用户名: 密码: 验证码:
具有垂直传染的HIV/TB两种混合传染病模型的数学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文使用关于种群数目的确定性模型从许多重要的流行病学和生物学特性上对艾滋病毒/艾滋病和结核分枝杆菌两种病原体之间的协同作用进行了研究。我们研究了可以母婴传播的艾滋病毒/艾滋病和结核病相结合的模型,我们也研究了三种带有有效控制策略的模型,包括高活性抗逆转录病毒治疗艾滋病的控制策略和预防母婴传播母艾滋病毒的控制策略以及治疗各种结核病的策略(包括潜伏性和活动性的结核病).在这两种类型模型中我们试图分析两种病原体相结合的模型,而不是像他人做的那样单个病原体的模型。其中,无艾滋病毒意味着这个人是只感染结核病,相反也是这样。前四个模型表明,当对应的再生数R0小于1时,模型有全局渐近稳定的无病平衡点。此外临界值RHT是这些再生数的一个凸组合.有意义的是,作为初始条件的控制参数值的任何可行值都能使得疾病清除。最后一个模型表明,该模型没有一个无病的全局渐近稳定平衡点,它出现了倒向的分支,也就是说当疾病预期已经被消灭时,实际上由这一分支可知疾病仍然存在于宿主当中,尽管相应的再生数R0小于1。分析各自的再现比率已经表明,使用的抗逆转录病毒疗法的策略可以有效的控制艾滋病毒因为和未经治疗的艾滋病感染者相比它减少了个体的相对传染性。数值模拟证实了我们得到的分析结果。另外仿真分析显示,当这两种病原体能很好的被治疗时人口将不会突然的衰减。
     在我们的模型中,我们考虑了两种病原体交叉感染和母婴传播这两种情形。由于母婴传播是艾滋病毒/艾滋病的一种重要的传播方式,所以我们将母婴传播引入到艾滋病毒/艾滋病模型当中从而使我们的模型不同于其他人的模型。下面是对我们工作的一个总结:
     1.联合感染模型(2.0.1).自治微分方程JSS=Λ—λHJSS—λTJSS—μJSS, JlS=λHJSS—φTλJIS一(μ+δH)JIS (0.0.1) JST=λTJSS—φHλHJST—(μ+δT)JST JIT=φTλTJIs+φHλHJST一(μ+δ)JIT对于任意的t≥0系统(2.0.1)所有的初始条件位于正区域的解都是有界的。我们得到如下的无病平衡点
     使用[21,77]的方法,我们还可以得到HIV和TB的再生数:and RO=max(ROH,ROT)进而,无病平衡点是局部渐进稳定的当且仅当R0<1,是不稳定的如果R0>1.我们使用Lyapunov函数JST÷JIT得到了无病平衡点的全局渐进稳定性条件
     定理0.1联合感染模型(2.0.1)的无病平衡点E0是全局渐进稳定的如果R0<1.
     我们还得到了非平凡的平衡点E1=(J*SS,J*IS,J*ST,J*IT),这里
     通过使用[54]的方法将平衡点带入到方程得到了一个单调递减函数。生物学上讲,这意味着随着两种病原体致人死亡后意味着易感人群的数目得到了补充。
     2.交叉感染模型(3.0.1).JSS=Λ—λHJSS—λJSS—λHTJSS—μJSS, JIS=λHJSS—φTλTIS—(μ+δH)JIs (0.0.6) JST=λJSS—φHλHJST—(μ+δT)JST JIT=φTλTJIS+φHλHJST+λHTJSS—(μ+δ)JIT
     我们给出无病平衡点E2=(∧/μ,0,0,0)和非平凡的平衡点E3=(J*SS,J*IS,J*ST,J*IT这里使用[21,77]的方法,我们得出
     定理0.2无病平衡点E2是局部渐进稳定的如果R0<1,是不稳定的如果R0>1,这里RO=mox{ROH,ROT,ROHT}.建立如下的Lyapunov函数
     且满足L1(J*SS,J*IS,J*ST,J*IT)=0.我们有
     定理0.3交叉感染模型(3.0.1)的唯一非平凡平衡点E3是全局渐进稳定的如果R0>1.
     3.带有母婴传播的交叉感染模型.JSS=Λ+bω(JIS+QJIT)—λHJSS—λTJSs—λHTJSS—μJSS+γ1JST, JIS=λHJSS—φTλTJIS—(μ+δH)JIS+b(1—ω)(JIS+QJIT)+γ2JIT, JST=λTJSS—φHλHJST—(μ+δT+γ1)JST, JIT=φTλTJIS+φHλHJST+λHTJSS—(μ+δ+γ2)JIT.(0.0.11)令系统(4.0.1)右边等于零,我们可以得到系统的稳定状态解如下
     系统(4.0.1)有无病平衡点D.F.E和非平凡平衡点E5=(J*SS,J*IS,J*ST,J*IT).
     由[21,77],我们计算再生数如下
     定理0.4无病平衡点E0是局部渐进稳定的如果R0<1,是不稳定的如果R0>1,这里R0=mαx{R01,R02,R03].
     我们建立如下的Lyapunov函数且满足L2(J*SS,J*IS,J*ST,J*IT)=0。通过计算L2(JSS,JIS,JST,JIT)在无病平衡点附近的导数我们有,
     定理0.5系统(4.0.1)的无病平衡点是全局渐进稳定的如果RH<1,R0TT<1,RHT<1,也就是R0<1.
     4.带有母婴传播的9维联合感染模型(Long et.al).这里,
     GSV=b(1—ω)(JIS+η1JIL+η2JIT)+b(1—ω)φ(JAS+η1JAL+η2JAT),GIV=bω(JIS+η1JIL+η2JIT)+bωφ(JAS+η1JAL+η2JAT).
     通过使用[21,77]的方法,我们使用mathematica计算系统的再生数如下系统有无病平衡点
     我们还给出系统的非平凡平衡点E7=(J*SS,J*IS,J*ST,J*IT),这里
     定理0.6/[7]系统(5.0.28)的不动点E6=(X0,0)是全局渐进稳定平衡点如果R0<1并且满足(5.0.30)的假设条件.
     我们研究系统(5.0.1)的全局稳定性时发现了倒向的分支,也就是说当疾病预期已经被消灭时,实际上疾病仍然存在于宿主当中,尽管相应的再生数R0小于1。除了第二章以外,每章的末尾我们都进行数字模拟.
This thesis addresses the synergistic interaction between HIV/AIDS and mycobac-terium tuberculosis (TB) using a deterministic model at population level, which in-cludes many of the very important epidemiological and biological features of the two pathogens. We considered an HIV/AIDS and TB co-infection model with the incor-poration of vertical transmission on HIV infecteds, and also we looked at the effec-tive treatment which considers highly active antiretroviral therapy and Prevention of mother to child transmission for HIV/AIDS cases and treatment of all kinds of TB, that is, latent and active TB. In both models we attempted to analyzing the full model instead of separating the models like other authors did in their models. Results shows that HIV-free implies that individual is infected with TB only and conversely is true. The first four models have shown that there are globally asymptotically stable at disease-free equilibrium when corresponding to the reproduction number less than unity. Further they shows that there is a convex combination associated to a threshold RHT-Implication is, for all choices of initial condition of control parameter values the disease clears out. The last model reveals that the model is not globally asymptotically stable at the disease-free equilibrium, thus it exhibits the phenomena of backward bi-furcation, that is, when the disease expected to clear out but in actual fact according to this phenomena the disease persist in the host population when is associated to the cor-responding reproduction number less than unity. Analysis of respective reproduction ratios has shown that the use of antiretroviral therapy strategy can leads to an effec-tive treatment of HIV if and only if it reduces the relative infectiousness of individuals treated as compared to the untreated HIV-infected individuals. Numerical simula-tion were performed and they confirmed the analytical result we obtained. Further, the simulation analysis shows that when the two pathogens are well treated the popu-lation will not abruptly go to an extinction as compared to when there is no treatment.
     We considered the idea of incorporating dual-infection and vertical transmission in our co-infection model. We included vertical transmission into co-infection model since it is one of the important transmission mode in HIV/AIDS and this, makes our model to be totally different from other models. The following proceedings are a summary of what we have done:
     1. Formulation of co-infection model system (2.0.1).
     The autonomous differential equations of the form Jss=Λ—λHJSS—λJSS—μJSS, JIS=λHJSS—φTλTJIS—(μ+δH)JIS (0.0.18) JST=λTJSS—φHλH JST—(μ+δT)JST JIT=φTλTJIS+φHλHJST—(μ+δ)JIT
     All solutions of model system (2.0.1) with initial conditions in the positive region is bounded for t>0.
     We have the disease-free equilibrium point given by
     After computing using the next generation operator by [21,77], we get the repro-duction numbers of HIV and TB: and Ro=max(R0H,R0T).Thus, the disease-free equilibrium point is locally asymp-totically stable whenever R0<1and unstable if R0>1.
     We use Lyapunov function get the global asymptotically stability condition of the disease-free equilibrium point, and we have
     定理0.7The disease-free equilibrium point, E0, of the co-infection model system (2.0.1) is global asymptotically stable in Ω0whenever R0<1.
     The endemic equilibrium point is given by E1=(JSS/*,JIS/*,JST/*,JIT/*), where
     By following[54]methods and substituting into the equations of forces of infection it reveals that the function is a decreasing function.Biologically speaking,this implies that the susceptible population is replenished by the death induced caused by the two pathogens HIV and TB.
     2.An extension of co-infection model to incorporate dual-infection in model sys-tem(3.0.1). JSS=Λ一λHJSS—λJSS—λHTJSS—μJSS, JIS=λHJSS—φTλTIS—(μ+δH)JIS (0.0.23) JST=λTJSS—φHλHJST—(μ+δT)JST JIT=φTλTJIS+φHλHJST+λHTJSS—(μ+δ)JIT
     Disease-free equilibrium is given by and endemic equilibrium point is given by E3=(JSS/*,JIS/*,JST/*,JIT/*),where
     Using the next generation operator by[21,77],we have,
     定理0.8The disease equilibrium,E2is locally asymptotically stable when R0<1and unstable whenever R0>1,where R0=max{R0H,R0T,R0HT}.
     We construct a Lyapunov function of the form satisfying the necessary condition at the new origin L1(JSS/*,JIS/*,JST/*,JIT/*)=0.Thus, we have
     定理0.9The unique endemic equilibrium E3,of the dual infection model (3.0.1),is globally asymptotically stable in Ω1,whenever R0>1.
     3.Extension of co-infection model to incorporate vertical transmission coupled with dual-infection.
     JSS=Λs+bω(JIS+(?)JIT—λHJSS—λTJSS—λHTJSS—μJSS+λ1JST,
     JIS=λHJSS—φTλTJIS—(μ+δH)JIS+b(1—ω)(JIS+(?)JIT)+λ2JIT,
     JST=λTJSS—φHλHJST—(μ+δT+γ1)JST,
     JIT=φTλTJIS+φHλHJST+λHTJSs—(μ+δ+γ2)JIT.(0.0.28) We obtain the steady state solutions of model system (4.0.1) by setting its right hand side to be zero and obtain the following, The disease-free equilibrium point D.F.E which is given and the endemic equilibrium point E5=(JSs/*, JIs/*, JST/*, JIT/*).
     Using the next generation operator technique [21,77], we compute the model reproduction numbers as
     定理0.10The disease-free equilibrium, EO is locally asymptotically stable whenever Ro<1and unstable whenever RO>1, where Ro=max{Roi, R02, R03}.
     We construct the Lyapunov function of the form satisfying L2(JSS/*, JIS/*, JST/*JIT/*)=0at the origin which is the necessary condition and also negative definite. By direct calculation of the time derivative of L(JSS, JIS, JST, JIT) along the disease-free equilibrium solution we have,
     定理0.11The disease-free equilibrium point of model system (4.0.1) is globally asymp-totically stable if RH<1,ROT<1, RHT<1implying RO<1.
     4.Construction of a nine dimensional co-infection model considered by Long et.al [49]coupled with vertical transmission. dt/dJSS=Λ+b(1+ω)GSV-JSS-JSS+γJST, dt/dJSS=λTJSS—λHJSL—(σsL+μ)JS dt/dJSS=σSLJSL-λHJST-(μ+μT+γ)JST, dt/dJSS=λHJSS+bωGIV-λTJIS—(VIS+μ)JIS,(0.0.34) dt/dJSS=λHJSl+λTJIS-(VIL+σIL+μ)JILS, dt/dJSS=λHJST+σILJIL-(VIL+μ+μT)JIT dt/dJAT=VISJIT-λTJAS-(μ+μA)JIT, dt/dJAT=VISJIT-λTJAL-(σAL+μ+μA)JIT, dt/dJAT=VISJIT-σATJAL-(μ+μT+μA)JIT, where,
     Gsy=b(1—ω)(JIS+η1JIL+η2JIT)+b(1—ω)φ(JAS+η1JAL+η2JAT), GTv=bω(JIS+η1JIL+η2JIT)+bωφ(JAS+η1JAL+η2JAT). Using the next generation operator technique[21,77],we compute the model repro-duction number with help of mathematica as (?)O=max((?)O/H,(?)O/T)In the absence of the disease we have our disease-free equilibrium point given by
     The endemic equilibrium point is given by E7=(JSS/*, JIS/*, JST/*, JIT/*), where
     定理0.12[7] The fixed point E6=(X0,0) is globally asymptotically stable equilibrium point of the system (5.0.28) whenever (?)0<1and that assumptions in (5.0.30) are satisfied.
     We carried out global stability of the model system (5.0.1) and it exhibited a phenomena of backward bifurcation, that is the disease persisted even when (?)0<1, up to a certain point.
     Numerical simulations are given at the end of every chapters except chapter2.
引文
[1]Z. Ahmad, R.Bhargava, D.K. Pandey and K. sharma, HIV infection seroprevalence in tuberculosis patients, Indian Journal of Tuberculosis,50:151, (2003).
    [2]N. Ait-Khaled and D.A. Enarson, Tuberculosis, A manual for medical students, world Health Organization, (2003).
    [3]N. Bacaer, R. Ouifki, C. Pretorius, R. wood and B. Williams, Modeling the joint epidemics of TB and HIV in a South African township, Mathematical Biology (2008), pp.008-0177.
    [4]F. Bashey, T.L. Morran and M.C. Lively, Co-infection, kin selection, and the rate of host exploitation by a parasitic nematode, Evolutionary Ecology Research,9:(2007), pp.947-958.
    [5]F.R. Baggaley and C. Eraser, Modelling sexual transmission of HIV:testing the as-sumptions, validating the predictions, Current Opinion in HIV and AIDS,5, (2010) pp.269-276.
    [6]BCG-the current vaccine for.Initiative for Vaccine Research (IVR), http //www.who.int/vacciner esearch/diseases/tb/vaccinedevelopment/bcg/en/(2013).
    [7]C.P. Bhunu, W. Garira and Z. Mukandvire, Modeling HIV/AIDS and Tuberculosis Conifection, Bulletin of Mathematical Biology,71:(2009) pp.1745-1780.
    [8]C.P. Bhunu, S. Mushayabasa and J.M. Hyman, Modelling HIV/AIDS and monkeypox co-infection, Applied Mathematics and Computation,218 (2012) pp.9504-9518.
    [9]S.M. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex mod-els of disaes transmission:an HIV model,as an example. Inter Stat Rev 2; (1994), pp. 229-243.
    [10]S.M. Blower, P. Small and P. Hopewell, Control strategies for tuberculosis epidemics: new method for old problem, Science,273:(1996). pp.497-500.
    [11]B.K. Blyuss and N.Y. Nyrychko. On a basic model of a two-disease epidemic, Applied Mathematics and Computation 160:(2005) pp.177-187.
    [12]S. Bowong, J.C. Kamgang, J.J. Tewa and B. Tsanou, Modeling and analysis of heptitis B and HIV co-infections, Umin 209 IRD/UPMC UMMISCO,Bondy, Project MASIE INRIA Grand Est, France and Project GRIM-CAPE, LIRIMA, Cameroun, (2010) pp.109-116.
    [13]F. Brauer, Backward bifurcations in simple vaccination/treatment models, Journal of Biological Dynamics, Vol.5, No.5 (2011) pp.410-418.
    [14]C. Castilo-Chavez and Z. Feng, To treat or not treat:the case of tuberculosis, Journal Mathematical Biology,35:(1997), pp.629-656.
    [15]C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applica-tions, Mathematical Biosciences and Engineering,1:2, (2004) 361-404.
    [16]T. Cohen, M. Lipsitch, P.R. Walensky and M. Murray, Beneficial and perverse effects of isoniazid preventive therapy for latent tuberculosis infection in HIV tuberculosis coin-fected populations, Proceedings of the National Academy of Sciences, Vol.103:no.18, (2006), pp.7042-7047.
    [17]C. Colijn, T. Cohen, and M. Murray, Latent coinfection and the maintenance of strain diversity. Bulletin of Mathematical Biology.71 (2009) pp.247-263.
    [18]G.J. Churchyard and L.J. Eldred, The 31's satellite symposium:reducing the risk of tuberculosis in hiv-infected individuals, The Southern African Journal of HIV Medicine, (2009) pp.1-10.
    [19]C.S.M. Currie, B.G. Williams, R.C.H. Cheng and C. Dye, Tuberculosis epdemics driven by HIV:is prevention better than cure? AIDS 17 (2003) pp.2501-2508.
    [20]D.G. Datiko, M.A. Yassin, L.T. Cheko, L.E. Kabeto and B. Lindtjorn, The rate of TB-HIV co-infection depends on the prevalence of HIV infection in a community,BMC Public Health,8:266, (2008).
    [21]O. Diekmann, J.A.P. Heesterbeek and J.A.J. Metz, On the definition and the computa-tion of the basic reproduction ratio Ro in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology 28, (1990) pp.365-382.
    [22]C. Dye, P.G. Garnett and K. Sleeman, Prospects for worldwide tuberculosis control under WHO DOTS strategy, Directly observed short-course therapy,352:(1998), pp. 1886-1891.
    [23]Effects that the Black Death had on Europe http //blogs.southwesterncc.edu/nlile7634/ef f ects-that-the-black-death had-on-europe/(2012)
    [24]S.M. Ellinger, DNA Diagnostic technology:probing the problem of causation in toxic torts, Spring Issue, Vol.3:(1990).
    [25]European Centre for Disease Prevention and Control, Available from www.ecdc.europa.eu, (2009).
    [26]T. Frieden and R.C. Driver, Tuberculosis control:past 10 years and future progress, Tuberculosis, Vol.83:(2003), pp.82-85.
    [27]Z. Feng, C. Castilo-Chavez and F.A. Capurro, A model for tuberculosis with exogenous reinfection, Theoretical Population Biology,57:(2000), pp.235-247.
    [28]S. Gakkhar and N. Chavda, A dynamical model for HIV-TB co-infection, Applied Mathematics and Computation,218, (2012) pp.9261-9270.
    [29]L. Gao and W.H. Hethcote, Disease transmission models with density-dependent de-mographics, Journal of Mathematical Biology 30, (1992) pp.171-731.
    [30]Global tuberculosis control:Geneva, World Health Orga-nization,2010 (WHO/HTM/TB/2010.7; also available at: http://www.who.int/tb/publications/2010/en/index.html) WHO report, (2010).
    [31]M. Gluck, M. Osorio, K. Smith, X. Wang and Z. Feng, The effect of immune response and combination drug treatment on the progression of multi-strain HIV, (2005).
    [32]A guide to monitoring and evaluation for collaborative TB/HIV activities, World Health Organization, WHO Library Cataloguing-in-Publication Data (2009).
    [33]K.M. Hassmiller, The Impact of Smoking on Population-Level Tuberculosis Outcomes. PhD dissertation, University of Michigan, USA,2007.
    [34]W.H. Hethcote, The Mathematics of Infectious Diseases, Society for Industrial and Ap-plied Mathematics, Vol.42:No.4,2000 pp 599-653.
    [35]D.D. Ho, U.A. Neumann, S.A. Perelson, W. Chen, M.J. Leonard and M. Markowitz, Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373:(1995), pp.123-126.
    [36]J.M. Hyman, J.Li and E.A. Stanely, The initialization and sensitivity of multigroup models for the transmission of HIV. Journal of Theoretical Biology,208:(2001),227-249.
    [37]Integrating HIV/AIDS and TB-efforts. The challenge for the President's AIDS initia-tive, Open Society Institute, (2004).
    [38]J.W. Steger and T.L. Barrett, Cutaneous tuberculosis, Military Dermatology pp.355-389.
    [39]G.R. Kelatlhegile, F. Nyabadza and J. Prakash, HIV/AIDS Transmission Models with and without Density-Dependent Demographics, University of Botswana Library,1: (2008) pp 1-3.
    [40]D. Kirschner, Using mathematics to understanding HIV immune dynamics, Notes of the American Mathematical Society,43:(1996), pp.191-202.
    [41]D. Kirschner, Dynamics of coinfection with m.tuberculosis and HIV-1, Theoretical Pop-ulation Biology,55:(1999), pp.94-109.
    [42]M. Kgosimore and E.M. Lungu, The effects of vertical transmission on the spread of HIV/AIDS in the presence of treatment,Mathematical Biosciences and Engineering, 23, (2), (2006) pp.297-312.
    [43]J. Koroivueta and W.K. Bera, Fiji hiv/tb surveillance policy, National Executive Coun-cil, Ministry of Health, (2006).
    [44]V. Kumar, K.A. Abbas, N. Fausto and N.R. Mitchell, Robbins Basic Pathology, Saun-ders Elsevier,8thedition, (2007), pp.516-522.
    [45]C.K. Kwan and J.D. Ernst, HIV and tuberculosis:a deadly human syndemic, Clinical Microbiology Reviews.24(2):(2011) pp.351-376.
    [46]G.O. Lawi, J.Y.T. Mugisha and N. Omolo-Ongati, Mathematical Model for Malaria and Meningitis Co-infection among Children, Applied Mathematical Sciences, Vol.5: no.47, (2011), pp.2337-2359.
    [47]R. Levins, T. Awerbuch, U. Brinkman, I. Eckardt, P. Epstein, N. Makhoul, C.A. De Possas, C. Puccia, A. Spielman and M.E. Wilson, The emergence of new diseases, American Scientist,82:(1994), pp.52-60.
    [48]X.Z. Li, S. Bhattacharya, J.Y. Yang and M. Martcheva, Modeling Major factors that control Tuberculosis (TB) spread in China, (2010).
    [49]F.E. Long, K.N. Vaidya and L.M. Brandeau. Controlling co-epidemics:Analysis of HIV and tuberculosis infection dynamics, Operations Research, Vol.56:No.6, (2008), pp.1366-1381.
    [50]P. Malanima, The Economic Consequences of the Black Death, (2006).
    [51]M.R. May and A.M. Nowak, Co-infection and the Evolution of parasite virulence, Biological sciences, Vol.261:No.1361, (1995), pp.209-215.
    [52]P. Marjorie, M.D. Golden, R. Holenarasipur and M.D. Vikram, Extrapulmonary Tu-berculosis:An Overview http://www.aafp.org/afp/2005/1101/p1761.pdf
    [53]D.J. Meltzer, How Columbus sickened the new world,New Scientist, October 10:Vol. 136, (1992) pp.38.
    [54]M.S. Moghadas and B.A. Gumel, Analysis of model for transmission dynamics of TB, Canadian Applied Mathematics Quarterly, Vol.10:No.3, (2002).
    [55]D.J. Murray, Mathematical Biology:I. An introduction, third edition, Springer-Verlag Berlin Heidelberg, Vol.17:(1993), pp.333-339.
    [56]R. Naresh, A. Tripathi and S. Omar, Modelling the spread of AIDS epidemic with vertical transmission, Applied Mathematics and computation,178:(2006), pp.262-272.
    [57]R. Naresh and A. Tripathi, Modelling and analysis of HIV-TB Co-infection in a variable size population, Mathematical Modelling and Analysis,10, (2005) pp.275-286.
    [58]R. Naresh, D. Sharma and A. Tripathi, Modelling the effect of tuberculosis on the spread of HIV infection in a population with density dependent birth and death rate, Mathematical and Computer Modeling,50:(2009) pp.1154-1166.
    [59]National tuberculosis control programme directorate general of hea lth servicesministry of health and familywelfare, Dhaka,Bangladesh, (2012).
    [60]G.R. Pennap, S. Makpa and S. Ogbu, Prevalence of HIV/AIDS among Tuberculosis Patients SEENIN a Rural Clinic in Nigeria, Trakia Journal of Sciences, Vol.9:No2, (2011), pp.40-44.
    [61]Priorities in Operational Research to Improve Tuberculosis Care and Control, WHO Library Cataloguing-in-Publication Data, (2011).
    [62]Public Health Agency of Canada. Tuberculosis FACT SHEETS. http://www.phac-aspc.gc.ca/tbpc-latb/fa-fi/trans-eng.php, (2010), pp.1-12.
    [63]S. M. Raimundo,A.B Engel, H.M. Yang, and R.C. Bassanezi, An approach to esti-mating the transmission coefficients for AIDS and for tuberculosis using mathematcal models. Systems Analysis Modelling Simulation.43,4 (2003) pp.423-442.
    [64]Rapid advice:Use of antiretroviral drugs for treating pregnant women and preventing HIV infection in infants, World Health Organization, (2009).
    [65]P.M. Rodrigues, M. Gabriela, M.G.M. Gomes and C. Rebelo, Drug resistance in tu-berculosis-reinfection model Theoretical Population Biology (2006).
    [66]W.L.I. Roeger, Z. Feng and C. Castilo-Chavez, Modeling TB nad HIV co-infections,Mathematical Biosciences and Engineering, Vol 6:No:4 (2009) pp.815-837.
    [67]Roxana Lopez-Curz, Structured si epidemic models with applications to hiv epi-demic,Arizona State University (2006) pp.16-100.
    [68]A. Scherer and A. Mclean, Mathematical models of vaccination, British Medical Bul-letin,62, (2002) pp.187-199.
    [69]R.B. Schinazi, Can HIV invade a population which is already sick? Bulletin of the Brazilian Mathematical Society (N.S),34 (3), (2003) pp.479-488.
    [70]S. Sharma and D.K. Gupta, Tuberculosis, http://www.global help.org/publications/books/helppedsurgeryafrical8.pdf, pp.111-119.
    [71]S.K. Sharma, M. Alladi, T. Kadhiravan, HIV-TB co-infection:epidemiology, diagnosis and management, Indian Journal of Medical Research,121 (2005) pp.550-567.
    [72]O. Sharomi, C.N. Podder and A.B. Gumel, Mathematical analysis of the transmis-sion dynamics of HIV/TB coinfection in the presence of treatment, Mathematical Bio-sciences and Engineering Vol.5:(2008) pp.145-174.
    [73]"Strategic Frame Work to Decrease the Burden of TB/HIV," World Health Organiza-tion, Geneva, Switzerland, March,2002.
    [74]Tuberculosis Research Cente r, Chemical, Trends in the prevalence and incidence of tuberculosisin South India, International Journal of Tuberculosis and Lung Disease,5: (2001), pp.142-157.
    [75]"Tuberculosis and AIDS:UNAIDS Point of view," Geneva, October, (1997).
    [76]UNAIDS., Report on the global AIDS epidemic, Available from:www.unaids.org (2008).
    [77]P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences,180, (2002), pp.29-48.
    [78]West. R.W. and Thompson. J.R., Modelling the impcat of HIV on the spread of tu-berculosis in United States, Mathematical Biosciences,143, (1996) pp.35-60.
    [79]World Health Organization (WHO), Antiretroviral Therapy (ART), Geneva, Switzer-land. (2006).
    [80]WHO, http//www.who.int/hiv/medacentre/02-Global-summary-2006 EpiUpdate-eng.pdf,2007.
    [81]World Health Organization Tuberculosis htt:p://www.who.int/topics/tuberculosis/en/ (2009).
    [82]Treatment of tuberculosis Guidelines, World Health Organization, (2010).
    [83]E. Ziv, L.C. Daley and M.S. Blower, early therapy for latent tuberculosis infection, American Journal of Epidemiology,153:(2001), pp.381-385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700