用户名: 密码: 验证码:
焦炭还原NO反应若干影响因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电站锅炉燃煤排放的烟气是大气污染的NOx的主要来源。当前,我国NOx污染越加严重,为此,发展电站锅炉燃煤NOx控制技术势在必行。目前,NOx的控制技术方法较多,但是在我国,由于自身技术条件限制,只有少数几种技术较为实用。其中作为炉内低NOx燃烧技术的再燃技术是一项较经济有效的NOx控制技术,可行性大,易推广。再燃区中发生的NO-焦炭异相还原反应在煤粉再燃还原NO时是不可忽视的反应。研究再燃区中煤焦孔隙结构、焦炭中催化金属、锅炉内烟气成分对于NO-焦炭反应的影响,对于揭示NO-焦炭反应机理具有重要的意义。
     本文首先在能够模拟真实烟气环境的携带流反应器EFR中制备焦炭,之后利用一维沉降炉DTF实验平台进行焦炭还原NO的实验。实验利用压汞仪和自动吸附仪等仪器测量了煤焦的孔隙结构,研究了在高温还原性气氛中不同煤种的煤焦孔隙结构参数和孔径分布特征,发现不同煤种的煤焦结构参数有很大差异,低阶煤种的煤焦具有较大的比表面积、孔容积及孔隙率,从而具有较强的反应性。同时研究了高温条件下烟气成分对于NO-焦炭反应的影响,实验发现O2对NO-焦炭反应具有抑制作用,与之相反,CO、SO2对反应具有促进作用。
     本文应用统计学中相关分析的方法进行分析并提出了一个标准相关系数X来分析焦炭中的不同催化金属浓度在1273~1573K温度范围内对焦炭反应性的影响,得到各金属催化活性的顺序从强到弱为:Mg、K、Na、Ca、Fe。其中Mg在焦炭中的浓度虽然很低,但却具有非常强的催化活性。不同煤种和NO反应的活化能范围为65~137 ,不同煤种的活化能值的差异主要是由于金属催化剂的存在造成的。煤焦中的金属催化剂能够通过降低反应的活化能大大提高焦炭反应性。同时,本文还提出了另一个标准参数mkJ/molc来分析主要的金属氧化物对焦炭反应性的影响。催化金属成分含量的提高能明显加快焦炭对NO的还原,并随着mc的增大,焦炭反应性呈线性增大。
     通过本文对焦炭结构、催化金属及烟气成分对于NO-焦炭反应的影响规律的研究,为进一步研究NO-焦炭的反应机理提供了理论指导。
Currently, the pollution caused by NOx emitting from coal-fired boiler power plant becomes more and more serious. Reburning which is considered as an effective technique to control NOx emitting is studied widely. Since NO-char reaction plays a very significant role in the reburning technique, a detailed study about the char pore structure, gas composition and catalytic effect of metal on the NO-char reaction at high temperature has been conducted in this paper.
     Five coal chars were prepared in a flat flame flow reactor (FFR) which can simulate the temperature and gas composition of a real pulverized coal combustion environment. Reactivity of these chars with NO in the temperature range of 1273–1573K has been characterized by experiments in a high-temperature drop tube furnace (DTF). The characteristics of char pore structure under high-temperature reducing condition have been studied. The pore structure of chars was measured by mercury porosimetry and nitrogen adsorption. Via the study on the pore structure parameters and pore diameter distribution of different coal-chars in the expariment, the following conclusions were obtained. Low-rank coal-char has larger specific surface area, pore volume, porosity and higher reactivity than high-rank coal-char. And also, the experiment has found that at high temperature O2 prevented the NO-char reaction, whereas CO and SO2 had an enhanced effect.
     Two normalized parameters ( X and mc) are proposed to analyze the effect of inherent metal content on char reactivity. The inherent metal catalysts in chars, such as magnesium, potassium, sodium, calcium and iron can significantly increase reactivity of char by reducing the activation energy. The reactivity of NO-char reaction increases with mc value monotonously and linearly in a certain range. Experimental results showed that the catalytic activity of magnesium, potassium, sodium, calcium and iron at the temperatures of 1273–1573 K were in decreasing sequence. In this study, the magnesium which was rarely studied in other literatures appears to have a great catalytic effect on the reduction of NO by chars.
引文
1能源数据2006版.煤炭工业洁净工程技术研究中心
    2冯俊凯,沈幼庭,杨瑞昌.锅炉原理及计算.科学出版社,2003
    3吴少华,李争起,孙绍增,孙锐.低NOx排放的“风包粉”浓淡煤粉燃烧技术.机械工程学报. 2002, 38(1):108~111
    4秦裕琨,孙锐,李争起,孙绍增,吴少华.径向浓淡旋流煤粉燃烧器流动特性研究及应用.电机工程学报. 2000, 20(9): 72~76
    5秦明,吴少华,孙绍增,孙锐.六角切圆燃烧褐煤煤粉锅炉低NOx燃烧技术研究.电机工程学报. 2005, 25(1): 158~162
    6孙锐,李争起,孙绍增,吴少华.四角切圆锅炉炉内煤粉燃烧过程数值模拟.机械工程学报, 2006, 24(8): 107~113
    7郑巧生.巴威公司的低成本NOx控制技术.锅炉技术. 1995, (5): 27~30
    8何季民.国外煤粉燃烧器技术的新进展.东方电气评论. 1995, 9(4)
    9赵太平. PM浓淡燃烧器在400t/h锅炉上的应用.能源通讯. 1996, (2)
    10田子平.新型煤粉燃烧低NOx-PM燃烧器.锅炉技术. 1996, (4): 26~30
    11郭晓宁. PM型燃烧器设计分析及其在低灰熔点无烟煤煤粉锅炉炉膛布置中的应用.电站系统工程. 1993, 9 (1): 14~22
    12胡荫平,贾鸿祥.新型煤粉燃烧器.西安交通大学出版社, 1993
    13匡江红,丁士发.低负荷稳燃直流燃烧器攻关技术的研究.动力工程. 2000, 20(2): 611~614
    14刘贵苏,陈世英.宽调节比燃烧技术的研究.中国电机工程学报. 1996, 16(1): 54~58
    15孙绍增.水平浓缩煤粉燃烧过程的研究.哈尔滨工业大学博士学位论文. 1995
    16 Sun Shaozeng. Horizontal Bias Combustion Burners for low Rank Coal of China. Fifth International Conference on Technologies and Combustion for a Clean Environment, VolumeⅡ, 1999: 881~886
    17邢春礼.水平浓缩煤粉燃烧流动问题的研究.哈尔滨工业大学博士学位论文. 1995
    18朱彤.直流燃烧器结构与运行参数对炉内空气动力场影响的研究.哈尔滨工业大学博士学位论文. 1997
    19 J. R. Comparato. NOx Control Technologies: Focus SNCR, Western Coal Council. Burning PRB Coal Seminar, Birmingham, Alabama: 24~26
    20 C. B. Moon, G. Paul. First Installation of Selective non Catalytic NOx ReductionProcess on Utility Boilers in Korea, Carmigani, MEGA Symposium, Chicago, IL, 2001
    21 Whitepaper. Selective non Catalytic Reduction (SNCR) for Controlling NOx Emissions. SNCR Committee Institute of Clean Air Companies, Inc. May. 2000
    22陈笃慧. SO2和NOx对大气的污染及净化处理.环境科学进展. 1997, 5(3): 29~41
    23刘今.发电厂烟气脱硝技术—SNCR法.江苏电机工程. 1996, 15(1): 51~55
    24 H. Bosch, F. J. Janssen. Catalytic Reduction of Nitrogen Oxides: a Review on the Fundamentals and Technology. Catalysis Today. 1998: 369~378
    25 A. T. Krishnan. A. L. Boehman. Selective Catalytic Reduction of Nitric Oxide with Ammonia at Low Temperature. Applied Catalysis B: Environmental. 1998, 18: 189~198
    26 Zhu Zhenping, Liu Zhenyu, Liu Shoujun, et al. Adsorption and Reduction of NO over Activated Coke at Low Temperature. Fuel. 2000, 79(6): 651~658
    27 T. E. Burch, W. Y. Chen, T. W. Lester et al. Interaction of Fuel-N with Nitric Oxide during Reburning with Coal. Combustion and Flame. 1994, 98: 391~401
    28 W. Y. Chen, L. Ma. Effect of Heterogeneous Mechanisms during Reburning of Nitrogen Oxide. AICHE Journal. 1996, 42(7): 1968~1975
    29 H. Liu, E. Hampartsoumian, B. M. Gibbs. Evaluation of the Opimal Fuel Characteristics for Efficient NO Reduction by Coal reburning. Fuel. 1997, 76(9): 985-993
    30 I. Aarna, E. M. Suuberg. A Review of the Kinetics of the Nitric Oxide-carbon Reaction. Fuel. 1997, 76(6): 475~491
    31 L. Dong, S. Q. Gao, W. L. Song et al. Experimental Study of NO Reduction over Biomass Char. 2007, 88(7): 707~715
    32 M. Taniguchi, K. Yamamoto, H. Kobayashi et al. A Reduction NOx Reduction Model for Pulverized Coal Combustion under Fuel-rich Conditions. 2002, 81(3): 363~371
    33 J. M. Jones, P. M. Patterson, M. Pourkashanian et al. Approaches to Modelling Heterogeneous Char NO Formation/destruction during Pulverised Coal Combustion. 1999, 37(10): 1545~1552
    34张占涛,王黎,张睿.煤的孔隙结构与反应性关系的研究进展.煤炭转化.2005, 28(4): 62~69
    35朱子彬,马智华,林石英,等.高温下煤焦气化反应特性(Ⅱ)细孔构造对煤焦气化反应的影响.化工学报. 1994, 45(2): 155~161
    36 M. J. G. Alonso, A. G. Borrego, D. Alvarez, J. B. Parra, R. Menendez. Influence of Pyrolysis Temperature on Char Optical Texture and Reactivity. Journal ofAnalytical and Applied Pyrolysis. 2001, 58~59: 887~909
    37周军,张海,吕俊复,岳光溪.高温下热解温度对煤焦孔隙结构的影响.燃料化学学报. 2007, 35(2): 155~159
    38 J. L. Yu, J. A. Lucas, T. F. Wall. Formation of the Structure of Chars during Devolatilization of Pulverized Coal and Its Thermoproperties: A Review.Progress in energy and combustion science. 2007, 33(2): 135~170
    39 H. Lorenz, E. Carrea, M. Tamura, J. Haas. The Role of Char Surface Structure Development in Pulverized Fuel Combustion. Fuel. 2000, 9(10): 1161~1172
    40 G. Liu, P. Benyon, K. E. Benfell, G. W. Bryant, A. G. Tate, R. K. Boyd.The Porous Structure of Bituminous Coal and Its Influence on Combustion and Gasification under Chemically Controlled Conditions. Fuel. 2000, 79(6): 617~626
    41刘辉,吴少华,孙锐,徐睿,邱朋华,李可夫,秦裕琨.快速热解褐煤焦的比表面积及孔隙结构.中国电机工程学报. 2005, 25(12): 86~90
    42 M. J. Illan-Gomez, A. Linares-Solano, L. R. Radovic, D. L. C. Salinas-Martinez. NO Reduction by Activated carbons. 2. Catalytic Effect of Potassium. EnergyFuels. 1995, 9(1): 97~103
    43 M. J. Illan-Gomez, A. Linares-Solano, L. R. Radovic, D. L. C. Salinas-Martinez. NO Reduction by Activated Carbons. 3. Catalysis by Calcium. Energy Fuels. 1995, 9(1): 112~118
    44 M. J. Illan-Gomez, A. Linares-Solano, L. R. Radovic, D. L. C. Salinas-Martinez. NO Reduction by Activated Carbons. 5. Catalytic Effect of Iron. Energy Fuels. 1995, 9(3): 540~548
    45 M. J. Illan-Gomez, A. Linares-Solano, D. L. C. Salinas-Martinez. NO Reduction by Activated Carbons. 6. Catalysis by Transition Metals. Energy Fuels. 1995, 9(6): 976~983
    46 M. J. Illan-Gomez, A. Linares-Solano, L. R. Radovic, D. L. C. Salinas-Martinez. NO Reduction by Activated Carbon. 7. Some Mechanistic Aspects of Uncatalyzed and Catalyzed Reaction. Energy & Fuels. 1996, 10(1): 158~168
    47 D. Lopez, J. Calo. The NO-carbon Reaction: the Influence of Potassium and CO on Reactivity and Population of Oxygen Surface Complexes. Energy & Fuels. 2007, 21(4): 1872~1878
    48 B. J. Zhong, H. Tang. Catalytic NO Reduction at High Temperature by De-ashed Chars with Catalysts. Combustion and Flame. 2007, 149 (1~2): 234~243
    49 D. Zeng, M. Clark, T. Gunderson, W. C. Hecker, T. H. Fletcher. Swelling Properties and Intrinsic Reactivities of Coal Chars Produced at Elevated Pressures and High Heating Rates. Proceedings of the Combustion Institute. 2005, 30(2): 2213~2221
    50 D. Zeng, M. Clark, T. Gunderson, W. C. Hecker, T. H. Fletcher. SwellingProperties and Intrinsic Reactivities of Coal Chars Produced at Elevated Pressures and High Heating Rates. Proceedings of the Combustion Institute. 2005, 30(2): 2213~2221
    51 T. H. Fletcher, J. Ma, J. R. Rigby, A. L. Brown, B. W. Webb. Soot in Coal Combustion Systems. Prog Energy Combust Sci.. 1997, 23(3): 283~301
    52 M. J. G. Alonso, A. G. Borrego, D. Alvarez, J. B. Parra, R. Menendez. Influence of Pyrolysis Temperature on Char Optical Texture and Reactivity. Journal of Analytical and Applied Pyrolysis. 2001, 58~59: 887~909
    53 J. L. Ma. Soot Formation during Coal Pyrolysis. Ph.D. Thesis, Brigham Young University, Utah, USA, 1996
    54 Y. H. Song, J. M. Beer, A. F. Sarofim. Reduction of Nitric Oxide by Coal Char at Temperature of 1250-1750K. Combustion Science and Technology. 1981, 25: 237~240
    55 C. Schonenbeck, R. Gadiou, D. Schwartz. A Kinetic Study of the High Temperature NO-char Reaction. Fuel. 2004, 83(4~5): 443~450
    56 N. Wakao, J. M. Smith. Diffusion in Catalyst Pellets. Chem Eng. Sci. 1962, 17(11): 825~837
    57 C. N. Satterfield. Mass Transfer in Heterogeneous Catalysis. MIT Press, 1970: 41~42
    58 P. A. Jensen, B. Sander, K. Dam-Johansen. Release of Potassium and Chlorine during Straw Pyrolysis. Proceedings of the Fourth Biomass Conference of theAmericas. 1999: 1169~1175
    59 W. Y. Chen, L. Ma. Effect of Heterogeneous Mechanisms during Reburning of Nitrogen Oxide. AICHE Journal. 1996, 42(7): 1968~1975
    60 P. F. B. Hansen, K. Dam-Johansen, J.E. Johnsson, T. Hulgaard. Catalytic Reduction of NO and N2 O on Limestone during Sulfur Capture under Fluidized Bed Combustion Conditions. Chemical Engineering Science. 1992, 47(9~11): 2419~2424
    61 A. Garcia-Garcia, M. J. Illan-Gomez, A. Linares-Solano, D. L. C. Salina-Martines. Patassium-containing Briquetted Coal for the Reduction of NO. Fuel. 1997, 76(6): 499~505
    62 Y. Ohtsuka, Z. Wu, E. Furimsky. Effect of Alkali and Alkaline Earth Metals on Nitrogen Release during Temperature Programmed Pyrolysis of Coal. Fuel. 1997, 76(14~15): 1361~1367
    63 S. Salvador, J. M. Commandre, B. R. Stanmore, R. Gadiou. The Catalytic Effect of Vanadium on the Reactivity of Petroleum Cokes with NO. Energy & Fuels. 2004, 18(2): 296~301
    64 L. K. Chan, A. F. Sarofim, J. M. Beer. Kinetics of the NO–carbon Reaction at Fluidized Bed Combustor Conditions. Combustion and Flame. 1983, 52(): 37~45
    65 E. M. Suuberg EM, H. Teng, J. M. Calo. Studies on the Kinetics and Mechanism of the Reaction of NO with Carbon. 23rd Symposium (International) on Combustion. 1990: 1199~1205
    66 M. J. Illan-Gomez, A. Linares-Solano, D. L. C. Salinas-Mart?nez, J. M. Calo. NO Reduction by Activated Carbons. 1. The Role of Carbon Porosity and Surface Area. Energy & Fuels. 1993, 7(1): 146~154
    67 I. Aarna, E. M. Suuberg. A Review of the Kinetics of the Nitric Oxide-carbon Reaction. Fuel. 1997, 76(6): 475~491
    68 Y. H. Song, J. M. Beer, A. F. Sarofim. Reduction of Nitric Oxide by Coal Char at Temperature of 1250-1750K. Combustion Science and Technology. 1981, 25: 237~240
    69 C. Schonenbeck, R. Gadiou, D. Schwartz. A Kinetic Study of the High Temperature NO-char Reaction. Fuel. 2004, 83(4~5): 443~450
    70 H. Gupta, S. A. Benson, L. S. Fan, J. D. Laumb, E. S. Olson, C. R. Crocker, R. K. Sharma, R. Z. Knutson, A. S. M. Rokanuzzaman, J. E. Tibbets. Pilot-Scale Studies of NO x Reduction by Activated High-Sodium Lignite Chars: ADemonstration of the CARBONOX Process Ind. Eng. Chem. Res. 2004, 43(18): 5820~5827
    71 H. Chang, B. Q. Li, W. Li, H. Chen. The Influence of Mineral Matters in Coal on NO-char Reaction in the Presence of SO 2 . Fuel. 2004, 83(): 679~683
    72 C. O. Sorensen, J. E. Johnsson, A. Jensen. Reduction of NO over Wheat Straw Char. Energy & Fuels. 2001, 15(6): 1359~1368
    73 J. M. Levy, L. K. Chan, A. F. Sarofim, J. M. Beer. NO/char Reactions at Pulverized Coal Flame Conditions. Eighteenth Symposium (Inernational on Combustion), The Combustion Institute. 1981, 111~120
    74 I. Aarna, E. M. Suuberg. The Role of Carbon Monoxide in the NO-carbon Reaction. Energy & Fuels. 1999, 13(6): 1145~1153
    75 S. B. Wang, V. Slovak, B. S. Haynes. Kinetic Studies of Graphon and Coal-char Reaction with NO and O2: Direct Non-linear Regression from TG Curves. Fuel Processing Technology. 2005, 86(6), 651~660
    76 H. Yamashita, A. Tomita, H. Yamada, T. Kyotani, L. R. Radovic. Influence of Char Surface Chemistry on the Reduction of Nitric Oxide with Char. Energy & Fuels. 1993, 7(1): 85~89
    77 T. Suzuki, T. Kyotani, A. Tomita. Study on the Carbon-nitric Oxide Reaction in the Presence of Oxygen. Industrial and Engineering Chemistry Research. 1994, 33(11): 2840~2845

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700