用户名: 密码: 验证码:
纳米磁颗粒的表面修饰及其在生物学上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米磁颗粒是一种在生物医学领域有着重大应用价值的新型材料。纳米磁颗粒的表面修饰对其实际应用有着极其重要的影响。总体上说,表面修饰起到如下三个方面的作用:(1)控制纳米磁颗粒的尺寸与形貌;(2)赋予纳米磁颗粒合适的胶体稳定性;(3)进行纳米磁颗粒的生物学功能化。表面修饰在很大程度上决定了纳米磁颗粒的应用价值。本课题以基因操纵与转染为应用目的,制备了小分子,高分子,和无机纳米颗粒等多种材料修饰的纳米磁性颗粒。首先,我们合成了羧甲基葡聚糖,氨基硅烷,甜菜碱,柠檬酸,聚乙烯亚胺等一系列材料修饰的磁颗粒,并将它们用于增强绿色荧光蛋白质粒(GFP)转染NIH-3T3细胞。我们还合成了磷酸钙-四氧化三铁复合物,应用于基因的可控运输和转染。此外,我们还分别制备了稳定结合的金磁复合物以及能够可控解离的金磁双硫键组装体。最后,我们将温敏高分子-紫杉醇复合物包覆在纳米磁颗粒上,研究了交变磁场控制胶体稳定性的可行性。经过如上所述的各项工作,得出结论如下:
     (1)在聚乙烯亚胺转染细胞的实验中,加入纳米磁颗粒并在磁板上静置15分钟,可以大大增强最终的基因表达效率,同时减轻受体细胞在转染过程中所受的伤害。然而只有团聚尺寸较小(Dh < 100 nm)的聚乙烯亚胺包覆纳米磁颗粒才有明显的磁转染功效,过大的团聚体甚至会抑制基因的表达;
     (2)在磁转染中并不一定需要聚乙烯亚胺包覆的纳米磁颗粒,只要磁颗粒的表面带有足够的电荷,无论是正电荷还是负电荷,均能在磁场下增强基因表达的效率;
     (3)新型的磷酸钙-四氧化三铁复合纳米材料,在钙离子和碳酸根离子的调节下,可以成为一种高效、载带/卸载完全可控的DNA载体。在磁场增强的条件下,它在体外实验中能够高效地转染质粒DNA进入COS-7细胞;
     (4)利用聚乙烯亚胺包覆的纳米磁颗粒直接还原氯金酸,可以得到一种新型的金磁复合物。它对巯基类分子有着特异性的吸附能力,而对氨基类分子则几乎不吸收;
     (5)N-琥珀酰亚-3-(2-吡啶基二硫)丙酸酯(SPDP)可以将氨基化的金颗粒组装到巯基化的磁微球表面。这种复合物结构遇到巯基乙醇即可发生解离,金颗粒从磁微球上脱离,重新分散到溶液中。因此,这里制备的金磁双硫键复合物是一种“可切割”的二元纳米组装材料;
     (6)交变磁场可以控制温敏性纳米磁颗粒的胶体稳定性以及磁响应性。
Magnetic nanoparticles have many important biomedical applications. The surface modification to the particles can dramatically influence their application values. Generally speaking, surface modification has the following three functions: (1) controlling the size and morphology of magnetic nanoparticles; (2) adjusting the colloidal stabilities of the particles; (3) delivering bio-functions to magnetic nanoparticles. In this PhD program, we have prepared magnetic naoparticles modified by various small molecules, polymers, and inorganic nanoparticlers. First,we have prepared dextran, aminosilane, citric acid, betaine, and PEI modified particles, and used them to enhance transfecting plasmid DNA into cells in vitro. Then we prepared calcium phosphate-magnetite hybrid materials to deliver and transfect DNA. We also combined gold nanoparticles onto magnetic nanoparticles to make gold-magnetic hybrid materials. We have prepared both stably combined and“cleavable”complexes. Finally, we coated a thermo-sensitive polymer onto the magnetic particles and then used alternating magnetic field to control the aggregation of such particles. Based on these work, we have the following main points of results:
     (1) The aggregation size of magnetic nanoparticles has dramatic effect on their performances in magnetofection. Only those weakly aggregated particles can successfully enhance gene transfection.
     (2) If the particles have sufficiently high surface potentials, either positive or negative, they are capable of enhancing the gene delivery of PEI. In magnetofection, the used magnetic nanoparticles don’t have to be coated with functional transfection agents. Instead, surface charged particles can also work well. The preparation of magnetic nanoparticles and gene vector can be separated in a magnetofection study.
     (3) A novel calcium phosphate-magnetite composite nanomaterial has been prepared. In solution of CaCl_2, such material is able to load a large amount of DNA by co-assembling into complex microspheres. The microspheres are broken in the solution of CO_3~(2-) and release the loaded DNA, which is still available for PCR amplification. Enhanced by magnetic force, the CaP-M is able to effectively transfect plasmids into COS-7 cells in vitro.
     (4) Au/PEI/Fe_3O_4 nanocomposite has been prepared via in-situ reducing dissolved HAuCl4 by PEI coated magnetic nanoparticles. The composite is capable of specifically capturing biomolecules with thiol groups.
     (5) We have designed and prepared gold-magnetic composites where two particles are combined by disulfide bonds. The composites can be cleaved byβ-mercaptoethanol in their dispersions, the gold and magnetic beads are thus separated.
     (6) The colloidal stabilities and magnetic responses of thermosensitive polymer coated magnetic nanoparticlers can be controlled by a remote alternating magnetic field.
引文
[1] Hodes G. When small is different: Some recent advances in concepts and applications of nanoscale phenomena [J]. Advanced Materials, 2007 (19): 639-655.
    [2] Wang X., Peng Q., Li Y. Interface-mediated growth of monodispersed nanostructures[J]. Accounts of Chemical Research, 2007 (8): 635-643.
    [3] Xia Y., Xiong Y., Lim B., Skrabalak S. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?[J]. Angewandte Chemie International Edition, 2008 (1): 60-103.
    [4] Wang Y., Tang Z., Kotov N. A. Bioapplication of nanosemiconductors[J]. Materials Today, 2005 (5S1): 20-31.
    [5] Humphrey T. E., Linke H. Reversible thermoelectric nanomaterials[J]. Phys. Rev. Lett, 2005 (096601): 1-4.
    [6] Owen R., Depledge M. Nanotechnology and the environment: Risks and rewards[J]. Marine Pollution Bulletin, 2005 (6): 609-612.
    [7] Lewin M., Carlesso N., Tung C. H., Tang X. W., Cory D., Scadden D. T., Weissleder R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells[J]. Nature Biotechnology, 2000 (4): 410-414.
    [8] Mornet S., Vasseur S., Grasset F., Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy[J]. Journal of Materials Chemistry, 2004 (14): 2161-2175.
    [9] Bean C. P., Livingston J. D. Superparamagnetism[J]. Journal of Applied Physics, 1959: S120.
    [10] Lu A. H., Salabas E. L., Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application[J]. Angewandte Chemie International Edition, 2007 (8): 1222-1244.
    [11] Vaucher S., Fielden J., Li M., Dujardin E., Mann S. Molecule-based magnetic nanoparticles: synthesis of cobalt hexacyanoferrate, cobalt pentacyanonitrosylferrate, and chromium hexacyanochromate coordination polymers in water-in-oil microemulsions[J]. Nano Letters, 2002 (3): 225-229.
    [12] Wang X., Zhuang J., Peng Q., Li Y. A general strategy for nanocrystal synthesis[J]. Nature, 2005 (7055): 121-124.
    [13] Kim D., Lee N., Park M., Kim B. H., An K., Hyeon T. Synthesis of Uniform Ferrimagnetic Magnetite Nanocubes[J]. Journal of the American Chemical Society, 2009 (2): 454-455.
    [14] Li Z., Wei L., Gao M., Lei H. One-Pot Reaction to Synthesize Biocompatible Magnetite Nanoparticles [J]. Advanced Materials, 2005 (8): 1001-1001.
    [15] Jana N., Chen Y., Peng X. Size-and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach[J]. Chem. Mater, 2004 (20): 3931-3935.
    [16] Gupta A., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomaterials, 2005 (18): 3995-4021.
    [17] Dumestre F., Amiens C., Chaudret B., Fromen M., Casanove M., Renaud P., Zurcher P., Toulouse F. Synthesis of Cobalt Nanoparticles, Nanorods and Nanowires Assisted by Oleic Acid and Oleylamine Based Mixtures[C], 2003: 165-170.
    [18] B?nnemann H., Brijoux W., Brinkmann R., Matoussevitch N., Wald?fner N., Palina N., Modrow H. A size-selective synthesis of air stable colloidal magnetic cobalt nanoparticles[J]. Inorganica Chimica Acta, 2003(350): 617-624.
    [19] Xu C., Sun S. Monodisperse magnetic nanoparticles for biomedical applications[J]. Polymer International, 2007 (7): 821-826.
    [20] Adamczyk Z., Weronski P. Application of the DLVO theory for particle deposition problems[J]. Advances in Colloid and Interface Science, 1999 (1-3): 137-226.
    [21] Myers D. Surfaces, Interfaces, and Colloids: Principles and Applications, Second Edition. 1999.
    [22] Wang X., Zhou L., Ma Y., Li X., Gu H. Control of aggregate size of polyethyleneimine-coated magnetic nanoparticles for magnetofection[J]. Nano Research, 2009 (5): 365-372.
    [23] Xu Z., Liu Q., Finch J. Silanation and stability of 3-aminopropyl triethoxy silane on nanosized superparamagnetic particles: I. Direct silanation[J]. Applied Surface Science, 1997 (3-4): 269-278.
    [24] Peng S., Wang C., Xie J., Sun S. Synthesis and stabilization of monodisperse Fe nanoparticles[J]. J. Am. Chem. Soc, 2006 (33): 10676-10677.
    [25]居胜红,滕皋军,毛曦,张爱凤,张宇,马明,顾宁.脐血间充质干细胞磁探针标记和MR成像研究[J].中华放射学杂志, 2005 (1): 101-106.
    [26] Liu C., Huang P. Kinetics of lead adsorption by iron oxides formed under the influence of citrate[J]. Geochimica et Cosmochimica Acta, 2003 (5): 1045-1054.
    [27] Babes L., Denizot B., Tanguy G., Le Jeune J., Jallet P. Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study[J]. Journal of Colloid and Interface Science, 1999 (2): 474-482.
    [28] Weissleder R., Elizondo G., Wittenberg J., Rabito C., Bengele H., Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging[J]. Radiology, 1990 (2): 489-493.
    [29] Wagner S., SCHNORR J., Pilgrimm H., Hamm B., Taupitz M. Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization[J]. Investigative radiology, 2002 (4): 167.
    [30] Taupitz M., Wagner S., Schnorr J., Dewey M., Rogalla P., Krug L., Laub G., Kivelitz D., Pilgrimm H., Kravec I. MR Angiography of the entire coronary system with very small iron oxide blood-pool contrast medium: results of a phase Ib clinical trial[C]. Proc. Intl. Soc. Mag. Reson. Med. , 2003: 725.
    [31] Jordan A., Scholz R., Maier-Hauff K., Johannsen M., Wust P., Nadobny J., Schirra H., Schmidt H., Deger S., Loening S. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia[J]. Journal of Magnetism and Magnetic Materials, 2001 (1-2): 118-126.
    [32] Wang X., Gu H., Yang Z. The heating effect of magnetic fluids in an alternating magnetic field[J]. Journal of Magnetism and Magnetic Materials, 2005 (1): 334-340.
    [33] Zhang L., Gu H., Wang X. Magnetite ferrofluid with high specific absorption rate for application in hyperthermia[J]. Journal of Magnetism and Magnetic Materials, 2007 (1): 228-233.
    [34] Zhang Z., Zhang L., Chen L., Wan Q. Synthesis of novel porous magnetic silica microspheres as adsorbents for isolation of genomic DNA[J]. Biotechnology progress, 2006 (2): 514-518.
    [35] Bucak S., Jones D., Laibinis P., Hatton T. Protein separations using colloidal magnetic nanoparticles[J]. Biotechnology progress, 2003 (2): 477-484.
    [36] Molday R., Mackenzie D. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells[J]. Journal of immunological methods, 1982 (3): 353.
    [37] Plank C. Nanomagnetosols: magnetism opens up new perspectives for targeted aerosol delivery to the lung[J]. Trends in Biotechnology, 2008 (2): 59-63.
    [38] Wagner E., Kloeckner J. Gene Delivery Using Polymer Therapeutics[J]. Advances in polymer science, 2006: 135-173.
    [39] Pouton C. W., Seymour L. W. Key issues in non-viral gene delivery[J]. Advanced Drug Delivery Reviews, 2001 (1-3): 187-203.
    [40] Kaul G., Amiji M. Cellular interactions and in vitro DNA transfection studies with poly (ethylene glycol)-modified gelatin nanoparticles[J]. J. Pharm. Sci, 2005 (1): 184-198.
    [41] Herweijer H., Wolff J. Progress and prospects: naked DNA gene transfer and therapy[J]. Gene Therapy, 2003 (6): 453-458.
    [42] Luo D., Saltzman W. Synthetic DNA delivery systems[J]. Nature Biotechnology, 2000 (1): 33-37.
    [43] Dufes C., Uchegbu I. F., Schatzlein A. G. Dendrimers in gene delivery[J]. Advanced Drug Delivery Reviews, 2005 (15): 2177-2202.
    [44] Boussif O., Lezoualc'h F., Zanta M. A., Mergny M. D., Scherman D., Demeneix B., Behr J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995 (16): 7297.
    [45] Pollard H., Remy J. S., Loussouarn G., Demolombe S., Behr J. P., Escande D. Polyethylenimine but Not Cationic Lipids Promotes Transgene Delivery to the Nucleus in Mammalian Cells[J]. Journal of Biological Chemistry, 1998 (13): 7507-7511.
    [46] Ciftci K., Levy R. J. Enhanced plasmid DNA transfection with lysosomotropic agents in cultured fibroblasts[J]. International Journal of Pharmaceutics, 2001 (1-2): 81-92.
    [47] Tkachenko A., Xie H., Coleman D., Glomm W., Ryan J., Anderson M., Franzen S., Feldheim D. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting[J]. Journal of the American Chemical Society, 2003 (16): 4700-4701.
    [48] Niidome T., Nakashima K., Takahashi H., Niidome Y. Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells[J]. Chemical Communications, 2004 (17): 1978-1979.
    [49] Kumar M., Sameti M., Mohapatra S. S., Kong X., Lockey R. F., Bakowsky U., Lindenblatt G., Schmidt C. H., Lehr C. M. Cationic Silica Nanoparticles as Gene Carriers: Synthesis, Characterization and Transfection Efficiency In vitro and In vivo[J]. Journal of Nanoscience and Nanotechnology, 2004 (7): 876-881.
    [50] Kneuer C., Sameti M., Bakowsky U., Schiestel T., Schirra H., Schmidt H., Lehr C. M. A Nonviral DNA Delivery System Based on Surface Modified Silica-Nanoparticles Can Efficiently Transfect Cells in Vitro[J]. Bioconjugate Chemistry, 2000 (6): 926-932.
    [51] Chowdhury E. H., Kunou M., Nagaoka M., Kundu A. K., Hoshiba T., Akaike T. High-efficiency gene delivery for expression in mammalian cells by nanoprecipitates of Ca-Mg phosphate[J]. Gene, 2004: 77-82.
    [52] Zwiorek K., Kloeckner J., Wagner E., Coester C. In Vitro Gene Transfection with Surface-Modified Gelatin Nanoparticles[C], 2004 International Conference on MEMS, NANO and Smart Systems: 60-63.
    [53] Thomas M., Klibanov A. Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells[J]. Proceedings of the National Academy of Sciences, 2003 (16): 9138-9143.
    [54] Noh S., Kim W., Kim S., Kim J., Baek K., Oh Y. Enhanced cellular delivery and transfection efficiency of plasmid DNA using positively charged biocompatible colloidal gold nanoparticles[J]. BBA-General Subjects, 2007 (5): 747-752.
    [55] Rosi N., Giljohann D., Thaxton C., Lytton-Jean A., Han M., Mirkin C. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science, 2006: 1027-1030.
    [56] Qhobosheane M., Santra S., Zhang P., Tan W. Biochemically functionalized silica nanoparticles[J]. The Analyst, 2001 (8): 1274-1278.
    [57] Radu D., Lai C., Jeftinija K., Rowe E., Jeftinija S., Victor S. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent[J]. J. Am. Chem. Soc, 2004 (41): 13216-13217.
    [58] Kneuer C., Sameti M., Haltner E., Schiestel T., Schirra H., Schmidt H., Lehr C. Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA[J]. International Journal of Pharmaceutics, 2000 (2): 257-261.
    [59] De Groot K. Clinical applications of calcium phosphate biomaterials: a review[J]. Ceramics international, 1993 (5): 363-366.
    [60] LeGeros R. Calcium phosphate materials in restorative dentistry: a review[J]. Advances in dental research, 1988 (1): 164-180.
    [61] Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics[J]. Clinical orthopaedics and related research, 1981 (157): 259.
    [62] Markov G., Ivanov I. Hydroxyapatite column chromatography in procedures for isolation of purified DNA[J]. Analytical Biochemistry, 1974 (2): 555-563.
    [63] Kingston R., Chen C., Okayama H. Calcium phosphate transfection[J]. Current protocols in immunology, 2001: UNIT 10.13
    [64] Pedraza C. E., Bassett D. C., McKee M. D., Nelea V., Gbureck U., Barralet J. E. The importance of particle size and DNA condensation salt for calcium phosphate nanoparticle transfection[J]. Biomaterials, 2008 (23): 3384-3392.
    [65] Kichler A. Gene transfer with modified polyethylenimines[J]. Journal of Gene Medicine, 2004 (SUPPL. 1): S3-S10.
    [66] Akinc A., Thomas M., Klibanov A., Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis[J]. The Journal of Gene Medicine, 2005 (5): 657 - 663.
    [67] Ohsaki M., Okuda T., Wada A., Hirayama T., Niidome T., Aoyagi H. In vitro gene transfection using dendritic poly (L-lysine)[J]. Bioconjugate Chem, 2002 (3): 510-517.
    [68] Choi J., Nam K., Park J., Kim J., Lee J. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with l-arginine[J]. Journal of Controlled Release, 2004 (3): 445-456.
    [69] Weecharangsan W., Opanasopit P., Ngawhirunpat T., Rojanarata T., Apirakaramwong A. Chitosan lactate as a nonviral gene delivery vector in COS-1 cells[J]. AAPS PharmSciTech, 2006 (3): 74-79.
    [70] Hu F., Zhao M., Yuan H., You J., Du Y., Zeng S. A novel chitosan oligosaccharide-stearic acid micelles for gene delivery: properties and in vitro transfection studies[J]. International Journal of Pharmaceutics, 2006 (1-2): 158-166.
    [71] Jilek S., Zurkaulen H., Pavlovic J., Merkle H., Walter E. Transfection of a mouse dendritic cell line by plasmid DNA-loaded PLGA microparticles in vitro[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2004 (3): 491-499.
    [72] Hughes C., Galea-Lauri J., Farzaneh F., Darling D. Streptavidin paramagnetic particles provide a choice of three affinity-based capture and magnetic concentration strategies for retroviral vectors[J]. Molecular Therapy, 2001 (4): 623-630.
    [73] Wagner K., Kautz A., Roder M., Schwalbe M., Pachmann K., Clement J. H., Schnabelrauch M. Synthesis of oligonucleotide-functionalized magnetic nanoparticles and study on their in vitro cell uptake[J]. Applied Organometallic Chemistry, 2004: 514-519.
    [74] Mah C., Fraites Jr T. J., Zolotukhin I., Song S., Flotte T. R., Dobson J., Batich C., Byrne B. J. Improved method of recombinant AAV2 delivery for systemic targeted gene therapy[J]. Molecular Therapy, 2002 (1): 106-112.
    [75] Plank C., Bergemann C. Method for transfecting cells using a magnetic field[P], US Patent App. 09/895,019, 2001 .
    [76] Scherer F., Anton M., Schillinger U., Henkel J., Bergemann C., Kruger A., Gansbacher B., Plank C. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo[J]. Gene Therapy, 2002 (2): 102-109.
    [77] Plank C., Schillinger U., Scherer F., Bergemann C., Remy J. S., Krotz F., Anton M., Lausier J., Rosenecker J. The magnetofection method: using magnetic force to enhance gene delivery[J]. Biol Chem, 2003 (5): 737-47.
    [78] Mykhaylyk O., Antequera Y. S., Vlaskou D., Plank C. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro[J]. Nat. Protocols, 2007 (10): 2391-2411.
    [79] Bhattarai S. R., Kim S. Y., Jang K. Y., Lee K. C., Yi H. K., Lee D. Y., Kim H. Y., Hwang P. H. N-hexanoyl chitosan-stabilized magnetic nanoparticles: enhancement of adenoviral-mediated gene expression both in vitro and in vivo[J]. Nanomedicine: Nanotechnology, Biology, and Medicine, 2008 (2): 146-154.
    [80] Pan X., Guan J., Yoo J. W., Epstein A. J., Lee L. J., Lee R. J. Cationic lipid-coated magnetic nanoparticles associated with transferrin for gene delivery[J]. International Journal of Pharmaceutics, 2008 (1-2): 263-270.
    [81] Steitz B., Hofmann H., Kamau S. W., Hassa P. O., Hottiger M. O., von Rechenberg B., Hofmann-Amtenbrink M., Petri-Fink A. Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: Size distribution, colloidal properties and DNA interaction[J]. Journal of Magnetism and Magnetic Materials, 2007 (1): 300-305.
    [82] Cai D., Mataraza J. M., Qin Z. H., Huang Z., Huang J., Chiles T. C., Carnahan D., Kempa K., Ren Z. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing[J]. Nature Methods, 2005: 449-454.
    [83] Kamau S. W., Hassa P. O., Steitz B., Petri-Fink A., Hofmann H., Hofmann-Amtenbrink M., von Rechenberg B., Hottiger M. O. Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field[J]. Nucleic Acids Research, 2006 (5): e40.
    [84] Kamau Chapman S. W., Hassa P. O., Koch-Schneidemann S., von Rechenberg B., Hofmann-Amtenbrink M., Steitz B., Petri-Fink A., Hofmann H., Hottiger M. O. Application of pulsed-magnetic field enhances non-viral gene delivery in primary cells from different origins[J]. Journal of Magnetism and Magnetic Materials, 2008 (8): 1517-1527.
    [85] Buerli T., Pellegrino C., Baer K., Lardi-Studler B., Chudotvorova I., Fritschy J. M., Medina I., Fuhrer C. Efficient transfection of DNA or shRNA vectors into neurons using magnetofection[J]. Nature Protocols, 2007 (12): 3090.
    [86] Li W., Szoka F. C. Lipid-based Nanoparticles for Nucleic Acid Delivery[J]. Pharmaceutical Research, 2007 (3): 438-449.
    [87] Prow T., Smith J. N., Grebe R., Salazar J. H., Wang N., Kotov N., Lutty G., Leary J. Construction, gene delivery, and expression of DNA tethered nanoparticles[J]. Mol Vis, 2006: 606-15.
    [88] McBain S. C., Yiu H. H. P., Haj A. E., Dobson J. Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection[J]. Journal of Materials Chemistry, 2007 (24): 2561-2565.
    [89] Belenkov A. I., Alakhov V. Y., Kabanov A. V., Vinogradov S. V., Panasci L. C., Monia B. P., Chow T. Y. K. Polyethyleneimine grafted with pluronic P85 enhances Ku86 antisense delivery and the ionizing radiation treatment efficacy in vivo[J]. Gene Therapy, 2004 (22): 1665-1672.
    [90] Petersen H., Fechner P. M., Martin A. L., Kunath K., Stolnik S., Roberts C. J., Fischer D., Davies M. C., Kissel T. Polyethylenimine-graft-poly(ethylene glycol) copolymers: Influence of copolymer block structure on DNA complexation and biological activities as gene delivery system[J]. Bioconjugate Chemistry, 2002 (4): 845-854.
    [91] Carter P. J., Samulski R. J. Adeno-associated viral vectors as gene delivery vehicles[J]. Int J Mol Med, 2000 (1): 17-27.
    [92] Prabha S., Zhou W. Z., Panyam J., Labhasetwar V. Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles[J]. International Journal of Pharmaceutics, 2002 (1-2): 105-115.
    [93] Markov G. G., Ivanov I. G. Hydroxyapatite column chromatography in procedures for isolation of purified DNA[J]. Analytical Biochemistry, 1974 (2): 555-563.
    [94] Sokolova V. V., Radtke I., Heumann R., Epple M. Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles[J]. Biomaterials, 2006 (16): 3147-3153.
    [95] Pedraza C. E., Bassett D. C., McKee M. D., Nelea V., Gbureck U., Barralet J. E. The importance of particle size and DNA condensation salt for calcium phosphate nanoparticle transfection[J]. Biomaterials, 2008 (23): 3384-92.
    [96] Jordan M., Schallhorn A., Wurm F. M. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation[J]. Nucleic Acids Research, 1996 (4): 596-601.
    [97] Maitra A. Calcium phosphate nanoparticles: Second-generation nonviral vectors in gene therapy[J]. Expert Review of Molecular Diagnostics, 2005 (6): 893-905.
    [98] Portet D., Denizot B., Rump E., Lejeune J. J., Jallet P. Nonpolymeric Coatings of Iron Oxide Colloids for Biological Use as Magnetic Resonance Imaging Contrast Agents[J]. Journal of Colloid and Interface Science, 2001 (1): 37-42.
    [99] Kuluz J. W., Gregory G. A., Han Y., Dietrich W. D., Schleien C. L. Fructose-1, 6-bisphosphate reduces infarct volume after reversible middle cerebral artery occlusion in rats[J]. Stroke, 1993 (10): 1576-1583.
    [100] Okazaki M., Yoshida Y., Yamaguchi S., Kaneno M., Elliott J. C. Affinity binding phenomena of DNA onto apatite crystals[J]. Biomaterials, 2001 (18): 2459-2464.
    [101] Ignjatovic N., Savic V., Najman S., Plav?i? M., Uskokovic D. A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy[J]. Biomaterials, 2001 (6): 571-575.
    [102] Pleshko N., Boskey A., Mendelsohn R. Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals[J]. Biophysical Journal, 1991 (4): 786.
    [103] Tuncel A., Unsal E., Cicek H. pH-sensitive uniform gel beads for DNA adsorption[J]. Journal of Applied Polymer Science, 2000 (14): 3154-3161.
    [104] Solberg S. M., Landry C. C. Adsorption of DNA into mesoporous silica[J]. Journal of Physical Chemistry B, 2006 (31): 15261-15268.
    [105] Saoudi B., Jammul N., Chehimi M. M., McCarthy G. P., Armes S. P. Adsorption of DNA onto polypyrrole-silica nanocomposites[J]. Journal of Colloid and Interface Science, 1997 (1): 269-273.
    [106] Blagodatskaya E. V., Blagodatskii S. A., Anderson T. H. Quantitative Isolation of Microbial DNA from Different Types of Soils of Natural and Agricultural Ecosystems[J]. Microbiology, 2003 (6): 744-749.
    [107] Unsal E., Bahar T., Tuncel M., Tuncel A. DNA adsorption onto polyethylenimine-attached poly (p-chloromethylstyrene) beads[J]. Journal of Chromatography A, 2000 (2): 167-177.
    [108] Yoza B., Matsumoto M., Matsunaga T. DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound[J]. Journal of Biotechnology, 2002 (3): 217-224.
    [109] Nguyen T. H., Elimelech M. Plasmid DNA adsorption on silica: Kinetics and conformational changes in monovalent and divalent salts[J]. Biomacromolecules, 2007 (1): 24-32.
    [110] Sushko M. L., Shluger A. L., Rivetti C. Simple model for DNA adsorption onto a mica surface in 1:1 and 2:1 electrolyte solutions[J]. Langmuir, 2006 (18): 7678-7688.
    [111] Nguyen T. H., Elimelech M. Adsorption of plasmid DNA to a natural organic matter-coated silica surface: Kinetics, conformation, and reversibility[J]. Langmuir, 2007 (6): 3273-3279.
    [112] Lee Y., Hahm Y. M., Lee D. H., Matsuya S., Nakagawa M., Ishikawa K. Preparation and Characterization of Macroporous Carbonate-Substituted Hydroxyapatite Scaffold[J]. Industrial & Engineering Chemistry Research 2008 (8): 2618-2622.
    [113] Nishiyama N., Iriyama A., Jang W. D., Miyata K., Itaka K., Inoue Y., Takahashi H., Yanagi Y., Tamaki Y., Koyama H., Kataoka K. Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer[J]. Nature Materials, 2005 (12): 934-41.
    [114] Poly F., Chenu C., Simonet P., Rouiller J., Monrozier L. J. Differences between linear chromosomal and supercoiled plasmid DNA in their mechanisms and extent of adsorption on clay minerals[J]. Langmuir, 2000 (3): 1233-1238.
    [115] Sen T., Sebastianelli A., Bruce I. J. Mesoporous silica-magnetite nanocomposite: Fabrication and applications in magnetic bioseparations[J]. Journal of the American Chemical Society, 2006 (22): 7130-7131.
    [116] Liu X., Fu L., Hong S., Dravid V., Mirkin C. Arrays of Magnetic Nanoparticles Patterned via "Dip-Pen" Nanolithography[J]. Advanced Materials, 2002 (3): 231-234.
    [117] Rogach A., Kotov N., Koktysh D., Ostrander J., Ragoisha G. Electrophoretic deposition of latex-based 3D colloidal photonic crystals: A technique for rapid production of high-quality opals[J]. Science, 1997: 1284.
    [118] Rybczynski J., Ebels U., Giersig M. Large-scale, 2D arrays of magnetic nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003 (1-3): 1-6.
    [119] Lin J., Zhou W., Kumbhar A., Wiemann J., Fang J., Carpenter E., O'Connor C. Gold-coated iron (Fe@ Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly[J]. Journal of Solid State Chemistry, 2001 (1): 26-31.
    [120] Shevchenko E., Talapin D., Murray C., O'Brien S. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices[J]. J. Am. Chem. Soc, 2006 (11): 3620-3637.
    [121] Daniel M. C., Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews, 2004 (1): 293-346.
    [122] Bulte J. W. M., Kraitchman D. L. Iron oxide MR contrast agents for molecular and cellular imaging[J]. Nmr in Biomedicine, 2004 (7): 484-499.
    [123] Jordan A., Scholz R., Wust P., Fahling H., Felix R. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 1999: 413-419.
    [124] Gupta A. K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomaterials, 2005 (18): 3995-4021.
    [125] Bruce I. J., Sen T. Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations[J]. Langmuir, 2005 (15): 7029-7035.
    [126] Yu H., Chen M., Rice P. M., Wang S. X., White R. L., Sun S. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles[J]. Nano Letters, 2005 (2): 379-382.
    [127] Seino S., Kusunose T., Sekino T., Kinoshita T., Nakagawa T., Kakimi Y., Kawabe Y., Iida J., Yamamoto T. A., Mizukoshi Y. Synthesis of gold/magnetic iron oxide composite nanoparticles for biomedical applications with good dispersibility[J]. Journal of Applied Physics, 2006 (8).
    [128] Ji X., Shao R., Elliott A. M., Jason Stafford R., Esparza-Coss E., Bankson J. A., Liang G., Luo Z. P., Park K., Markert J. T., Li C. Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy[J]. Journal of Physical Chemistry C, 2007 (17): 6245-6251.
    [129] Cui Y., Zhang L., Su J., Zhang C., Li Q., Cui T., Jin B., Chen C. Synthesis of GoldMag particles with assembled structure and their applications in immunoassay[J]. Science in China, Series B: Chemistry, 2006 (6): 534-540.
    [130] Note C., Kosmella S., Koetz J. Poly(ethyleneimine) as reducing and stabilizing agent for the formation of gold nanoparticles in w/o microemulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006 (1-3): 150-156.
    [131] Wang S., Yan J., Chen L. Formation of gold nanoparticles and self-assembly into dimer and trimer aggregates[J]. Materials Letters, 2005 (11): 1383-1386.
    [132] Sun X., Dong S., Wang E. One-step synthesis and characterization of polyelectrolyte-protected gold nanoparticles through a thermal process[J]. Polymer, 2004 (7): 2181-2184.
    [133] Daniel M. C., Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews, 2004 (1): 293-346.
    [134] Mizukoshi Y., Seino S., Kinoshita T., Nakagawa T., Yamamoto T. A., Tanabe S. Selective magnetic separation of sulfur-containing amino acids by sonochemically prepared Au/γ-Fe2O3 composite nanoparticles[J]. Scripta Materialia, 2006 (4): 609-613.
    [135] Sun Q., Reddy B. V., Marquez M., Jena P., Gonzalez C., Wang Q. Theoretical study on gold-coated iron oxide nanostructure: Magnetism and bioselectivity for amino acids[J]. Journal of Physical Chemistry C, 2007 (11): 4159-4163.
    [136] Xi D., Luo X. P., Lu Q. H., Yao K. L., Liu Z. L., Ning Q. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes[J]. Journal of Nanoparticle Research, 2007: 1-8.
    [137] Kouassi G. K., Irudayaraj J. Magnetic and gold-coated magnetic nanoparticles as a DNA sensor[J]. Analytical Chemistry, 2006 (10): 3234-3241.
    [138] Duran M., Dorland L., Meuleman E., Allers P., Berger R. Inherited defects of purine and pyrimidine metabolism: laboratory methods for diagnosis[J]. Journal of inherited metabolic disease, 1997 (2): 227-236.
    [139] Turkevich J., Stevenson P., Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold[J]. Discussions of the Faraday Society, 1951: 55-75.
    [140] Xu H., Cui L., Tong N., Gu H. Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization[J]. J. Am. Chem. Soc, 2006 (49): 15582-15583.
    [141] Mao H., Roy K., Troung-Le V., Janes K., Lin K., Wang Y., August J., Leong K. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency[J]. Journal of Controlled Release, 2001 (3): 399-421.
    [142] Schellenberger E., Schnorr J., Reutelingsperger C., Ungethum L., Meyer W., Taupitz M., Hamm B. Linking proteins with anionic nanoparticles via protamine: ultrasmall protein-coupled probes for magnetic resonance imaging of apoptosis[J]. Small, 2008 (2): 225-230.
    [143] Xu X., Wang J., Jiao K., Yang X. Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range[J]. Biosensors and Bioelectronics, 2009 (10): 3153-3158.
    [144] Liu J., Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles[J]. J. Am. Chem. Soc, 2003 (22): 6642-6643.
    [145] Kataoka K., Kwon G., Yokoyama M., Okano T., Sakurai Y. Block copolymer micelles as vehicles for drug delivery[J]. Journal of Controlled Release, 1993 (1-3): 119-132.
    [146] Arap W., Pasqualini R., Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model[J]. Science, 1998 (5349): 377.
    [147] Langer R. Drug delivery and targeting[J]. Nature(London), 1998 (6679): 5-10.
    [148] Nori A., Jensen K., Tijerina M., Kopec?kova P., Kopec?ek J. Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells[J]. Bioconjugate Chem, 2003 (1): 44-50.
    [149] Qian Z., Li H., Sun H., Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway[J]. Pharmacological reviews, 2002 (4): 561-587.
    [150] Sudimack J., Lee R. Targeted drug delivery via the folate receptor[J]. Advanced Drug Delivery Reviews, 2000 (2): 147-162.
    [151] Hadgraft J. Passive enhancement strategies in topical and transdermal drug delivery[J]. International Journal of Pharmaceutics, 1999 (1): 1-6.
    [152] Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review[J]. Journal of Controlled Release, 2000 (1-2): 271-284.
    [153] Son S., Reichel J., He B., Schuchman M., Lee S. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery[J]. Journal of the American Chemical Society, 2005 (20): 7316-7317.
    [154] Dobson J. Magnetic nanoparticles for drug delivery[J]. Drug Development Research, 2006 (1): 55-60.
    [155] Plank C. Nanomagnetosols: magnetism opens up new perspectives for targeted aerosol delivery to the lung[J]. Trends in Biotechnology, 2008 (2): 59-63.
    [156] Oberdorster G., Ferin J., Lehnert B. Correlation between Particle Size, In Vivo Particle Persistence, and Lung In jury[J]. Environmental Health Perspectives, (Supplement 5): 173-179.
    [157] Nagayasu A., Uchiyama K., Kiwada H. The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs[J]. Advanced Drug Delivery Reviews, 1999 (1-2): 75-87.
    [158] Hilger I., Hiergeist R., Hergt R., Winnefeld K., Schubert H., Kaiser W. Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study[J]. Investigative radiology, 2002 (10): 580.
    [159] Jia Z., Chen H., Zhu X., Yan D. Backbone-thermoresponsive hyperbranched polyethers[J]. J. Am. Chem. Soc, 2006 (25): 8144-8145.
    [160] Shamim N., Hong L., Hidajat K., Uddin M. Thermosensitive-polymer-coated magnetic nanoparticles: Adsorption and desorption of Bovine Serum Albumin[J]. Journal of Colloid and Interface Science, 2006 (1): 1-8.
    [161] Shamim N., Hong L., Hidajat K., Uddin M. Thermosensitive polymer (N-isopropylacrylamide) coated nanomagnetic particles: Preparation and characterization[J]. Colloids and Surfaces B: Biointerfaces, 2007 (1): 51-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700