用户名: 密码: 验证码:
赞皇大枣及相关类群群体遗传变异的分子评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赞皇大枣是目前发现的枣品种中唯一的自然三倍体品种,品质优良。研究赞皇大枣原生型的地理分布和群体遗传变异可为这一珍贵资源的利用和保护提供理论依据。本研究在地理分布调查的基础上结合染色体数目分析,首次弄清了赞皇大枣的倍性及赞皇大枣原生型的地理分布。同时借助RAPD(Random Amplified Polymorphic DNA)技术研究了赞皇大枣及相关类群的群体遗传多样性、群体遗传结构、群体间遗传学关系,探讨了三倍体赞皇大枣的起源与进化。主要结果如下:
     1、首次完成了对有代表性的42个赞皇大枣类型的染色体数目研究,结果表明:供试赞皇大枣均为三倍体,即2n=3x=36。赞皇大枣原生型的主要地理分布区在河北省赞皇县,其中以赞皇县西阳泽乡、院头镇最为集中,南清河乡、城关镇、西龙门乡、张愣乡、黄北坪乡、元氏的苏村乡、高邑的西富村乡、临城的西竖乡等地均有赞皇大枣原生型的地理分布。
     2、建立了适于枣及酸枣种质的RAPD优化反应体系:每20μL反应体系中,Tris-HCl(pH8.3)100mmol·L~(-1),KCl 50mmol·L~(-1),EDTA(pH8.0)20mmol·L~(-1),Mg~(2-)2.0mmol·L~(-1);Taq DNA聚合酶1.2U;dNTPs 100μmol·L~(-1);引物0.2μmol·L~(-1);模板40~60ng。PCR扩增程序为:第一步:94℃ 3min;第二步:94℃ 30s,36℃ 40s,72℃ 1min,40个循环;第三步:72℃ 5min。
     3、共利用22个多态性引物(其中20个引物在赞皇大枣各类型之间表现多态性)对赞皇县及周边县区的50个赞皇大枣类型、26个酸枣类型、6个其它枣品种(类型),河北农大标本园1个冬枣和1个未知品种(类型)进行了RAPD分析。共扩增出284个位点,平均每引物扩增13个位点,位点长度在270bp~2500bp之间。多态性位点261个,占总扩增位点数的92%。
     4、共有19个供试类型扩增出了特有标记,占供试类型的22.6%,其中有酸枣类型14个。
     5、不同引物的鉴别效率不同。鉴别效率最高的引物是S12,鉴别效率达59.5%,其次是S27、S368,鉴别效率分别为53.6%、46.4%。用这三个引物可把供试84个类型全部分开。
     6、首次对赞皇大枣及相关类群的群体遗传多样性进行了研究,从多态位点百分率、基因杂合度、基因型种类及基因型频率、群体内遗传距离等几方面进行剖析。
     (1)多态位点百分率 赞皇大枣多态性位点百分率为58%,比酸枣的多态性位
    
     赞皇大枣及相关类群群体遗传变异的分了评价
    点百分率低刀%,比 8个其它枣品种(类型)的多态性位点百分率低 8%。
     (2)基因杂合度 赞皇大枣群体的平均杂合度为 0.105,酸枣群体平均杂合
    度为0.233,其它枣品种(类型)群体的平均杂合度为0.164。
     (3)基因型种类及基因型频率 除引物S12、527、S176外,赞皇大枣扩增的
    基因型种类要少于酸枣扩增的基因型种类,而且基因型频率的分布不均匀。
     (4)群体内遗传距离 赞皇大枣群体内部平均遗传距离为 0.057,小于其它
    枣品种(类型)群体内的平均遗传距离(0.181)和酸枣群体内的平均遗传距离
     (0.254)a
     7、首次对赞皇大枣及相关类群的群体遗传学结构进行了研究,研究表明:供
    试3个群体间的基因多样度为0.05,基因分化系数为0.231,说明有23.1%的变异
    存在于群体间。本研究中,Nm值小于 l(N=0 83),说明群体间基因流动不足以
    防止由于遗传漂变引起的群体间的遗传分化。
     8、首次对赞皇大枣及相关类群的群体间遗传学关系进行了研究,结果表明:
     O)群体间遗传一致度和遗传距离 赞皇大枣与酸枣、赞皇大枣与其它枣品
    种(类型)、酸枣和其它枣品种(类型)的遗传一致度分别为0.881、0.935和0.916;
    赞皇大枣与酸枣、赞皇大枣与其它枣品种(类型)、酸枣和其它枣品种(类型)间
    的遗传距离分别为0.127、0.064和0.088,说明赞皇大枣与其它枣品种(类型)
    的亲缘关系较近,而与酸枣亲缘关系较远。
     (2)聚类分析 根据欧氏距离矩阵,利用离差平方和法对供试类型进行聚类
    分析,结果如下:取人=6.0,可将供试类型分为2类c第一类包括赞皇大枣50个
    类型、榆底串杆、元氏串杆、小串杆、前台二号、吕庄串杆;第二类包括紫铃蛋、
    冬枣、未知品种(类型)和26个酸枣类型。取入=5.0,可将供试类型分为三类。第
    一类包括赞皇大枣50个类型、榆底串杆;第H类包括元氏串杆、小串杆、前台1
    号、吕庄串杆;第H类包括紫铃蛋、冬枣、未知品种(类型)和26个酸枣类型。
     综合分析供试群体的遗传学结构和群体间遗传学关系的研究成果,认为枣和酸
    枣宜作为两个独立的种。
     9、从聚类图和欧氏距离矩阵上看,赞皇大枣与赞皇县境内及周边县区的串杆
    类型亲缘关系较近,赞皇大枣与的起源可能与赞皇县及附近的串杆枣有关。
Zanhuangdazao (Ziziphus jujuba Mill.) was known as a unique triploid cultivar with best quality. Studies on geographic distribution and genetic variation of Zanhuangdazao original forms could provide theoretic evidences for its utility and protection. By combing its geographic distribution with analysis of chromosome number, geographic distribution of Zanhuangdazao original forms was studied for the first time. Genetic diversity > genetic structure^ genetic relationships between populations ^ origin and evolution of Zanhuangdazao and its related populations was also analyzed by using RAPD(Random Amplified Polymorphic DNA) technique in the paper. Main results were as follows:
    1 .Chromosome number of 42 Zanhuangdazao forms was analyzed for the first time, which suggested that all Zanhuangdazao forms tested were triploid, that was, 2n=3x=36. Zanhuangdazao original forms distributed in Zanhuang county of Hebei province mainly, make Xiyangzcx Yuantou as the towns distributed denselly, next to which were Nanqinghes Chengguan> Xilongmem Zhanglengx Huangbeiping of Zanhuang county > Sucun of Yuanshi county ^ Xifucun of Gaoyi county and Xishu of Lincheng county.
    2.Optimum system of RAPD amplification for Chinese jujube and wild jujube was established. In 20ul reaction solution: Tris-HCl(pH8.3) lOOmmol ?L"',KC1 50 mmol -L"',Mg2+ 2.0 mmol -L"1; Tag DNA polymerase 1.2U; dNTPs 100 pi mol I/1; Primer 0.2 p mol ?L"1; Template 40~60ng. The amplified procedure was : Step 1: 94癈 3 min; Step 2: 94癈30s,36癈40s,72癈 lmin,40 cycles; Step 3:72"C5min.
    3. Total 22 primers, among which 20 were polymorphic between Zanhuangdazao forms ,were used in RAPD amplification of 50 Zanhuangdazao forn^ 26 wild jujube formsN 6 Chinese jujube cultivars or forms in or nearby Zanhuang county, one Dongzao and an unknown cultivar or form in garden of Agriculture university of Hebei. 284 loci were gained among which 261 loci were polymorphic. Average loci number amplified per primer and length of loci were 13 and 270bp~2500bp respectively.
    4.Total 19 forms had specific RAPD markers which was 22.6 percentage of the forms tested. Among the 19 forms , there were 14 wild jujube forms.
    
    
    S.The identification efficiency of 22 primers differed with each other. The identification efficiency of primer S12 was highest(59.5%), and then primer S27> S368, whose identification efficiency was 53.6% and 46.4% in order. All the 84 forms tested could be identified by using the three primers.
    6.Genetic diversity of Zanhuangdazao and its related populations was studied for the first time in several aspects, they were percentage polymorphic loci, gene heterozygosity, kinds and frequency of genotypes^ genetic distance within population.
    (1 percentage polymorphic loci: Percentage polymorphic loci of
    Zanhuangdazao(58%) was lower than that of wild jujube and 8 other Chinese jujube cultivars or forms by 31% and 8% respectively.
    (2)Gene heterozygosity: Gene heterozygosity of Zanhuangdazao population, wild jujube populations, other Chinese jujube cultivars or forms population was 0.105, 0.233 and 0.164 in order.
    (3)Kinds and frequency of genotypes: Genotypes kinds amplified among Zanhuangdazao forms was less than that of wild jujube except by primer S12^S27>S176. What's more, the distribution frequency of genotypes in former was also uneven.
    (4)Genetic distance within populations: Average genetic distance in Zanhuangdazao population was 0.087,which was less than that of Chinese jujube cultivars or forms population (0.181) and wild jujube population (0.254).
    7.Genetic structure of Zanhuangdazao and its related populations were studied for the first time. The main results were: DST value and GST (coefficient of gene differentiation) of 3 populations was 0.05 and 0.231 respectively, which indicated that 23.1% variation partitioned among populations. Nm    8.Genetic relationships among Zanhuangdazao and its rela
引文
[1] Williams J G K. Kubelik A R, Livak K J,et al. DNA Polymorphisms amplified by aybitrary Primers are wseful as genetic markers[J]. Nucleic Acids Research, 1990,18:6531~6535.
    [2] 陈德水,陈受宜.DNA分子标记、基因组作图及其在植物遗传育种上的应用[J].生物技术通报,1998,5:15~22.
    [3] Bretting P K, Widrlechner M P. Genetic markers and horticultural germplasm menagement[J]. HortScience, 1995,30(7):1349~1356.
    [4] 王和勇,陈敏,廖志华,等.RFLP、RAPD、AFLP分子标记及其在植物生物技术中的应用[J].生物学杂志,1999,16(4):24~25转19.
    [5] 黎裕,贾继增,王天宇.分子标记的种类及其发展[J].生物技术通报,1999,4:19~22.
    [6] Staub J E, Serquen F C. Genetic markers,map Construction,and their application in plant breeding[J]. HortScience, 1996,31(5):729~741.
    [7] 郑敏,罗玉萍.真核生物基因组多态性分析的DNA指纹技术[J].生物技术,1999,9(3):35~38.
    [8] 卢江.随机放大多态性DNA(RAPD)一种新的分子遗传标记技术[J].植物学报,1993,35(增刊):119~127.
    [9] 姜玲,RFLP和RAPD技术及其在园艺植物上的研究和应用[J].生物技术,1996,6(5):35~39.
    [10] Pieter Vos. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Research, 1995,23 (21):4407~4414
    [11] 严佟明,黄敏仁.AFLP分子标记及其在植物育种上的应用[J].生物工程进展,1997,17(1):6~11.
    [12] 翁曼丽,谢伟武,伏健民,等.新一代分子标记技术—AFLP[J].应用与环境生物学报,1995,2(4):424~429.
    [13] 翁跃进.AFLP---一种DNA分子标记新技术[J].遗传,1996,18(6):29~31.
    [14] 吴敏生,戴景瑞.扩增片段长度多态性(AFLP)—一种新的分子标记技术[J].植物学通报,1998,15(4):68~74.
    [15] 郭小平,赵元明,刘毓侠.SSR技术及其在植物遗传育种中的应用[J].华北农学报,1998,13(3):73~76.
    [16] Wu Kun-Sheng, Steven D T. Abundance,Polymorphism and genetic mapping of microsatellites in rice[J]. Mol. Gen. Genet, 1993,241:225~235.
    [17] 王中仁.植物等位酶分析[M].北京:科学出版社,1996
    [18] 王可青,王中仁,张方.二倍体华中铁角蕨 Asplenium sarelii Hook.的等位酶遗传变异[J].遗传学报,1998,25(5):454~463.
    
    
    [19]Massey L K, Hamrick J L. Genetic diversity and population structure of Yucca filamentosa(Agavaceae)[J]. American Journal of Botany, 1998,85(3):340~345.
    [20]Godt M J W, Hamrick J L. Allozyme diversity in the endangered pitcher plant Sarracenia rubra ssp. alabamensis (Sarraceniaceae) and its close relative S. rubra ssp. rubra[J]. American Journal of Botany, 1998,85(6):802~810.
    [21]Parker K C, Hamrick J L,Parker A J, et al. Allozyme diversity in Pinus virginiana(Pinaceae):intraspecific and interspecific comparisons[J]. American Journal of Botany, 1997,84(10): 1372~382.
    [22]周厚高,周焱,宁云芬,等.新铁炮百合自交初代遗传分化的等位酶分析[J].遗传学报,2002,29(1):72~78.
    [23]Noyes R D, Soltis D E. Genotypic variation in agamospermous Erigeron compositus(Asteraceae)[J]. American Journal of Botany, 1996,83(10):1292~1303.
    [24]Juned S A, Jackson M T,Catty J P. Diversity in the wild potato species Solanum chacoense Bitt[J]. Euphytica, 1988,37:149~156.
    [25]孙传清,王象坤,吉村淳,等.普通野生稻和亚洲栽培稻遗传多样性的研究[J].遗传学报,2000,27(3):227~234.
    [26]吴晓雷,贺超英,陈受宜,等.用SSR分子标记研究大豆属种间亲缘进化关系[J].遗传学报,2001,28(4):359~366.
    [27]李新海,傅骏骅,张世煌,等.利用SSR标记研究玉米自交系的遗传变异[J].中国农业科学,2000,33(2):1~9.
    [28]刘勋甲,郑用琏,刘纪麟.玉米轮回选择群体遗传多样性RAPD分子标记评估[J].中国农业科学,1999,32(3):11~20.
    [29]葛颂,洪德元.泡沙参复合体(桔梗科)的物种生物学研究Ⅳ.等位酶水平的变异和分化[J].植物分类学报,1998,36(6):481~489.
    [30]祖元刚,张恒庆,颜廷芬,等.天然红松林等位酶研究[J].植物研究,1999,19(1):75~79.
    [31]赵桂仿,Francois F,Philippe K.阿尔卑斯山高山-亚高山过渡区高山黄花茅的群体遗传结构和分化研究[J].植物分类学报,2001,39(1):20~30.
    [32]Hokanson S C, Isebrands J G, Jensen R J, et al. Isozyme variation in oaks of the Apostle Islands in Wisconsin: genetic structure and levels of inbreeding in Quercus rubra and Q.ellipsoidalis(Fagaceae) [J]. American Journal of Botany, 1993,80(11): 1349~1357.
    
    
    [33]Sun M, Wong K C, Lee J S Y. Reproductive biology and population genetic structure of Kandelia candel(Rhizophoraceae),a viviparous mangrove species[J]. American Journal of Botany, 1998.85(11): 1631~1637.
    [34]Allphin L,Windham M D, Harper K T. Genetic diversity and gene flow in the endangered dwarf bear poppy, Arctomecon humilis(Papaverceae) [J]. American Journal of Botany, 1998,85(9): 1251~1261.
    [35]Foster P F, Sork V L. Population and genetic structure of the west African rain forest liana Ancistrocladus korupensis(Ancistrocladaceae)[J]. American Journal of Botany, 1997, 84(8): 1078~1091.
    [36]颜廷芬,周福军,阎秀峰,等.长白红景天天然种群遗传多样性及遗传分化[J].植物研究,1999,19(2):190~194.
    [37]Hooper E A, Haufler C H. Genetic diversity and breeding system in a group of neotropical epiphytic ferns(Pleopeltis; Polypodiaceae)[J]. American Journal of Botany, 1997,84(12): 1664~1674.
    [38]Tarayre M, Saumitou-Laprade P, Cuguen J, et al. The spatial genetic structure of cytoplasmic(cpDNA) and nuclear(allozyme)markers within and among populations of the gynodioecious Thymus vulgaris (Labiatae) in southern France[J]. American Journal of Botany, 1997,84(12): 1675~1684.
    [39]Ayres D R, Ryan F J. Genetis diversity and structure of ths narrow endemic Wyethia reticulata and its congener W. bolanderi(Asteraceae) using RAPD and allozyme techniques[J]. American Journal of Botany, 1999,86(3):344-353
    [40]LIU Zhaowei,Knowles P. Patterns of allozyme variation in tamarack(Larix laricina)from northern Ontario[J]. Can. J.Bot.,1991,69:2468~2474.
    [41]张恒庆,安利佳,祖元刚.凉水国家自然保护区天然红松林遗传变异的RAPD分析[J].植物研究,2000,20(2):201~206.
    [42]姜静,杨传平,刘桂丰,等.利用RAPD技术对白桦种源遗传变异的分析及种源区划[J].植物研究,2001,21(1):126~130.
    [43]周其兴,葛颂,顾志建,等.中国红豆杉属及其近缘植物的遗传变异和亲缘关系分析[J].植物分类学报,1998,36(4):323~332.
    [44]沙伟,周福军,祖元刚.东北地区豚草种群的遗传变异与遗传分化[J].植物研究,1999,19(4):452~456.
    [45]王振月,匡海学,高岩,等.龙牙楤木天然种群遗传多样性及遗传分化[J].植物研究,2001, 21(3):420~423.
    
    
    [46]Kudoh H,Whigham D F. Microgeographic genetic structure and gene flow in Hibiscus moscheutos(Malvaceae)population[J]. American Journal of Botany, 1997,84(9): 1285~1293.
    [47]McCue K A,Holtsford T P. Seed bank influences in genetic diversity in the rare annual Clarkia springvillensis(Onagraceae) [J]. American Journal of Botany, 1998,85(1):30~36.
    [48]Huang Hongwen,Dane F, Kubisiak T L. Allozyme and RAPD analysis of the genetic diversity and geographic variation in wild populations of the American chestnut(Fagaceae) [J]. American Joumal of Botany, 1998,85(7): 1013~1021.
    [49]Tomaru N, Takahashi M, Tsumura Y, et al. Intraspecific variation and phylogeographic patterns of Fagus crenata(Fagaceae) mitochondrial DNA[J]. American Journal of Botany, 1998,85(5):629~636.
    [50]施苏华,唐绍清,陈月琴,等.11种金花茶植物的RAPD分析及其系统学意义[J].植物分类学报,1998,36(4):317~322.
    [51]石福臣,木佐贯博光,铃木和夫.中国东北落叶松属植物亲缘关系的研究[J].植物研究,1998,18(1):55~62.
    [52]苏乔,刘文哲,吴军,等.东北地区大豆种质资源的RAPD聚类分析[J].植物研究,1998,18(2):184~188.
    [53]吴燕民,裴东,奚声珂,等.运用RAPD对核桃属种间亲缘关系的研究[J].园艺学报,2000,27(1):17~22.
    [54]张海英,王永健,许勇,等.黄瓜种质资源遗传亲缘关系的RAPD分析[J].园艺学报,1998,25(4):345~349.
    [55]赵桂仿,Francois F,Philippe K.应用RAPD技术研究阿尔卑斯山黄花茅居群内的遗传分化[J].植物分类学报,2000,38(1):64~70.
    [56]洪棋滨,侯磊,罗小英,等.应用RAPD分析川西北高原青稞的遗传背景[J].中国农业科学,2001,34(2):133~138.
    [57]Arft A M,Ranker T A. Allopolyploid origin and population genetics of the rare orchid Spiranthes diluvialis[J]. American Journal of Botany, 1998,85(1):110~122.
    [58]Williamson P S,Werth C R. Levers and patterns of genetic variation in the endangered species Abronia macrocarpa(Nyctaginaceae) [J]. American Journal of Botany, 1999,86(2):293~301.
    
    
    [59]葛颂,Schaal B A,洪德元.用核糖体DNA的ITS序列探讨裂叶沙参的系统位置——兼论ITS片段在沙参属系统学研究中的价值[J].植物分类学报,1997,35(5):385~395。
    [60]Schultheis L M,Baldwin B G. Molecular phylogenetics of Fouquieriaceae:evidence from nuclear rDNA ITS studies[J]. American Journal of Botany, 1999,86(4): 578~589.
    [61]Ainouche A K, Bayer R J. Phylogenetic relationships in Lupinus(Fabaceae:Papilionoideae)based on internal transcribed apacer sequences(ITS)of nuclear ribosomal DNA[J]. American Journal of Botany, 1999,86(4):590~607.
    [62]Molvray M,Kores P J,Chase M W. Phylogenetic relationships within Korthalsella(Viscaceae) based on nuclear ITS and plastid trnL-F sequence data[J]. American Journal of Botany, 1999,86(2):249~260.
    [63]Kelly L M. Phylogenetic relationships in Asarum(Aristolochiaceae) based on morphology and ITS sequence[J]. American Journal of Botany, 1998,85(10): 1454~1467.
    [64]Hilu K W, Liang Hongping. The matK gene:sequence variation and application in plant systematics[J]. American Journal of Botany, 1997,84(6):830~839.
    [65]Brochmann C,Xiang Qiuyun,Brunsfeld S J,et al. Molecular evidence for polyploid origins in Saxifraga(Saxifragaceae):the narrow arctic endemic S. svalbardensis and its widespread allies[J]. American Journal of Botany, 1998,85(1):135~145.
    [66]许东河,高忠,盖钧镒,等.中国野生大豆与栽培大豆等位酶、RFLP和RAPD标记的遗传多样性与演化趋势分析[J].中国农业科学,1999,32(6):16~22.
    [67]Friesen N,Pollner S, Bachmann K, et al. RAPDs and noncoding chloroplast DNA reveal a single origin of the cultivated Allium fistulosum from A. altaicum(Alliaceae) [J]. American Journal of Botany, 1999,86(4):554~562.
    [68]Harrison R E, Luby J J, Furnier G R,et al. Morphological and molecular variation among populations of octoploid Fragaria virginana and F. chiloensis (Rosaceae) from north America[J]. American Journal of Botany, 1997,84(5):612~620.
    [69]邹喻苹,蔡美琳,王晓东,等.古代“太子莲”及现代红花中国莲种质资源的RAPD分析[J].植物学报,1998,40(2):163~168.
    [70]蔡从利,王建波,景润春,等.山羊草属异源多倍体植物基因组进化的RAPD分析[J].遗传学报,28(2):158~165.
    
    
    [71]Duc A L,Adams R P, Zhong Ming. Using random amplification of polymorphic DNA for a taxonomic reevaluation of Pfitzer Junipers[J]. HortScience, 1999,34(6):1123~1125.
    [72]王艇,苏应娟,朱建明,等.部分小糪科植物的RAPD分析[J].植物研究,2001,21(3):428~431.
    [73]李宽钰,黄敏仁,王明庥.用RAPD探讨毛白杨起源[J].植物分类学报,1997,35(1):24~31.
    [74]王振山,陈洪,朱立煌,等.中国普通野生稻遗传分化的RAPD研究[J].植物学报,1996,38(9):749~752.
    [75]罗正荣,李发芳,蔡礼鸿.部分中国原产甜柿种质的分子系统学研究[J].园艺学报,1999,26(5):297~301.
    [76]刘占林,李珊,阎桂琴,等.华山新麦草自然居群的遗传结构和种内遗传多态性研究[J].遗传学报,2001,28(8):769~777.
    [77]赵佐成,周明德,罗定泽,等.四川省凉山州北部栽培苦荞麦的遗传多样性研究[J].遗传学报,2000,27(12):1084~1093.
    [78]高立志,葛颂,洪德元,等.云南疣粒野生稻的居群遗传结构及其在原位保护中的意义[J].中国科学(C辑),1999,29(3):297~302.
    [79]Brown A D H, Briggs J D. Sampling strategies for genetic variation in ex situ collections of endangered plant species. In:Falk D A, Holsinger K E eds. Genetics and conservation of rare plants. New York:Oxford Univ Press, 1991,99~119.
    [80]邱英雄,黄爱军,傅承新.明党参的遗传多样性研究[J].植物分类学报,2000,38(2):111~120.
    [81]Martinez-Palacios A,Eguiarte L E,Furnier G R. Genetic diversity of the endangered endemic Agave victeriae-reginae(Agavaceae) in the Chihuahuan Desert[J]. American Journal of Botany, 1999,86(8): 1093~1098.
    [82]Delgado P, Pinero D,Chaos A,et al. High population differention and genetic variation in the endangered Mexican pine Pinus rzedowskii(Pinaceae) [J]. American Journal of Botany, 1999,86(5):669~676.
    [83]Du Daolin, Su Jie, FU Yongchuan,et al. Genetic diversity of Cephalotaxus mannii,a rare and endangered plant[J]. 植物学报,2002, 44(2): 193~198.
    [84]Fischer M, Matthies D. RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica(Gentianaceae) [J]. American Journal of Botany, 1998,85(6):811~819.
    
    
    [85]王可青,葛颂,董鸣.根茎禾草沙鞭的等位酶变异及克隆多样性[J],植物学报,1999,41(5):537~540.
    [86]Wolf A T, Howe R W, Hamrick J L. Genetic diversity and population structure of the serpentine endemic Calystegia collina(Convolvuaceae) in Northern California[J]. American Journal of Botany,2000,87(8): 1138~1146.
    [87]Eckert C G,Barrett S C H. Clonal reproduction and patterns of genotypic diversity in Decodon verticillatus(Lythraceae) [J]. American Journal of Botany, 1993,80(10): 1175~1182.
    [88]Sipes S D,Wolf P G. Clonal structure and patterns of allozyme deversity in the rare endemic Cycladenia humilis var.jonesii(Apocynaceae) [J]. American Journal of Botany, 1997, 84(3):401~409.
    [89]曲泽洲,王永蕙.中国果树志·枣卷[M].北京:中国林业出版社,1993.
    [90]白淑霞.枣胚胎学研究[D].保定:河北农业大学,1992.
    [91]彭建营.枣种质资源的分子评价及无核性状的分子标记研究[D],泰安:山东农业大学,1999.
    [92]宋婉.中国枣优良品种DNA指纹图谱的研究[D].北京:北京林业大学,1999.
    [93]赵锦.枣树品种、品系及其近缘种的RAPD分析[D].保定:河北农业大学,2000.
    [94]朱澂.植物染色体及染色体技术[M].北京:科学出版社,1982.
    [95]根井正利.分子群体遗传学与进化论[M].王家玉译.北京:农业出版社.1983.
    [96]Skroch P, Tivang J, Nienhaus J. Analysis of genetic relationships using RAPD marker data. J.Plant Breed. Symp. Applications of RAPD Technology to Plant Breeding[J]. Minneapolis, 1992,26.
    [97]Pappert R,Hamrick J L, D onovan L A. Genetic variation in Pueraria lobata(Fabaceae),an inteoduced,clonal,invasive plant of the southeastern United States[J]. American Journal of Botany,2000,87(9):1240~1245.
    [98]Vzsseur L,Aarssen L W, Bennett T. Allozymic variation in local apomictic popylations of lemna minoe (Lwmnaceae) [J]. American Journal of Botany, 1993,80(8):974~979.
    [99]Ayres D R, Ryan F J. Genetic diversity and structure of the narrow endemic Wyethia reticulata and its congener W. bolanderi(Asteraceae)using RAPD and allozyme techniques[J]. American Journal of Botany, 1999,86(3):344~353.
    [100]Gitzendanner M A,Soltis P S. Patterns of genetic variation in rare and widespread plant congenersEJ]. American Journal of Botany, 2000, 87 (6): 783~792.
    
    
    [101]李树林.枣花粉形态的研究———论枣的品种分类和进化[D].保定:河北农业大学,1985.
    [102]张凝艳.枣同工酶的研究———论其它枣品种和类型的分类及亲缘演化关系[D].保定:河北农业大学,1986.
    [103]王秀伶.酸枣、枣分类地位及演化的同工酶聚类分析研究[D].保定:河北农业大学,1994.
    [104]阎桂军.枣细胞学研究[D].保定:河北农业大学,1984.
    [105]刘孟军.中国枣属植物的分类学研究[D].北京:北京医科大学,1993.
    [106]温陟良.三倍体赞皇大枣形态特征、开花结果习性和生理生化特征的研究[C].河北农业大学硕士论文集,1989.
    [107]路易斯 W H.多倍体在植物和动物中的地位[M].贵州:贵州人民出版社,1984.
    [108]刘春林,官春云,李云.植物RAPD标记的可靠性研究[J].生物技术通报,1999,2:31~34.
    [109]Laner C,Bryngelsson T, Gustafsson M. Genetic validity of RAPD markers at the intra-and inter-specific level in Wild Brassica Species with n-9[J]. Theor. Apple,Genet.,1996,98:9~14.
    [110]汪小全,邹喻萍,张大明,等.RAPD应用于遗传多样性和系统学研究中的问题[J].植物学报,1996,38(2):954~962.
    [111]刘孟军,ShinYong-UK,Yea Byeong-Woo.苹果属植物RAPD分析的影响因素及其稳定性研究[J].河北农大学报,1998,21(4):48~54.
    [112]张恒庆,安利佳,祖元刚.红松RAPD试验中各组分成分含量对试验结果的影响[J].植物研究,1999,19(2):183~188.
    [113]夏铭.栾非时,李宗鹏.RAPD影响因素的研究及试验条件的优化[J].植物研究,1999,19(2):195~200.
    [114]王跃进,Lamikanra Olusola.葡萄RAPD分析影响因子的研究[J].农业生物技术学报,1997,5(4):387~390.
    [115]戴思兰,陈俊愉,李文彬.菊属植物RAPD反应体系的建立[J].北京林业大学学报,1996,18(1):46~51.
    [116]李常保,宋建成.RAPD标记与作物改良.生物技术通报[J],1998(6):20~29.
    [117]贺新强,李法曾.DNA分析技术及其在植物系统学研究中的应用[J].植物学通报,1995,12(1):38~43.
    
    
    [118]邹喻苹,蔡美琳,王子平.芍药属牡丹组的系统学研究——基于RAPD分析[J].植物分类学报,1999,37(3):220~227.
    [119]周永红,郑有良,杨俊良,等.10种披碱草属植物的RAPD分析及其系统学意义[J].植物分类学报,1999,37(5),425~432.
    [120]周永红,郑有良,杨俊良,等.利用RAPD分子标记评价仲彬草属的种间关系[J].植物分类学报,2000,38(6):515~521.
    [121]崔继哲,祖元刚,关晓铎.羊草种群遗传分化的RAPD分析Ⅰ:扩增片段频率的变化[J].植物研究,2001,21(2):272~277.
    [122]方宣钧,黄育民,陈启锋,等.若干水稻品种(组合)的等位酶和RAPD遗传分析[J].中国农业科学,1999,32(2):1~8.
    [123]罗素兰,贺普超,郑学勤,等.中国野生葡萄遗传多样性的RAPD分析[J].植物学报,2001,43(2):158~163.
    [124]周永红,杨俊良,郑有良,等.用RAPD分子标记探讨鹅观草属的种间关系[J].植物学报,1999,41(10):1076~1081.
    [125]杜光伟,易清明,陈家宽.运用AP-PCR对中国慈姑属内亲缘关系的研究[J].植物分类学报,1998,36(3):216~221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700