mechanistic issues in asparagine synthetase catalysis. Adv Enzymol Relat Areas Mol Biol.1998;72:145-98.
    [17].Edmondson HA, Steiner PE. Primary carcinoma of the liver:a study of100cases among48,900necropsies. Cancer.1954;7(3):462-503.
    [18].Anderson NL, Anderson NG. Proteome and proteomics:new technologies, new concepts, and new words. Electrophoresis.1998;19(11):1853-61.
    [19].Parfitt JR, Marotta P, Alghamdi M, Wall W, Khakhar A, Suskin NG, et al. Recurrent hepatocellular carcinoma after transplantation:use of a pathological score on explanted livers to predict recurrence. Liver Transpl.2007;13(4):543-51.
    [20].Huo TI, Huang YH, Lin HC, Wu JC, Chiang JH, Lee PC, et al. Proposal of a modified Cancer of the Liver Italian Program staging system based on the model for end-stage liver disease for patients with hepatocellular carcinoma undergoing loco-regional therapy. Am J Gastroenterol.2006;101(5):975-82.
    [21].Nanashima A, Sumida Y, Abo T, Shindou H, Fukuoka H, Takeshita H, et al. Modified Japan Integrated Staging is currently the best available staging system for hepatocellular carcinoma patients who have undergone hepatectomy. J Gastroenterol.2006;41(3):250-6.
    [22].Toyoda H, Kumada T, Osaki Y, Oka H, Urano F, Kudo M, et al. Staging hepatocellular carcinoma by a novel scoring system (BALAD score) based on serum markers. Clin Gastroenterol Hepatol.2006;4(12):1528-36.
    [23].Takanishi DM, Jr., Severino R, Wong LL. The Cancer of the Liver Italian Program (CLIP) score:validation of a new prognostic system for hepatocellular carcinoma. Hawaii Med J.2007;66(8):209-12.
    [24].Marrero JA, Fontana RJ, Barrat A, Askari F, Conjeevaram HS, Su GL, et al. Prognosis of hepatocellular carcinoma:comparison of7staging systems in an American cohort. Hepatology.2005;41(4):707-16.
    [25].Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T, et al. FOXP3+regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res.2007;13(3):902-11.
    [26].Zhou J, Ding T, Pan W, Zhu LY, Li L, Zheng L. Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int J Cancer.2009;125(7):1640-8.
    [27].Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology.2008;47(3):897-907.
    [28].Poon TC, Wong N, Lai PB, Rattray M, Johnson PJ, Sung JJ. A tumor progression model for hepatocellular carcinoma:bioinformatic analysis of genomic data. Gastroenterology.2006;131(4):1262-70.
    [29].Qin LX, Tang ZY, Sham JS, Ma ZC, Ye SL, Zhou XD, et al. The association of chromosome8p deletion and tumor metastasis in human hepatocellular carcinoma. Cancer Res.1999;59(22):5662-5.
    [30].Kusano N, Okita K, Shirahashi H, Harada T, Shiraishi K, Oga A, et al. Chromosomal imbalances detected by comparative genomic hybridization are associated with outcome of patients with hepatocellular carcinoma. Cancer.2002;94(3):746-51.
    [31].Wu L, Xu X, Shen J, Xie H, Yu S, Liang T, et al. MDR1gene polymorphisms and risk of recurrence in patients with hepatocellular carcinoma after liver transplantation. J Surg Oncol.2007;96(1):62-8.
    [32].Chen GG, Ho RL, Wong J, Lee KF, Lai PB. Single nucleotide polymorphism in the promoter region of human alpha-fetoprotein (AFP) gene and its significance in hepatocellular carcinoma (HCC). Eur J Surg Oncol.2007;33(7):882-6.
    [33].Dharel N, Kato N, Muroyama R, Moriyama M, Shao RX, Kawabe T, et al. MDM2promoter SNP309is associated with the risk of hepatocellular carcinoma in patients with chronic hepatitis C. Clin Cancer Res.2006;12(16):4867-71.
    [34]. Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med.2009;361(15):1437-47.
    [35].Yi X, Luk JM, Lee NP, Peng J, Leng X, Guan XY, et al. Association of mortalin (HSPA9) with liver cancer metastasis and prediction for early tumor recurrence. Mol Cell Proteomics.2008;7(2):315-25.
    [1]. Richards NG, Schuster SM. Mechanistic issues in asparagine synthetase catalysis. Adv Enzymol Relat Areas Mol Biol.1998;72:145-98.
    [2]. Barbosa-Tessmann IP, Chen C, Zhong C, Schuster SM, Nick HS, Kilberg MS. Activation of the unfolded protein response pathway induces human asparagine synthetase gene expression. J Biol Chem.1999;274(44):31139-44.
    [3]. Barbosa-Tessmann IP, Chen C, Zhong C, Siu F, Schuster SM, Nick HS, et al. Activation of the human asparagine synthetase gene by the amino acid response and the endoplasmic reticulum stress response pathways occurs by common genomic elements. J Biol Chem.2000;275(35):26976-85.
    [4]. Zhong C, Chen C, Kilberg MS. Characterization of the nutrient-sensing response unit in the human asparagine synthetase promoter. Biochem J.2003;372(Pt2):603-9.
    [5]. Siu F, Chen C, Zhong C, Kilberg MS. CCAAT/enhancer-binding protein-beta is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem.2001;276(51):48100-7.
    [6]. Siu F, Bain PJ, LeBlanc-Chaffin R, Chen H, Kilberg MS. ATF4is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem.2002;277(27):24120-7.
    [7]. Gong SS, Guerrini L, Basilico C. Regulation of asparagine synthetase gene expression by amino acid starvation. Mol Cell Biol.1991;11(12):6059-66.
    [8]. Peng H, Shen N, Qian L, Sun XL, Koduru P, Goodwin LO, et al. Hypermethylation of CpG islands in the mouse asparagine synthetase gene:relationship to asparaginase sensitivity in lymphoma cells. Partial methylation in normal cells. Br J Cancer.2001;85(6):930-5.
    [9]. Ren Y, Roy S, Ding Y, Iqbal J, Broome JD. Methylation of the asparagine synthetase promoter in human leukemic cell lines is associated with a specific methyl binding protein. Oncogene.2004;23(22):3953-61.
    [10].Greco A, Ittmann M, Basilico C. Molecular cloning of a gene that is necessary for G1progression in mammalian cells. Proc Natl Acad Sci U S A.1987;84(6):1565-9.
    [11].Greco A, Gong SS, Ittmann M, Basilico C. Organization and expression of the cell cycle gene, ts11, that encodes asparagine synthetase. Mol Cell Biol.1989;9(6):2350-9.
    [12].Cui H, Darmanin S, Natsuisaka M, Kondo T, Asaka M, Shindoh M, et al. Enhanced expression of asparagine synthetase under glucose-deprived conditions protects pancreatic cancer cells from apoptosis induced by glucose deprivation and cisplatin. Cancer Res.2007;67(7):3345-55.
    [13].Prager MD, Bachynsky N. Asparagine synthetase in asparaginase resistant and susceptible mouse lymphomas. Biochem Biophys Res Commun.1968;31(1):43-7.
    [14].Hutson RG, Kitoh T, Moraga Amador DA, Cosic S, Schuster SM, Kilberg MS. Amino acid control of asparagine synthetase:relation to asparaginase resistance in human leukemia cells. Am J Physiol.1997;272(5Pt1):C1691-9.
    [15].Aslanian AM, Fletcher BS, Kilberg MS. Asparagine synthetase expression alone is sufficient to induce1-asparaginase resistance in MOLT-4human leukaemia cells. Biochem J.2001;357(Pt1):321-8.
    [16].Amylon MD, Shuster J, Pullen J, Berard C, Link MP, Wharam M, et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma:a Pediatric Oncology Group study. Leukemia.1999;13(3):335-42.
    [17].Pui CH, Relling MV, Campana D, Evans WE. Childhood acute lymphoblastic leukemia. Rev Clin Exp Hematol.2002;6(2):161-80; discussion200-2.
    [18].Zwaan CM, Kaspers GJ, Pieters R, Hahlen K, Janka-Schaub GE, van Zantwijk CH, et al. Different drug sensitivity profiles of acute myeloid and lymphoblastic leukemia and normal peripheral blood mononuclear cells in children with and without Down syndrome. Blood.2002;99(1):245-51.
    [19].Hermanova I, Zaliova M, Trka J, Starkova J. Low expression of asparagine synthetase in lymphoid blasts precludes its role in sensitivity to L-asparaginase. Exp Hematol.2012;40(8):657-65.
    [20].Appel IM, den Boer ML, Meijerink JP, Veerman AJ, Reniers NC, Pieters R. Up-regulation of asparagine synthetase expression is not linked to the clinical response L-asparaginase in pediatric acute lymphoblastic leukemia. Blood.2006;107(11):4244-9.
    [21].den Boer ML, Evans WE, Pieters R. TELAML1-positive ALL:a discordant genotype. Cell Cycle.2005;4(8):997-8.
    [22].Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest.2007;117(4):1049-57.
    [23].Lorenzi PL, Reinhold WC, Rudelius M, Gunsior M, Shankavaram U, Bussey KJ, et al. Asparagine synthetase as a causal, predictive biomarker for L-asparaginase activity in ovarian cancer cells. Mol Cancer Ther.2006;5(11):2613-23.
    [24].Lorenzi PL, Llamas J, Gunsior M, Ozbun L, Reinhold WC, Varma S, et al. Asparagine synthetase is a predictive biomarker of L-asparaginase activity in ovarian cancer cell lines. Mol Cancer Ther.2008;7(10):3123-8.
    [25].Dufour E, Gay F, Aguera K, Scoazec JY, Horand F, Lorenzi PL, et al. Pancreatic tumor sensitivity to plasma L-asparagine starvation. Pancreas.2012;41(6):940-8.
    [26].Sircar K, Huang H, Hu L, Cogdell D, Dhillon J, Tzelepi V, et al. Integrative molecular profiling reveals asparagine synthetase is a target in castration-resistant prostate cancer. Am J Pathol.2012;180(3):895-903.
    [27].Finkel T. Oxygen radicals and signaling. Curr Opin Cell Biol.1998;10(2):248-53.[28].Droge W. Free radicals in the physiological control of cell function. Physiol Rev.2002;82(1):47-95.
    [29].Chandra J, Samali A, Orrenius S. Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med.2000;29(3-4):323-33.
    [30].Harman D. Aging:a theory based on free radical and radiation chemistry. J Gerontol.1956;11(3):298-300.
    [31].Floyd RA. Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J.1990;4(9):2587-97.
    [32].Panglossi HV. Leading edge antioxidants research. New York:Nova Science Publishers;2007.
    [33].Jenner P. Oxidative damage in neurodegenerative disease. Lancet.1994;344(8925):796-8.
    [34].Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol.2005;25(1):29-38.
    [35].Pervaiz S, Clement MV. Tumor intracellular redox status and drug resistance--serendipity or a causal relationship? Curr Pharm Des.2004;10(16):1969-77.
    [36].Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell.2005;120(5):649-61.
    [37].Sales KM, Winslet MC, Seifalian AM. Stem cells and cancer:an overview. Stem Cell Rev. 2007;3(4):249-55.
    [38].Yin S, Li J, Hu C, Chen X, Yao M, Yan M, et al. CD133positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer.2007;120(7):1444-50.
    [39].Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun.2006;351(4):820-4.
    [40].Zhu Z, Hao X, Yan M, Yao M, Ge C, Gu J, et al. Cancer stem/progenitor cells are highly enriched in CD133+CD44+population in hepatocellular carcinoma. Int J Cancer.2010;126(9):2067-78.
    [41].Yang ZF, Ngai P, Ho DW, Yu WC, Ng MN, Lau CK, et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology.2008;47(3):919-28.
    [42].Yang W, Yan HX, Chen L, Liu Q, He YQ, Yu LX, et al. Wnt/eta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res.2008;68(11):4287-95.
    [43].Kimura O, Takahashi T, Ishii N, Inoue Y, Ueno Y, Kogure T, et al. Characterization of the epithelial cell adhesion molecule (EpCAM)+cell population in hepatocellular carcinoma cell lines. Cancer Sci.2010;101(10):2145-55.
    [44].Haskell CM. L-Asparaginase:human toxicology and single agent activity in nonleukemic neoplasms. Cancer Treat Rep.1981;65Suppl4:57-9.
    [45].Verma N, Kumar K, Kaur G, Anand S. L-asparaginase:a promising chemotherapeutic agent. Crit Rev Biotechnol.2007;27(1):45-62.
    [46].Tezuka K, Nakayama H, Honda K, Suzumiya J, Oshima K, Kitoh T, et al. Treatment of a child with myeloid/NK cell precursor acute leukemia with L-asparaginase and unrelated cord blood transplantation. Int J Hematol.2002;75(2):201-6.
    [47].Okada S, Hongo T, Yamada S, Watanabe C, Fujii Y, Ohzeki T, et al. In vitro efficacy of l-asparaginase in childhood acute myeloid leukaemia. Br J Haematol.2003;123(5):802-9.
    [48].Ando M, Sugimoto K, Kitoh T, Sasaki M, Mukai K, Ando J, et al. Selective apoptosis of natural killer-cell tumours by l-asparaginase. Br J Haematol.2005;130(6):860-8.
    [49].Yokoyama H, Yamamoto J, Tohmiya Y, Yamada MF, Ohguchi H, Ohnishi Y, et al. Allogeneic hematopoietic stem cell transplant following chemotherapy containing l-asparaginase as a promising treatment for patients with relapsed or refractory extranodal natural killer/T cell lymphoma, nasal type. Leuk Lymphoma.2010;51(8):1509-12.
    [50].Richards NG, Kilberg MS. Asparagine synthetase chemotherapy. Annu Rev Biochem.2006;75:629-54.
    [1]. Tesson AR, Soper TS, Ciustea M, Richards NG. Revisiting the steady state kinetic mechanism of glutamine-dependent asparagine synthetase from Escherichia coli. Arch Biochem Biophys.2003;413(1):23-31.
    [2]. Richards NG, Schuster SM. Mechanistic issues in asparagine synthetase catalysis. Adv Enzymol Relat Areas Mol Biol.1998;72:145-98.
    [3]. Abbatiello SE, Pan YX, Zhou M, Wayne AS, Veenstra TD, Hunger SP, et al. Mass spectrometric quantification of asparagine synthetase in circulating leukemia cells from acute lymphoblastic leukemia patients. J Proteomics.2008;71(1):61-70.
    [4]. Hongo S, Fujimori M, Shioda S, Nakai Y, Takeda M, Sato T. Immunochemical characterization of rat testicular asparagine synthetase. Arch Biochem Biophys.1992;295(1):120-5.
    [5]. Mehlhaff PM, Luehr CA, Schuster SM. Studies of the ammonia-dependent reaction of beef pancreatic asparagine synthetase. Biochemistry.1985;24(5):1104-10.
    [6]. Luehr CA, Schuster SM. Purification and characterization of beef pancreatic asparagine synthetase. Arch Biochem Biophys.1985;237(2):335-46.
    [7]. Huang YZ, Knox EW. Glutamine-dependent asparagine synthetase in fetal, adult and neoplastic rat tissues. Enzyme.1975;19(5-6):314-28.
    [8]. Lowell BB, V SS, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB, et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature.1993;366(6457):740-2.
    [9]. Ciustea M, Gutierrez JA, Abbatiello SE, Eyler JR, Richards NG. Efficient expression, purification, and characterization of C-terminally tagged, recombinant human asparagine synthetase. Arch Biochem Biophys.2005;440(1):18-27.
    [10].Boehlein SK, Richards NG, Schuster SM. Glutamine-dependent nitrogen transfer in Escherichia coli asparagine synthetase B. Searching for the catalytic triad. J Biol Chem.1994;269(10):7450-7.
    [11].Pfeiffer NE, Mehlhaff PM, Wylie DE, Schuster SM. Monoclonal antibodies specific for bovine pancreatic asparagine synthetase. Production and use in structural studies. J Biol Chem.1986;261(4):1914-9.
    [12].Oinonen C, Rouvinen J. Structural comparison of Ntn-hydrolases. Protein Sci.2000;9(12):2329-37.
    [13].Brannigan JA, Dodson G, Duggleby HJ, Moody PC, Smith JL, Tomchick DR, et al. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature.1995;378(6555):416-9.
    [14].Voges D, Zwickl P, Baumeister W. The26S proteasome:a molecular machine designed for controlled proteolysis. Annu Rev Biochem.1999;68:1015-68.
    [15].Oinonen C, Tikkanen R, Rouvinen J, Peltonen L. Three-dimensional structure of human lysosomal aspartylglucosaminidase. Nat Struct Biol.1995;2(12):1102-8.
    [16].Zalkin H, Smith JL. Enzymes utilizing glutamine as an amide donor. Adv Enzymol Relat Areas Mol Biol.1998;72:87-144.
    [17].Massiere F, Badet-Denisot MA. The mechanism of glutamine-dependent amidotransferases. Cell Mol Life Sci.1998;54(3):205-22.
    [18].Teplyakov A, Obmolova G, Badet B, Badet-Denisot MA. Channeling of ammonia in glucosamine-6-phosphate synthase. J Mol Biol.2001;313(5):1093-102.
    [19].Tesmer JJ, Klem TJ, Deras ML, Davisson VJ, Smith JL. The crystal structure of GMP synthetase reveals a novel catalytic triad and is a structural paradigm for two enzyme families. Nat Struct Biol.1996;3(1):74-86.
    [20].Goto M, Omi R, Miyahara I, Sugahara M, Hirotsu K. Structures of argininosuccinate synthetase in enzyme-ATP substrates and enzyme-AMP product forms:stereochemistry of the catalytic reaction. J Biol Chem.2003;278(25):22964-71.
    [21].MacRae IJ, Segel IH, Fisher AJ. Crystal structure of ATP sulfurylase from Penicillium chrysogenum:insights into the allosteric regulation of sulfate assimilation. Biochemistry.2001;40(23):6795-804.
    [22].Miller MT, Gerratana B, Stapon A, Townsend CA, Rosenzweig AC. Crystal structure of carbapenam synthetase (CarA). J Biol Chem.2003;278(42):40996-1002.
    [23].Miller MT, Bachmann BO, Townsend CA, Rosenzweig AC. Structure of beta-lactam synthetase reveals how to synthesize antibiotics instead of asparagine. Nat Struct Biol.2001;8(8):684-9.
    [24].Miller MT, Bachmann BO, Townsend CA, Rosenzweig AC. The catalytic cycle of beta-lactam synthetase observed by x-ray crystallographic snapshots. Proc Natl Acad Sci U S A. 2002;99(23):14752-7.
    [25].Mueller EG, Palenchar PM. Using genomic information to investigate the function of ThiI, an enzyme shared between thiamin and4-thiouridine biosynthesis. Protein Sci.1999;8(11):2424-7.
    [26].Boehlein SK, Stewart JD, Walworth ES, Thirumoorthy R, Richards NG, Schuster SM. Kinetic mechanism of Escherichia coli asparagine synthetase B. Biochemistry.1998;37(38):13230-8.
    [27].Knochel T, Ivens A, Hester G, Gonzalez A, Bauerle R, Wilmanns M, et al. The crystal structure of anthranilate synthase from Sulfolobus solfataricus:functional implications. Proc Natl Acad Sci U S A.1999;96(17):9479-84.
    [28].Raushel FM, Thoden JB, Holden HM. Enzymes with molecular tunnels. Acc Chem Res.2003;36(7):539-48.
    [29].Huang X, Holden HM, Raushel FM. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu Rev Biochem.2001;70:149-80.
    [30].Greco A, Ittmann M, Basilico C. Molecular cloning of a gene that is necessary for G1progression in mammalian cells. Proc Natl Acad Sci U S A.1987;84(6):1565-9.
    [31].Greco A, Gong SS, Ittmann M, Basilico C. Organization and expression of the cell cycle gene, tsll, that encodes asparagine synthetase. Mol Cell Biol.1989;9(6):2350-9.
    [32].Colletta G, Cirafici AM. TSH is able to induce cell cycle-related gene expression in rat thyroid cell. Biochem Biophys Res Commun.1992;183(1):265-72.
    [33].Gong SS, Guerrini L, Basilico C. Regulation of asparagine synthetase gene expression by amino acid starvation. Mol Cell Biol.1991;11(12):6059-66.
    [34].Hutson RG, Kilberg MS. Cloning of rat asparagine synthetase and specificity of the amino acid-dependent control of its mRNA content. Biochem J.1994;304(Pt3):745-50.
    [35].Barbosa-Tessmann IP, Chen C, Zhong C, Schuster SM, Nick HS, Kilberg MS. Activation of the unfolded protein response pathway induces human asparagine synthetase gene expression. J Biol Chem.1999;274(44):31139-44.
    [36].Barbosa-Tessmann IP, Chen C, Zhong C, Siu F, Schuster SM, Nick HS, et al. Activation of the human asparagine synthetase gene by the amino acid response and the endoplasmic reticulum stress response pathways occurs by common genomic elements. J Biol Chem.2000;275(35):26976-85.
    [37].Zhong C, Chen C, Kilberg MS. Characterization of the nutrient-sensing response unit in the human asparagine synthetase promoter. Biochem J.2003;372(Pt2):603-9.
    [38].Leung-Pineda V, Kilberg MS. Role of Sp1and Sp3in the nutrient-regulated expression of the human asparagine synthetase gene. J Biol Chem.2002;277(19):16585-91.
    [39].Siu F, Chen C, Zhong C, Kilberg MS. CCAAT/enhancer-binding protein-beta is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem.2001;276(51):48100-7.
    [40].Siu F, Bain PJ, LeBlanc-Chaffin R, Chen H, Kilberg MS. ATF4is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem.2002;277(27):24120-7.
    [41].Peng H, Shen N, Qian L, Sun XL, Koduru P, Goodwin LO, et al. Hypermethylation of CpG islands in the mouse asparagine synthetase gene:relationship to asparaginase sensitivity in lymphoma cells. Partial methylation in normal cells. Br J Cancer.2001;85(6):930-5.
    [42].Ren Y, Roy S, Ding Y, Iqbal J, Broome JD. Methylation of the asparagine synthetase promoter in human leukemic cell lines is associated with a specific methyl binding protein. Oncogene.2004;23(22):3953-61.
    [43].Chen H, Pan YX, Dudenhausen EE, Kilberg MS. Amino acid deprivation induces the transcription rate of the human asparagine synthetase gene through a timed program of expression and promoter binding of nutrient-responsive basic region/leucine zipper transcription factors as well as localized histone acetylation. J Biol Chem.2004;279(49):50829-39.
    [44].Richards NG, Kilberg MS. Asparagine synthetase chemotherapy. Annu Rev Biochem.2006;75:629-54.
    [45].Appel IM, den Boer ML, Meijerink JP, Veerman AJ, Reniers NC, Pieters R. Up-regulation of asparagine synthetase expression is not linked to the clinical response L-asparaginase in pediatric acute lymphoblastic leukemia. Blood.2006;107(11):4244-9.
    [46].Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest.2007;117(4):1049-57.
    [47].Bachmann BO, Li R, Townsend CA. beta-Lactam synthetase:a new biosynthetic enzyme. Proc Natl Acad Sci U S A.1998;95(16):9082-6.
    [48].Cui H, Darmanin S, Natsuisaka M, Kondo T, Asaka M, Shindoh M, et al. Enhanced expression of asparagine synthetase under glucose-deprived conditions protects pancreatic cancer cells from apoptosis induced by glucose deprivation and cisplatin. Cancer Res.2007;67(7):3345-55.
    [49].Dufour E, Gay F, Aguera K, Scoazec JY, Horand F, Lorenzi PL, et al. Pancreatic tumor sensitivity to plasma L-asparagine starvation. Pancreas.2012;41(6):940-8.
    [50].Lorenzi PL, Reinhold WC, Rudelius M, Gunsior M, Shankavaram U, Bussey KJ, et al. Asparagine synthetase as a causal, predictive biomarker for L-asparaginase activity in ovarian cancer cells. Mol Cancer Ther.2006;5(11):2613-23.
    [51].Lorenzi PL, Llamas J, Gunsior M, Ozbun L, Reinhold WC, Varma S, et al. Asparagine synthetase is a predictive biomarker of L-asparaginase activity in ovarian cancer cell lines. Mol Cancer Ther.2008;7(10):3123-8.
    [52].Sircar K, Huang H, Hu L, Cogdell D, Dhillon J, Tzelepi V, et al. Integrative molecular profiling reveals asparagine synthetase is a target in castration-resistant prostate cancer. Am J Pathol.2012;180(3):895-903.
    [53].Chakrabarti R, Wylie DE, Schuster SM. Transfer of monoclonal antibodies into mammalian cells by electroporation. J Biol Chem.1989;264(26):15494-500.
    [54].Chakrabarti R, Pfeiffer NE, Wylie DE, Schuster SM. Incorporation of monoclonal antibodies into cells by osmotic permeabilization. Effect on cellular metabolism. J Biol Chem.1989;264(14):8214-21.
    [55].Horowitz B, Madras BK, Meister A, Old LJ, Boyes EA, Stockert E. Asparagine synthetase activity of mouse leukemias. Science.1968;160(3827):533-5.
    [56].Pfeiffer NE, Mehlhaff PM, Wylie DE, Schuster SM. Topographical separation of the catalytic sites of asparagine synthetase explored with monoclonal antibodies. J Biol Chem.1987;262(24):11565-70.
    [57].Larsen TM, Boehlein SK, Schuster SM, Richards NG, Thoden JB, Holden HM, et al. Three-dimensional structure of Escherichia coli asparagine synthetase B:a short journey from substrate to product. Biochemistry.1999;38(49):16146-57.
    [58].Baggaley KH, Brown AG, Schofield CJ. Chemistry and biosynthesis of clavulanic acid and other clavams. Nat Prod Rep.1997;14(4):309-33.
    [59].Parr IB, Boehlein SK, Dribben AB, Schuster SM, Richards NG. Mapping the aspartic acid binding site of Escherichia coli asparagine synthetase B using substrate analogs. J Med Chem.1996;39(12):2367-78.
    [60].Boehlein SK, Schuster SM, Richards NG. Glutamic acid gamma-monohydroxamate and hydroxylamine are alternate substrates for Escherichia coli asparagine synthetase B. Biochemistry.1996;35(9):3031-7.
    [61].Boehlein SK, Walworth ES, Schuster SM. Identification of cysteine-523in the aspartate binding site of Escherichia coli asparagine synthetase B. Biochemistry.1997;36(33):10168-77.
    [62].Cooney DA, Driscoll JS, Milman HA, Jayaram HN, Davis RD. Inhibitors of L-asparagine synthetase, in vitro. Cancer Treat Rep.1976;60(10):1493-557.
    [63].Cooney DA, Jones MT, Milman HA, Young DM, Jayaram HN. Regulators of the metabolism of L-asparagine:a search for endogenous inhibitors. Int J Biochem.1980;11(6):519-39.
    [64].Cooney DA, Jayaram N, Swengros SG, Alter SC, Levine M. The metabolism of L-asparagine in Asparagus officinalis. Int J Biochem.1980;11(1):69-83.
    [65].Mokotoff M, Brynes S, Bagaglio JF. Potential inhibitors of L-asparagine biosynthesis.3. Aromatic sulfonyl fluoride analogs of L-asparagine and L-glutamine. J Med Chem.1975;18(9):888-91.
    [66].Mokotoff M, Bagaglio JF, Parikh BS. Potential inhibitors of L-asparagine biosynthesis.2. Chemistry and biological activity of beta-hydroxyaspartic acid and its derivatives. J Med Chem.1975;18(4):354-8.
    [67].Noorwala M, Mohammad FV, Ahmad VU, Sener B. A bidesmosidic triterpene glycoside from the roots of Symphytum officinale. Phytochemistry.1994;36(2):439-43.
    [68].Romagni JG, Duke SO, Dayan FE. Inhibition of plant asparagine synthetase by monoterpene cineoles. Plant Physiol.2000;123(2):725-32.
    [69].Romagni JG, Duke SO, Dayan FE. Inhibition of plant asparagine synthetase by monoterpene cineoles. Plant Physiol.2005;137(4):1487.
    [70].Winum JY, Scozzafava A, Montero JL, Supuran CT. Sulfamates and their therapeutic potential. Med Res Rev.2005;25(2):186-228.
    [71].Kim S, Lee SW, Choi EC, Choi SY. Aminoacyl-tRNA synthetases and their inhibitors as a novel family of antibiotics. Appl Microbiol Biotechnol.2003;61(4):278-88.
    [72].Moriguchi T, Yanagi T, Kunimori M, Wada T, Sekine M. Synthesis and properties of aminoacylamido-AMP:chemical optimization for the construction of an N-acyl phosphoramidate linkage. J Org Chem.2000;65(24):8229-38.
    [73].Moriguchi T, Asai N, Okada K, Seio K, Sasaki T, Sekine M. First synthesis and anticancer activity of phosmidosine and its related compounds. J Org Chem.2002;67(10):3290-300.
    [74].Pope AJ, Lapointe J, Mensah L, Benson N, Brown MJ, Moore KJ. Characterization of isoleucyl-tRNA synthetase from Staphylococcus aureus. Ⅰ:Kinetic mechanism of the substrate activation reaction studied by transient and steady-state techniques. J Biol Chem.1998;273(48):31680-90.
    [75]. Ding Y, Wang J, Schuster SM, Richards NG. A concise synthesis of beta-asparaginyladenylate. J Org Chem.2002;67(12):4372-5.
    [76].Sanchez-Martin RM, Mittoo S, Bradley M. The impact of combinatorial methodologies on medicinal chemistry. Curr Top Med Chem.2004;4(7):653-69.
    [77].Ramstrom0, Lehn JM. Drug discovery by dynamic combinatorial libraries. Nat Rev Drug Discov.2002;1(1):26-36.
    [78].Bajorath J. Integration of virtual and high-throughput screening. Nat Rev Drug Discov.2002;1(11):882-94.
    [79].Thompson LA, Ellman JA. Synthesis and Applications of Small Molecule Libraries. Chem Rev.1996;96(1):555-600.
    [80].Brown MJ, Mensah LM, Doyle ML, Broom NJ, Osbourne N, Forrest AK, et al. Rational design of femtomolar inhibitors of isoleucyl tRNA synthetase from a binding model for pseudomonic acid-A. Biochemistry.2000;39(20):6003-11.
    [81].Brown P, Richardson CM, Mensah LM, O'Hanlon PJ, Osborne NF, Pope AJ, et al. Molecular recognition of tyrosinyl adenylate analogues by prokaryotic tyrosyl tRNA synthetases. Bioorg Med Chem.1999;7(11):2473-85.
    [82].Koroniak L, Ciustea M, Gutierrez JA, Richards NG. Synthesis and characterization of an N-acylsulfonamide inhibitor of human asparagine synthetase. Org Lett.2003;5(12):2033-6.
    [83].Morrison JF, Walsh CT. The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol.1988;61:201-301.
    [84].Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery:methods and applications. Nat Rev Drug Discov.2004;3(11):935-49.
    [85].Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct.2003;32:335-73.
    [86].Saghatelian A, Jessani N, Joseph A, Humphrey M, Cravatt BF. Activity-based probes for the proteomic profiling of metalloproteases. Proc Natl Acad Sci U S A.2004;101(27):10000-5.
    [87].Lipinski C, Hopkins A. Navigating chemical space for biology and medicine. Nature.2004;432(7019):855-61.
    [88].Pang SS, Guddat LW, Duggleby RG. Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase. J Biol Chem.2003;278(9):7639-44.
    [89].Singh V, Shi W, Evans GB, Tyler PC, Furneaux RH, Almo SC, et al. Picomolar transition state analogue inhibitors of human5'-methylthioadenosine phosphorylase and X-ray structure with MT-immucillin-A. Biochemistry.2004;43(1):9-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700