用户名: 密码: 验证码:
粉末冶金法制备Nb-Si难熔合金及其组织演变与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Nb-Si难熔合金的显微组织通常包含铌基固溶体(Nbss)和铌硅化物(Nb_5Si_3/Nb_3Si),由于其高熔点、低密度和良好的高温强度等优点,成为极具潜力的满足新一代航空发动机需求的高温结构材料。但目前广泛应用真空电弧熔炼等铸造方法制备的Nb-Si难熔合金因组织粗大和成分偏析等缺陷影响其性能,并且金属间化合物的本征脆性也阻碍了Nb-Si难熔合金作为高温结构材料的实际应用。本文采用机械合金化+真空热压烧结相结合的粉末冶金方法制备了Nb-Si二元难熔合金以及不同Ti、Fe含量的Nb-Si多元难熔合金(Si含量16at.%),并通过粉末锻造短流程技术成形了发动机推力室模拟件,研究了机械合金化过程中不同混合粉末系统的组织形貌变化以及在不同状态球磨粉末和热压烧结参数下Nb-Si难熔合金的显微组织演变和力学性能,分析了Nb-Si二元合金以及含合金化元素Ti、Fe合金的强韧化机制,考察了材料的高温压缩变形行为以及变形后的显微组织。
     对Nb-16Si二元和Nb-16Si-18Ti三元粉末系统机械合金化的研究结果表明无水乙醇用量、初始Nb粉末粒度以及Ti粉末的加入均影响球磨进程。球磨过程中,Nb颗粒经塑性变形成片状而后在加工硬化作用下逐渐细化成絮状,Si逐渐固溶到Nb的晶格中形成过饱和固溶体。过量的无水乙醇推迟了球磨进程,而过长时间的球磨导致介质污染的引入而形成富Fe的另一种铌基固溶体。Ti的低密度使得同质量的粉末体积较大,在相同的球磨参数下三元粉末系统的球磨进程明显慢于二元粉末。
     采用真空热压烧结法制备了Nb-16Si二元难熔合金,分析了烧结温度、烧结时间和球磨粉末状态对烧结材料的显微组织演变及力学性能的影响。在1500°C下保温60min得到了致密度超过99.2%的烧结材料,合金由Nbss、Nb3Si和Nb5Si3三相组成,大量孔隙导致低温烧结材料的力学性能较差。随球磨时间的延长热压烧结材料的显微组织逐渐细化为平均颗粒尺寸仅2μm左右的近等轴状,Nbss体积分数减少,大尺寸和高含量的韧性相能够有效改善材料的室温脆性,由此室温断裂韧性降低而弯曲强度增加。在1600°C下采用粉末锻造技术一次成形了Nb-Si难熔合金推力室模拟件,零件具有良好的力学性能和与烧结材料相似的等轴状组织,材料利用率高且成本低。
     研究了合金化元素Ti、Fe对热压烧结Nb-Si难熔合金的显微组织演变及力学性能的影响,探讨了组织对性能的影响规律和材料的强韧化机制,考察了高温压缩行为及其变形后的组织。Fe的加入因合成Nb_4FeSi新相而使材料强度提高,但没有改变组织形貌。含Ti的片状复合粉末经烧结后材料的显微组织和性能呈各向异性,在垂直于和平行于热压方向的截面上Nbss分别为平行的条状流线和杂乱的片状。裂纹扩展路径垂直于条状Nbss时塑性变形以及裂纹桥联和偏转等有效提高了材料的断裂韧性,其最高值超过16MPa·m~(1/2),弯曲断口为撕裂棱和韧窝韧性断裂特征,而Ti固溶到Nb中引起的强化使材料获得较好的综合力学性能。垂直于流线方向的高温压缩变形中,Nbss发生塑性压缩且变形后条状Nbss变细,韧性相尺寸影响压缩塑性,而沿流线方向压缩时,变形通过颗粒转动和界面滑移带动片状Nbss向垂直于加载方向偏转。
Nb-Si refractory alloys usually consist of Nbss, Nb_5Si_3 and/or Nb_3Si, and they have been developed as the new class high temperature structural material because of their high melting point, low density and excellent high temperature mechanical properties. Arc melting is the general method to fabricate Nb-Si alloys, while the casting flaws of component segregation and coarse microstructure damage the properties. Moreover, the intrinsic brittleness of silicides also hinders their practical applications. In the present research, Nb-16Si binary alloys and multi-element ones with the addition of Ti and/or Fe were prepared by mechanical alloying and uniaxial hot pressing and a model of trust chamber were fabricated by powder forging. Meanwhile, the evolution of mechanical alloyed powders, and the effects of mechanical alloying, sintering parameters and alloying elements of Ti and Fe on the microstructures and mechanical properties have been investigated. Moreover, the reinforcing and toughening mechanisms, high temperature compressive deformation behaviors and the defromed microstructures have been studied.
     The research results of mechanical alloying of Nb-16Si and Nb-16Si-18Ti powder systems showed that the amount of absolute alcohol, particle size of initial Nb powders and addition of Ti affected the ball milling process. During milling, Nb powders were refined into flocculent morphology due to work-hardening resulting from plastic deformation, and a supersaturated solid solution was formed by Si atoms dissolving into Nb lattices. Excess absolute alcohol reduced the refining rate of powders, and the long milling time induced the contaminate to form another solid solution rich in Fe. In addition, under the same milling parameters, the milling progress of ternary powers was slower than that of binary ones due to the lower density of Ti.
     Nb-16Si binary alloys were prepared by vacuum hot pressing sintering, and the effects of sintering temperature, sintering time and mechanical alloying on the microstructures and mechanical properties were analyzed. The density was mainly determined by sintering temperature, and over 99% relative density were obtained when hot pressed at 1500°C for 60min. Sintered materials contained three phases of Nbss、Nb_3Si and Nb_5Si_3, and pores resulted in the poor properties at lower temperatures. With milling time increasing, the microstructure refined and changed into equiaxed one with average size of about 2μm, and the volume fraction of Nbss decreased. Furthermore, fracture toughness reduced and flexural strength increased because the large size and high content of ductile phase improved room ductility. A model of trust chamber was successfully fabricated by one-time powder forging, and the part contained nice performance and the similar microstructure to sintered material. Moreover, material utilization was improved and the cost was reduced.
     Influence of the addition of Ti and/or Fe on the microstructures of hot-pressed Nb-Si alloys, and effect of microstructural control on the mechanical properties were studied. The reinforcing and toughening mechanisms of materials with alloying elements were discussed and high temperature compressive deformations and the defromed microstructures were investigated. With the additon of Fe, the strength was enhanced due to the synthesizationof new phase Nb_4FeSi, and nevertheless the microstructure did not change. It is worth noting that the anisotropic microstructures and properties were observed in the materials hot pressed from flaky powders containing Ti. Nbss phases were respectively in shapes of parallel streamlines and mussy sheets on the cross sections parallel and perpendicular to the pressed direction. When propagation directions of the cracks were perpendicular to long strips of Nbss, the fracture toughness was severely improved and the highest value exceeded 16 MPa·m1/2 as a result of plastic deformation, crack deflection and crack bridging. The fracture morphology showed ductile fracture characters of dimples and tear ridges. In addition, flexural strength was enhanced due to solution strengthening when Ti dissolving into Nb, and Nb-Si alloys with Ti consequently possessed superior comprehensive room temperature mechanical properties. In the elevated compressive deformation, when the loading direction was perpendicular to streamlines, strips of Nbss became narrow after being compressed, and the compression ductility was relative to the size of trips. On the other hand, materials deformed through particle rotation and interfacial slip which drove strips of Nbss deflect toward the direction perpendicular to compressive axis.
引文
1张永刚,韩雅芳,陈国良.金属间化合物结构材料.国防工业出版社. 2001: 905-908
    2彭超群,黄伯云,贺跃辉. Ni-Al系、Fe-Al系和Ti3Al金属间化合物研究进展.特种铸造及有色合金. 2001, 6: 27-29
    3 W. Y. Kim. Ordered Intermetallic Alloys, PartIII: Gamma Titanium Aluminides. JOM. 1994, 46: 30-39
    4 D. M. Dimiduk, P. L. Martin, W. Y. Kim. Microstructure Development in Gamma Alloy Mill Products by Thermomechanical Processing. Materials Science and Engineering A. 1998, 243(1-2): 66-76
    5 B. P. Bewlay, M. R. Jackson, J. C. Zhao, P. R. Subramanian, M. G. Mendiratta. Ultrahigh-Temperature Nb-Silicide-Based Composites. MRS Bulletin. 2003, 28(9): 646-653
    6 S. W. H. Yih, C. T. Wang. Tungsten-Source, Metallurgy, Properties and Application. New York: Plenum Press. 1979: 340-408
    7 P. R. Subramanian, T. A. Parthasarathy, M. G. Mendiratta, D. M. Dimiduk. Compressive Creep Behavior of Nb5Si3. Scripta Metallurgica et Materialia. 1995, 32: 1227-1232
    8 A.Maloys, T. E. Mitchell, A. H. Hecuer. High Temperature Plastic Anisotropy in MoSi2 Single Crystals. Acta Metallurgica et Materialia. 1995, 43: 657-668
    9 M. S. Dilip, L. A. Donald, P. P. David, C. Stephen. In-situ Refractory Intermetallic-based Composites. Materials Science and Engineering A. 1995, 192-193: 658-672
    10幸良佐.钽铌冶金.冶金工业出版社. 1982: 153
    11马勤,康沫狂.高温结构硅化物研究的新进展.材料工程. 1997, 7: 3-6
    12 T. B. Massalsici. Binary Alloy Phase Diagrams. Meterials Park, OH: ASM International. 1986, (1): 768
    13 J. D. Rigney, P. M. Singh, J. J. Lewandowski. The Development of Nb-Based Advanced Intermetallic Alloys. JOM. 1990, 42: 36-42
    14 M. R. Jackson, B. P. Bewlay, R. G. Rowe. High-Temperature Refractory Metal-Intermetallic Composites. JOM. 1996, 48: 39-44
    15 W. Y. Kim, H. Tanaka, A. Kasama, R. Tanaka, S. Hanada. Microstructure and Room Temperature Deformation of Nbss/Nb5Si3 In Situ Composites Alloyed with Mo. Intermetallics. 2001, 9(6): 521-527
    16 S. Y. Qu, R. M. Wang, Y. F. Han. Microstructure of Nb/Nb5Si3 in-situ Composites. Transactions of Nonferrous Metals Society of China. 2002, 12(4): 691-694
    17 M. G. Mendiratta, J. J. Lewandowski, D. M. Dimiduk. Strength and Ductile-phase Toughening in the Two-phase Nb/Nb5Si3 Alloys. Metallurgical and Materials Transactions A. 1991, 22: 1573-1583
    18 W. Y. Kim, H. Tanaka, S. Hanada. Microstructure and Room Temperature Fracture Toughness of Nbss/Nb5Si3 In Situ Composites. Intermetallics. 2001, 9(9): 827-834
    19马朝利,笠间昭夫,田中良平,花田修治,康沫狂. Nb/Nb5Si3原位复合材料的开发研究.金属热处理学报. 2000, 21(2): 83-88
    20 B. P. Bewlay, M. R. Jackson. The Balance of Mechanical and Environmental Properties of a Multi-element Niobium-Niobium Silicide-Based in-situ Composite. Metallurgical and Materials Transactions A. 1996, 27A(12): 3801-3808
    21 J. H. Kim, T. Tabaru, M. Sakamoto, S. Hanada. Mechanical Properities and Fracture behaviour of an Nb/Nb5Si3 in-situ Composite Modified by Mo and Hf alloying. Materials Science and Engineering A. 2004, 372(3): 137-144
    22 J. B. Sha. Effect of C on Microstructure and High-temperature Strength of Nb-Mo-Ti-Si in-situ Composites Prepared by Arc-melting and Directional Solidification. Materials Science and Engineering A. 2003, 343(1-2): 282-289
    23 P. Guan, X. P. Guo, X. Ding, J. Zhang, L. M. Gao, K. Kusabiraki. Directional Solidified Microstructure of an Ultra-high Temperature Nb-Si-Ti-Hf-Cr-Al Alloy. Acta Metallurgical Sinica. 2004, 17(4): 450-454
    24 X. P. Guo, P. Guan, X. Ding, J. Zhang, K. Kusabiraki, Z. F. Heng. Unidiretional Solidification of a Nbss/Nb5Si3 in-situ Composite. Materials Science Forum. 2005, 475-479: 745-748
    25 B. P. Bewlay, M. R. Jackson, W. J. Reeder, H. A. Lipsitt. Microstructures and Properties of DS in-siu Composites of Nb-Ti-Si Alloys. Materials Research Society Symposium Proceedings. 1995, 364: 943-948
    26 M. R. Jackson, K. D. Jones, S. C. Huang, L. A. Peluso. In: K. C. Liddell, D. R. Sadoway, R. G. Bautista. Refractory Metals. Extraction, Processing and Applications. TMS, Warrendale, PA. 1990: 311-346
    27 N. Sekido, Y. Kimura, S. Miura, F. G. Wei, Y. Mishima. Fracture Toughness and High Temperature Strength of Unidirectionally Solidified Nb-Si Binary and Nb-Ti-Si Ternary Alloys. Journal of Alloys and Compounds. 2006, 425(1-2): 223-229
    28 B. P. Bewlay, P. W. Whiting, A. W. Davis, C.L. Briant. Creep Mechanisms in Niobium-silicide Based in-situ Vomposites. MRS Symposium Proceedings. 1999, 552: 6111-6115
    29 A. K. Vasudevan, J. J. Petrovic. A Comparative Overview of Molybdenum Disilicide Composites. Materials Science and Engineering A. 1992, 155(1-2): 1-17
    30郭喜平,高丽梅.电子束区熔定向凝固Nb基超高温合金的组织和性能.航空材料学报. 2006, 26(3): 47-51
    31曲士昱,王荣明,韩雅芳.热处理对Nb-10Si合金显微组织的影响.航空材料学报. 2001, 21(3): 9-11
    32宋立国,曲士昱,宋尽霞. 1250℃热处理对Nb-16Si-24Ti-6Cr-6Al-2Hf合金的组织影响.材料工程. 2005, 12(12): 30-34
    33 C. L. Yeh, W. H. Chen. Preparation of Nb5Si3 Intermetallic and Nb5Si3/Nb Composite by Self-propagating High-temperature Synthesis. Jounral of Alloys and Compounds. 2005, 235(l): 43-46
    34 K. Zelenitsas, P. Tsakiropoulos. Study of the Role of Al and Cr Additions in the Microstructure of Nb-Ti-Si In Situ Composites. Intermetallics. 2005, 13(10): 1079-1083
    35 M. G. Mendiratta, D. M. Dimiduk. Phase Relation and Transformation Kinetics on the High Nb Region of the Nb-Si System. Scripta Metallurgica et Materialia. 1991, 25(1): 237-242
    36 J. Geng, P. Tsakiropoulos. A Study of the Microstructures and Oxidation of Nb-Si-Cr-Al-Mo In Situ Compisites Alloyed with Ti, Hf and Sn. Intermetallics . 2007, 15(3): 382-395
    37 J. Geng, P. Tsakiropoulos, J. S. Shao. A Study of the Effects of Hf and Sn Additions on the Microstructure of Nbss/Nb5Si3 Based in situ Composites.Intermetallics . 2007, 15(1): 69-76
    38 N. Sekido, Y. Kimura, S. Miura, Y. Mishima. Microstructure Development of Unidirectionally Solidified (Nb)/Nb3Si Eutectic Alloys. Materials Science and Engineering A. 2007, 444(1-2): 51-57
    39 M. F. Ashby, F. J. Blunt, M. Bannister. Flow Characteristics of Highly Constrained Metal Wires. Acta Metallurgica et Materialia. 1989, 7: 1847-1857
    40 J. B. Sha, H. Hirai, T. Tabaru. Mechanical Properties of As-cast and Directionally Solidified Nb-Mo-W-Ti-Si in-situ Composites at High Temperatures. Metallurgical and Materials Transactions A. 2003, 34 (2): 85-90
    41 B. P. Bewlay, H. A. Ltpattb. Solidification Processing of High Temperature Intermetallic Eutect-based Alloys. Maierials Science and Engineering A, 1995, 192-193: 534-543
    42 Z. Li, L. M. Peng. Microstructural and Mechanical Characterization of Nb-based In Situ Composites from Nb-Si-Ti Ternary System. Acta Materialia. 2007, 55(19): 6573-6585
    43 J. S. Benjamin. Dispersion Strengthened Superalloys by Mechanical Alloying. Metallurgical Transactions. 1970, 1: 2943-2951
    44杨君友,张同俊,李星国.机械合余化研究的新进展.功能材料. 1995, 26(5): 3-5
    45朱心昆,林秋实,陈铁力.机械合金化的研究及进展.粉末冶金技术. 1999, 17(4): 291-296
    46王尔德,胡连喜.机械合金化纳米晶材料研究进展.粉末冶金技术. 2002, 20(3): 17-21
    47 R. B. Schwrz, R. R. Petrich, C. K. Saw. The Synthesis of Amorphous Ni-Ti Alloy Powders by Mechanical Alloying. Journal of Non-Crystalline Solids. 1985, 76: 281-302
    48 Y. W. Gu, L. S. Goi, A. E. W. Jarfors, D. L. Butler, C. S. Lim. Structural Evolution in Ti-Si Alloy Synthesized by Mechanical Alloying. Physica B. 2004, 352(1-4): 299-304
    49李宗霞.机械合金化一研制生产金属材料的一种新工艺.材料工程. 1995, 11: 3-7
    50 S. K. Pradhan, S. K. Shee, A. Chanda. X-ray Studies on the Kinetics of Microstructural Evolution of Ni3Al Synthesized by Ball Milling ElementalPowders. Materials Chemistry and Physics. 2001, 68(1-3): 166-174
    51 M. L. Trudeau, J. Y. Huot, R. Schulz. Nano-crystalline Materials Made by Mechanical Alloying. Physical Review B. 1992, 45: 462-466
    52 H. J. Fecht, E. Hellstern, Z. Fu. Nano-crystalline Zn Alloys Prepared by Mechanical Alloying. Metallurgical and Materials Transactions A. 1990, 21: 2333-2337
    53 C. Suryanarayana. Mechanical Alloying and Milling. Progress in Materials Science. 2001, 46(1-2): 1-184
    54 C. Suryanarayana. Does a Disorderedγ-TiAl Phase Exist in Mechanically Alloyed Ti-Al Pwders. Intermetallics. 1995, 3(2): 153-160
    55 Z. H. Chin, T. P. Perng. Amorphization of Ni-Si-C Ternary Alloy Powder by Mechanical Alloying. Materials Science Forum. 1997, 235-238: 121-126
    56 K. V. Miklos, D. L. Beke. Phase Transitions in Cu-Sb Systems Induced by Ball Milling Materials Science Forum. 1996, 225-227: 465-470
    57 P. S. Goodwin, D. K. Mukhopadhyay, C. Suryanarayana, F. H. Froes, C. M. Ward-Close. In: P. Blenkinsop, et al., editors. Titanium '95, London: Institute of Materials. 1996, 3: 2626-2633
    58 M. Nazareth R. V. Perdig?o, JoséA. R. Jord?o, Cláudio S. Kiminami, Walter J. F. Botta. Phase Transformation in Nb-16at.%Si Processed by High-energy Ball Milling. Journal of Non-Crystalline Solids. 1997, 219: 170-175
    59 G. J. Fan, M. X. Quan, Z. Q. Hu, J. Eckert, L. Schultz. In-Situ Explosive Formation of NbSi2-Based Nanocomposites by Mechanical Alloying. Scripta Materialia, 1999, 41: 1147-1151
    60 B. B. Fernandes, G. Rodrigues, G. Silva, E. C. T. Ramos, C. A. Nunes, H. R. Z. Sandim, A. S. Ramos. On the T2-phase Formation in Mechanically Alloyed Nb-Si and Nb-Si-B Powders. Journal of Alloys and Compounds. 2007, 434-435: 530-534
    61 B. B. Fernandes, E. C. T. Ramos, G. Silva, A. S. Ramos. Preparation of Nb-25Si, Nb-37.5Si, Nb-66.6Si Powders by High-energy Ball Milling and Subsequent Heat Treatment. Journal of Alloys and Compounds. 2007, 434-435: 509-513
    62 C. L. Ma, A. Kasama, H. Tanaka, Y. Tan, R. Tanaka, Y. Mishima, S. Hanada. Microstructures and Mechanical Properties of Nb/Nb-Silicide in-situComposites Synthesized by Reactive Hot Pressing of Ball Milled Powders. 2000, 41(3): 444-451
    63丁旭,郭喜平.新型铌-硅基共晶自生复合材料的研究进展.材料导报. 2003, 17: 60-62
    64 R. M. Nekkanti, D. M. Dimiduk. Intermetallic Matrix Composites, D. L. Anton et al. ed., Pittsburgh PA MRS. 1990: 175-182
    65 M. G. Mendiratta, D. M. Dimiduk. Strength and Toughness of a Nb/Nb5Si3 Composite. Metallurgical and Materials Transactions A. 1993, 24A(2): 501-504
    66 C. L. Yeh, W. H. Chen. Preparation of Nb5Si3 Intermetallic and Nb5Si3/Nb Composite by Self-propagating High-temperature Synthesis. Journal of Alloys and Compounds. 2005, 402(1-2): 118-123
    67 R. Tiwari, H. Herman. Vacuum Plasma Spraying of MoSi2 and its Composites. Materials Science and Engineering A. 1992, 155: 95-100
    68 J. D. Rigney, J. J. Lewandowski. Loading Rate and Test Temperature on Fracture of in situ Niobium Silicide-Niobium Composites. Metallurgical and Materials Transactions A. 1996, 27(10): 3292-3306
    69 C. L. Ma, J. G. L i, Y. Tan. Microstructure and Mechanical Properties of Nb/Nb5Si3 In Situ Composites in Nb-Mo-Si and Nb-W-Si Systems. Mateiral Science and Engineering A. 2004, 386(7): 375-378
    70 S. Katrych, A. Grytsiv, A. Bondar. Structural Materials: Metal-silicon Boron.The Nb-irch of the Nb-Si-B System. Journal of Solid State Chemistry. 2004, 277(2): 493-496
    71 J. Geng, P. Tsakiropoulos, G. S. Shao. The Effects of Ti and Mo Additions on the Microstructure of Nb-silicide Based In Situ Composites. Intermetallics. 2006, 14 (5): 227-230
    72 C. L. Ma, J. Q. Li, Y. Tan. Efect of B Addition on the Microstructures and Mechanical Properties of Nb-16Si-10Mo-15W Alloy. Materials Science and Engineering A. 2004, 384(1-2): 377-379
    73 R. Geng, P. Tsakiropoulos. A Study of the Microstructures and Oxidation of Nb-Si-Cr-Al-Mo In Situ Composites Alloyed with Ti and Sn. Intermetallics. 2007, 15(10): 382-383
    74 K. Chattopadhyay, R. Sinha, R. Mitra, K. K. Ray. Effect of Mo and Si on Morphology and Volume Fraction of Eutectic in Nb-Si-Mo Alloys OriginalResearch Article. Materials Science and Engineering A. 2007, 456(1-2): 358-363
    75 W. Y. Kim, N. D. Yeo, T. Y. Ra. Effect of V Addition on Microstructure and Mechanical Property in the Nb-Si Alloy System. Jounral of Alloys and Compounds. 2004, 364(1-2): 186-192
    76 R. Geng, P. Tsakiropoulos, G. S. Shao. Oxidation of Nb-Si-Cr-A1 In Situ Composites with Mo, Ti and Hf Additions. Materials Science and Engineering A. 2006, 441(8): 26-28
    77 H. R. Xu, L. Gao. New Evidence of a Dissolution-precipitation Mechanism in Hydrothermal Synthesis of Barium Titanate Powders. Material Letters. 2002, 57 (2): 490-494
    78 T. Yi, T. Hisao, C. L. Ma. Solid-solution Strengthening and High Temperature Compressive Strength of Nb-X alloys (X=Ta, V, Mo and W). Journal of the Japan Institute of Metals. 2000, 64(7): 559-565
    79 B. C. Peters, A. A. Hendrickson. Solid Solution Strengthening Nb-Ta and Nb-Mo-alloy Single Crystals. Materials Transactions. 1970, 1(8): 2271-2280
    80李伟,杨海波,单爱党,吴建生. Mo对于Nb/Nb5Si3原位复合材料室温韧性的影响.材料工程. 2004, 4: 83-33
    81 R. M. Wang, Y. F. Han, D. Eliezer. Effects of Yttrium on the Microstructures and Interfaces in a Low Expansion Superalloy. Chinese Journal of Aeronautics. 2001, 14(3): 171-177
    82黄虹,黄金昌.高温铌基合金及其强化.稀有金属快报. 1997, 7: 27-29
    83 D. Moreira, P. Juniora, C. A. Nunesa, G. C. Coelhoa, F. Ferreira. Liquidus Projection of the Nb-Si-B System in the Nb-rich Region. Intermerallics. 2003, 11: 251-255
    84 P. R. Subramanian, M. G. Mendiratta, D. M. Dimiduk. The Development of Nb-Based Advanced Intermetallic alloys for Structural Applications. JOM. 1996, 48: 33-38
    85 P. Zheng, J. B. Sha, D. M. Liu. Effect of Hf on High Temperature Strength and Room Temperature Ductility of Nb-15W-0.5Si-2B alloy. Materials Science and Engineering A. 2008, 483-484: 656-659
    86 M. Fujikura, A. Kasama, R. Tanaka, S. Hanada. Effect of Alloy Chemistry on the High Temperature Strengths and Room Temperature Fracture Toughness ofAdvanced Nb-based Alloys. Materials Transactions. 2004, 45(2): 493-501
    87 K. Zelenitsas, P. Tsakiropoulos. Study of the Role of Ta and Cr Additions in the Microstructure of Nb-Ti-Si-Al In Situ composites. Intermetellics. 2006, 14(6): 639-659
    88 K. Zelenitsas, P. Tsakiropoulos. Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb-Ti-Si in situ composites at 800°C. Materials Science and Engineering A. 2006, 416(1-2): 269-280
    89李伟,杨海波,单爱党,吴建生. Mo对于Nb/Nb5Si3原位复合材料室温韧性的影响.材料工程. 2004, 4: 83-33
    90 D. Moreira, P. Juniora, C. A. Nunesa, G. C. Coelhoa, F. Ferreira. Liquidus Projection of the Nb-Si-B System in the Nb-rich Region. Intermerallics. 2003, 11: 251-255
    91 W. Y. Kim, H. Tanaka, S. Hanada. Effect of W Alloying and NbC Dispersion on High Temperature Strength at 1773K and RoomTemperature Fracture Toughness in Nb5Si3/Nb In-situ Composites. Materials Transactions. 2002, 43(6): 1415-1418
    92张德尧,肖联贞. C-103铌合金环件工艺研究.稀有金属材料与工程. 1985, 5: 8-11
    93张德尧,肖联贞. C-103铌合金推力室模锻工艺研究.稀有金属材料与工程. 1986, 1: 10-13
    94 G. Sutradhar, A. K. Jha, S. Kumar. Production of Sinter-forged Components. Journal of Materials Processing Technology. 1994, 41: 143-169
    95 B. S. Murty, S. Ranganathan. Novel Materials Synthesis by Mechanical Alloying/Milling. International Materials Reviews. 1998, 43(3):1-141
    96 D. Maurice, T. H. Courtney. Modeling of Mechanical Alloying: Part I. Deformation Coalescence, and Fragmentation Mechanisms. Metallurgical and Materials Transactions A. 1994, 25 (1):147-158
    97 J. S. Benjamin. Mechanical Alloying-A Perspecyive. Metallurgy Powder Report. 1990, 45(2): 122-127
    98 P. S. Gilman, J. S. Benjamin. Annual Review of Materials Science. 1983, 13: 279-300
    99陈君平,施雨湘,张凡.高能球磨中的机械合金化原理.机械工程材料. 2004, 31: 52-54
    100 R. T. Perkins, K. T. Chiang, G. H. Meier, R. A. Miller. Effect of Alloying, Rapid Solidication, and Surface Kinetics on the High Temperature Environmental Resistance of Niobium. Air Force Office of Scientific Research Contract F49620-86-C-0018. June, 1989
    101 J. B. Zhou, K. P. Rao. Structure and Morphology Evolution during Mechanical Alloying of Ti-Al-Si Powder Systems. Jounral of Alloys and Compounds. 2004, 384(1-2): 125-130
    102 S. Dymek, A. Lorent, M. Wróbel, A. Dollar. Mechanical Alloying and Microstructure of a Nb-20%V-15% Al Alloy. Materials Characterization. 2001, 47(5): 375-381
    103黄培云.粉末冶金原理.冶金工业出版社. 1982: 172-337
    104果世驹.粉末烧结理论.冶金工业出版社. 2002: 12
    105 F. Appel, R. Wagner. Microstructure and Deformation of Two-phaseγ-Titanium Aluminides. Materials Science and Engineering R. 1998, 22: 187-268
    106 H. M.费多尔钦科.粉末冶金原理.冶金工业出版社. 1974: 263-264
    107 B. D. Flinn, M. Rühle, A. G. Evans. Toughening in Composites of Al2O3 Reinforced with Al Original Research Article. Acta Metallurgica. 1989, 37(11): 3001-3006
    108 R. O. Ritchie. Mechanisms of Fatigue Crack Propagation in Metals, Ceramics and Composites: Role of Crack Tip Shielding. Materials Science and Engineering A. 1988, 103(1): 15-28
    109 A. G. Evans. Perspective on the Development of High-Toughness Ceramics. Journal of the American Ceramic Society. 1990, 73(2): 187-206
    110符锡仁,郭祝崑.陶瓷的显微结构与性能Ⅱ.陶瓷的显微结构对某些性能的影响.硅酸盐学报, 1982, 10(1): 105-115
    111 A. A. Griffth. The Phenomenon of Rupture and Flow in Solids. Philosophical Transactions of the Royal Society of London. 1920, 221: 163-198
    112 K. Phani, S. K. Nioygi. Elastic Modulus-porosity Relation in Polycrystalline Rare-earth Oxides. Journal of the American Ceramic Society. 1987, 70: 362-366
    113隋万美.陶瓷基复相材料的非相变增韧机制.中国陶瓷. 2000, 26(1): 4-8
    114 B. P. Bewlay, M. R. Jackson, M. F. X. Gigliotti. Niobium Silicide High Temperature In Situ Composite. In: J. H. Westbrook, R. L. Fleischer.Intermetallic Compounds, Principles and Practice: Progress, Vol. 3. Chichester: John Wiley and Sons. 2002: 541-560
    115 L. Yu, K. F. Zhang, Z. K. Li, X. Zheng, G. F. Wang, R. Bai. Fracture Toughness of a Hot-extruded Multiphase Nb-10Si-2Fe In Situ Composite. Scripta Materialia. 2009, 61(6): 620-623
    116 N. Vellios, P. Tsakiropoulos. The Role of Fe and Ti Additions in the Microstructure of Nb-18Si-5Sn Silicide-based Alloys. Intermetallics. 2007, 15(12): 1529-1537
    117 H. Liang, Y. A. Chang. Thermodynamic Modeling of the Nb–Si–Ti Ternary System. Intermetallics. 1999, 7(5): 561-570
    118 B. P. Bewlay, M. R. Jackson. The Nb-Ti-Si Ternary Phase Diagram: Determination of Solid-State Phase Equilibria in Nb- and Ti- Rich Alloys. Journal of Phase Equilibria. 1998, 19(6): 577-586
    119 D. L. Davidson, K. S. Chan. The Fatigue and Fracture Resistance of a Nb-Cr-Ti-Al Alloy. Metallurgical and Materials Transactions A. 1999, 30: 2007-2018
    120 B. Cockeram, M. Saqib, R. Srinivasan, I. Weiss. Role of Nb3Si in High Temperature Deformation of a Cast Nb-10Si in-situ Composite. Scripta Metallurgical et Material. 1992, 26(5): 749-754
    121 B. Sha, H. Hirai, T. Tabalu, A. Kitahara, H. Ueno, S. Handa. Toughness and Strength Characteristics of Nb-W-Si Ternary Alloys Prepared by Arc Melting. Metallurgical and Materials Transactions A. 2003, 34(12): 2861-2871
    122 S. Chan, Alloying Effects on Fracture Mechanisms in Nb-based Intermetallic in-situ Composites. Materials Science and Engineering A. 2002, 329-331: 513-522
    123 K. S. Chan, Alloying Effects on the Fracture Toughness of Nb-based Silicides and Laves Phases. Materials Science and Engineering A. 2005, 409(1-2): 257-269
    124 T. Faber, A. G. Evans. Crack Defection Processes Theory. Acta Metallurgica et Materialia. l983, 3l: 565-576
    125 Claussen, G. Petzow. Whisker-Reinforced Oxide Ceramics. Journal of Physics. 1986, 47l: 693-702

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700