用户名: 密码: 验证码:
氧化铟、硫化铟纳米结构材料的液相合成及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要探讨了利用液相化学法控制合成Ⅲ-Ⅵ族半导体化合物—氧化铟(In_2O_3)和硫化铟(β-In_2S_3)纳米结构材料。分别从材料制备、形成机制、以及性质表征和应用研究三个方面进行了论述,内容涉及亚稳相刚玉结构In_2O_3纳米片的合成、形成机制、光催化性质;非水介质中立方相In_2O_3纳米立方块的控制合成、光学性质、以纳米立方块为基本构筑单元的层层自组装薄膜的制备及光学性质;花状氧化铟纳米级次结构材料的合成、形成机制、光学性质;β-In_2S_3纳米管的制备、形成机制以及光催化性质;氧化铟纳米颗粒及纳米带的水热/溶剂热合成与表征等。通过对In_2O_3和β-In_2S_3纳米结构材料的控制合成和性质表征以及性能方面的研究,旨在探索液相体系中纳米结构材料形成的内在机制,寻找纳米结构材料控制合成更加有效的手段和途径。
     1.溶液法一步合成刚玉型亚稳相三氧化二铟:前驱体对产品物相的影响
     利用乙醇溶剂热方法,在较低温度200℃,首次一步直接合成了六方结构的In_2O_3(H-In_2O_3)六边形纳米片。纳米片边长为100-200nm,厚度约为30nm。在甲醇/水存在下,90℃的加热干燥过程中相对较弱键断裂,释放出少量乙酰丙酮配体,即释放出的acac~-,为了平衡电荷,acac~-夺取甲醇分子中的质子形成Hacac分子。生成的甲氧基负离子则占据acac~-让出的空轨道,生成铟离子与甲氧基和乙酰丙酮混和配体配位的配合物。我们通过X射线粉末衍射(XRD)、红外(IR)、热重分析(TGA)、核磁共振(NMR)、X射线光电子能谱(XPS)等技术对此配合物进行了表征,这些表征结果表明配合物分子中存在着少量的甲氧基(-OCH_3)基团。以此配合物为前驱体进行乙醇溶剂热反应,即得到刚玉型亚稳相氧化铟。而乙酰丙酮铟为前驱体的溶剂热反应得到的为立方相的氧化铟(C-In_2O_3)。
     为深入理解前驱体的微小差异影响最终产物氧化铟物相的机制,我们通过XRD、IR技术对实验过程进行了跟踪,并对反应上清液进行了~(13)C NMR及~1HNMR分析。结果表明,C-In_2O_3的生成是通过乙酰丙酮铟的简单热分解,而H-In_2O_3则是由于前驱体配合物的水解所得。前驱体间微小的差异导致不同的反应机理进而形成不同物相产物,这在以往的科研工作中经常被忽视。所合成的六方相氧化铟纳米晶与立方相氧化铟以及Degussa P25相比,有着更强的催化降解苯酚的能力。
     2.三氧化二铟纳米立方块的合成及其自组装膜
     以乙酰丙酮铟为前驱体,在不同的有机溶剂中进行溶剂热反应,得到表面平滑,棱角规则清晰的立方三氧化二铟纳米立方块。反应溶剂由乙醇改变为n-丁醇、n-辛醇、苯,得到的纳米立方块边长从约21nm减小到约12nm、8nm和6nm,厚度从8nm减小到约6nm,5nm和3nm。
     在不同溶剂中得到的不同尺寸的氧化铟纳米晶均在可见光区有四个强的发射峰,其中心分别位于451nm(蓝色)、548、568nm(黄色)和616nm(橙色)。这说明样品中含有丰富的氧空位,产生了不同的能级,这样在光激发的过程中使紫外带边发射(NBE)与深能级发射(DL)的比值非常小,因此导致光致发光(PL)光谱上出现四个可见光发射峰。
     采用层层自组装技术,将氧化铟无机纳米颗粒自组装成膜。原子力显微镜(AFM)表征表明薄膜表面颗粒分布紧密均匀,单层膜的厚度为6.39-15.15nm。我们利用紫外可见吸收光谱记录了多层膜制备过程,即监测了每次沉积循环后所形成的薄膜的吸收光谱。随着沉积循环次数的增加,薄膜吸收峰的强度近线性增强,这为多层膜组装,厚度逐渐增长提供了证据。同时随沉积循环次数增多,膜的厚度增加,其荧光发光强度呈线性增强。
     3.纳米花状In_2O_3级次纳米结构的制备、表征及光学性质
     利用乙酰丙酮铟为前驱体,甲苯溶剂热方法制备了具有级次结构的新型花状立方氧化铟,纳米花由粒径为3-5nm的纳米颗粒组成。通过XRD、FT-IR、TEM、HR-TEM等技术对其进行了表征。
     由于乙酰丙酮化合物的热分解速度很慢,氧化铟纳米晶生长的速度较慢。在这种情况下,纳米小颗粒之间碰撞聚集的速度要大于纳米晶生长的速度,生成的氧化铟纳米颗粒为了降低其表面能量,开始随意聚集,这样纳米颗粒的聚集体就会渐渐形成。随着反应时间的延长,氧化铟纳米颗粒逐渐聚集形成花状纳米结构。
     这种In_2O_3花状纳米结构具有独特的发光性质,发射中心分别处于438nm(蓝)、546nm、569nm(黄)、618nm(橙)处。蓝光和黄色光应归因于光子激发的空穴和占据氧空位的电子的复合。而位于618nm的发射则是由InO_6八面体中的缺陷造成的。
     4.硫化铟纳米管的溶剂热合成、表征及其光学性能研究
     以硝酸铟In(NO_3)_3·4H_2O作铟源,十二硫醇作硫源,通过吡啶溶剂热反应一步得到β-In_2S_3纳米管。纳米管两端封闭,外径约为10-20nm,管壁厚约2nm,长度达到微米级。HR-TEM照片表明纳米管由β-In_2S_3纳米颗粒无序组装而成。
     我们通过TEM、FESEM、XRD、IR、TG、元素分析等手段对在不同时间获得的产品进行了表征,提出了纳米管的形成机制。即In~(3+)在体系中水解首先生成铟的氢氧化物,硫醇在溶剂热条件下分解释放出S~(2-),体系中溶解的In~(3+)与S~(2-)反应并发生异相成核生成硫化铟,同时随反应的进行铟的氢氧化物不断溶解,所形成的硫化铟纳米颗粒聚集成纳米片状结构,纳米片状结构在240℃,一定压力下,发生卷曲形成纳米管。所制备的硫化铟纳米管有着比P25更好的催化降解罗丹明B的能力。
     5.氧化铟纳米颗粒及纳米带的合成与表征
     在溶剂热体系中,我们利用In(NO_3)_3·4H_2O作为铟源,通过调节体系的含水量来控制铟盐的水解反应,以达到控制产物物相及其形貌的目的。乙醇溶剂热反应体系中,铟盐水解生成In(OH)_3,In(OH)_3然后进一步脱水形成In_2O_3晶粒。In(OH)_3向In_2O_3的相转变可以理解为“溶解-再结晶”机制,而In_2O_3比In(OH)_3具有更低的溶解度则为其驱动力。而在水热体系中,铟离子充分水解,由于油酸钠水溶液适宜的碱度提供了更多的氢氧根离子,促进了In(OH)_3纳米晶的定向生长,得到了纳米带结构的In(OH)_3。进一步在300℃下进行热处理后,即可得到立方相氧化铟单晶纳米带。
     UV-vis吸收光谱中,In_2O_3纳米颗粒和纳米带的分别在273,323nm处有强吸收,较块体In_2O_3的UV光谱有大的蓝移,这是弱的量子限域效应所引起的。所合成的氧化铟纳米颗粒及纳米带的室温光致发光光谱有着明显不同,这是由于经过不同的合成路线制备的纳米结构氧化铟具有不同的缺氧状态。
This paper is focused on the controlled synthesis of indium oxide(In_2O_3) and indium sulfide(In_2S_3) nanostructures,n-type semiconducting oxide ofⅢ-Ⅵcompounds,through solution-phase chemistry routes.Investigations are based on three aspects:controlled synthesis,formation mechanisms,and properties and applications.The contents mainly include metastable corundum-type In_2O_3 nanoplates' preparation,the effects of precursors on the products,formation mechanism and photocatalytic properties;the cubic In_2O_3 nanocubes' preparation, size-controlling,the film of the nanocuboids fabricated onto various substrates via layer by layer self-assembly technique and their optical properties;fabrication of Indium oxide with flowerlike hierarchical structure;synthesis of ultra thin tetragonalβ-in_2S_3 nanotubes,formation mechanism,optical and photocatalytic properties; synthesis and characterization of In_2O_3 nanoparticles and nanobelts via hydro/solvothermal routes.Through In_2O_3 and In_2S_3 nanocrystals' preparation, size-controlling,formation mechanisms and optical and photocatalytic properties,we intend to study the intrinsic controlling mechanism of the nanocrystal formation and look for more effective ways to synthesis of nanostructural materials.
     1.Direct solution synthesis of corundum-type In_2O_3:effects of precursors on products
     Nanostructured metastable corundum-type In_2O_3 was directly synthesized by a low temperature solvothermal method.The as-prepared products were characterized by X-ray diffractions(XRD),Scan Electron Microscopy(SEM),Transmission Electron Microscopy(TEM) and Fourier Transform Infrared(FT-IR) spectrum in detail. H-In_2O_3 nanoparticles exhibit as hexagonal nanoplates with a side length of 100-200 nm and a thickness of ca.30 nm.The effects of precursors on the products were investigated.It is proposed that the existence of-OCH_3 in the H-In_2O_3 precursor leads to a hydrolysis process rather than thermal decomposition to form the H-In_2O_3. Gas-Chromatography(GC) and Nuclear Magnetic Resonance Spectrum(NMR) of reaction solutions also reveal that the formation of the C-In_2O_3 only goes through the simple thermal decomposition of Ln(acac)_3,while the hydrolysis is the main process during the formation of H-In_2O_3.The present direct solution preparation provides a low-temperature route to H-In_2O_3 and there is no crystalline intermediate during the formation of H-In_2O_3.Moreover,the H-In_2O_3 exhibited higher photocatalytic activity for the degradation of phenol than C-In_2O_3 nanocubes and commercial Degussa P25.
     2.Synthesis of In_2O_3 nanocuboids and the corresponding self-assembled films
     In_2O_3 nanocuboids have been solvothermally synthesized using indium acetylacetonate as precursor.The size of the nanocuboids could be tunable by adjusting the solvent.The particle sizes of the products obtained from ethanol, n-buthanol,n-octanol and benzene are respectively 21,12,8,6 nm.The PL(all the samples excited at 330 nm,room temperature) emission behaviors of the In_2O_3 nanocrystals with different sizes are nearly identical with strong PL peaks centered at 451 nm(blue),548 nm,568 nm(yellow),and 616 nm(orange),which indicating varied oxygen vacancies in the structure and induce the formation of new energy levels in the band gap.
     Furthermore,the film of the nanocuboids has been fabricated onto various substrates via layer by layer self-assembly technique.The thickness of homogeneous monolayer of In_2O_3 is 6.39-15.15 nm.UV-vis absorption spectroscopy provided evidence for subsequent growth of multilayer film,exhibiting progressive enhancement of optical absorption.PL spectrums of multilayer films were also detected.
     3.Fabrication,characterization and photoluminescence properties of In_2O_3 Nanoflowers
     A simple solvothermal route based on indium complex as precursor was developed to synthesize 3-dimensional(3D) hierarchical flowerlike nanostructure. Indium oxide with the same flowerlike hierarchical structure was directly obtained in one-step.The In_2O_3 nanoflowers are well dispersed,have a uniform diameter of ca. 30-50 nm nm,and are composed of nanoparticles of ca.3-5 nm size.
     Because the decomposition of In(acac)_3was too slow in toluene,the grown speed of In_2O_3 nanocrystals was also too slow.So the random aggregation of produced In_2O_3 nanocrystals was happened to decrease the surface energy rather than grown larger.When increasing reaction time to 24 h,the perfect nanoflowers can be obtained.
     The photoluminescence(PL) spectra were used to characterize the products.It is observed that the PL spectrum of In_2O_3 naoflowers at room temperature exhibit peaks centered at 438 nm(blue),546 nm,569 nm(yellow),618 nm(orange) in the range of visible light.
     4.Synthesis and photocatalytic property of ultrathinβ-In_2S_3 nanotubes
     Ultra thin tetragonalβ-In_2S_3 nanotubes have been successfully synthesized for the first time via a simple solvothermal route.The tubular structure is end-closed,with od ca.10-20 nm,thicknessof tubes wall about 2 nm and lengths more than 1μm.The reaction process was followed the track by XRD,SEM,TEM,FT-IR,HR-TEM,TGA and EA at different times in detail.Furthermore,the effects of reaction parameters on the formation of nanostructures were also discussed,and the formation mechanism was proposed.Lauryl mercaptan decomposed under the solvothermal conditions to release S~(2-),and S~(2-) further reacted with the dissolved In~(3+) in the system to form In_2S_3 species.In_2S_3 nanocrystals were aggragated to form nanosheets.After a rolling process of nanosheets under high temperature or thermal stress,the nanotubes formed.
     The optical properties of obtainedβ-In_2S_3 nanotubes were also studied.UV-vis spectrum indicates the strong quantum confinement of the excitonic transition expected forβ-In_2S_3 nanotubes.Furthermore,β-In_2S_3 nanotubes' better photocatalytic property for the degradation of RhB than commercial Degussa P25.
     5.Synthesis and characterization of In_2O_3 nanocrystals via hydro/solvothermal routes.
     In this chapter,we introduced a kind of convenience route to prepare In_2O_3 nanoparticles and nanobelts.In the hydrothermal/solvothermal system,we use In(NO_3)_3·4H_2O as the indium source,adjusting the hydrolysis reaction of indium salt via control the water content of the system in order to control morphologies of the products.In ethanol solvothermal reaction system,the generated In(OH)_3 from hydrolysis of indium salt further dehydrated to form In_2O_3 nancrystals.The conversion of In(OH)_3 into In_2O_3 can be proposed as a "dissolution-recrystallization" mechanism,and the driving force is the lower solubility of the In_2O_3 compared to the In(OH)_3 in the system.In the hydrothermal system,the indium ions completely hydrolyzed.Due to the alkali of sodium oleate in water can provide plenty of OH~- to promote the growth of nanocrystals,the In(OH)_3 belt-like structure obtained.After heat-treatment at 300℃,In_2O_3 single crystals nanobelts produced.
     The as-synthesized In_2O_3 nanocrystals reveal UV absorption around 273,323 nm repectively,exhibiting a distinct blue-shifted to the bulk In_2O_3.Such blue-shift could be contributed to the existence of weak quantum confinement effect.The room temperature PL spectra of as-prepared In_2O_3 nanoparticles and nanobelts are clearly different,which is due to existence of different oxide-deficiency states from the different synthesis routes.
引文
1.Gleiter H;M.P.Nanocrystalline structures:An approach to new materials.Metallkd Z 1984,75,263-267
    2.Huang,Y.;D.,X.;Cui,Y.;Lauhon,L.;Kim,K.;Lieber,C.M.Logic gates and computation from assembled nanowire building blocks.Science 2001,294,1313-1317.
    3.Bachtold,A.;Hadley,P.;Nakanishi,T.;Dekker,C.Logic circuits with carbon nanotube transistors.Science 2001,294,1317-1320.
    4.Morales,A.M.;Lieber,C.M.A laser ablation method for the synthesis of crystalline semiconductor nanowires.Science 1998,279,208-211.
    5.白春礼,《纳米科学与技术》云南出版社1995.
    6.蔡元霸,梁玉仓,纳米材料的概述、制备及其结构表征 结构化学2001,20,425-438.
    7.Gleiter,H.Nanostructured materials:state of the art and perspectives.Nanostructured Mater.1995,6,3-14.
    8.Valden,M.;L.,X.;Goodman,D.W.Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties.Science 1998,281,1647-1650.
    9.Rodriguez,J.;Jirsak,T.;Hrbek,Chang,Z.;Dvorak,J.;Maiti,A.Activation of gold on titania:Adsorption and reaction of SO_2 on Au/TiO_2(110).J.Am.Chem.Soc.2002,124,5242-5250.
    10.Baumer,M.F.,H.J.Metal deposits on well-ordered oxide films.Prog.Surf.Sci.1999,61,127-198.
    11.Trudeau M.L.Y.;J.Y.Nanocrystalline materials in catalysis and electrocatalysis:Structure tailoring and surface reactivity.Nanostructured Mater.1996,7,245-258.
    12.Edelstein,A.S.;Cammarata,R.C.Nanomaterials:Synthesis,properties and applications.Institute of Physics Publishing:London,1996.
    13.Khaleel,A.R.;R.M.in Nanoscale materials in chemistry.Kladunde,K.J.,Ed.Wiley:New York,2001,Chapter 4.
    14.Gurlo,A.;Kroll,P.;Riedel,R.Metastability of corundum-type In_2O_3.Chem.Eur.J.2008,14,3306-3310.
    15.Shannon,R.D.New high pressure phases having the corundum structure.Solid State Commun.1966,4,629-630.
    16.Reid,A.F.;A.E.R.High-pressure scandium oxide and its place in the molar volume relationships of dense structures of M_2X_3 and ABX_3 type.J.Geophys.Res.1969,74,3238-3252.
    17.Prewitt,C.T.;Shannon,R.D.;Rogers,D.B.;Sleight,A.W.C rare earth oxide-corundum transition and crystal chemistry of oxides having the corundum structure. Inorg. Chem. 1969, 8, 1985-1993.
    
    18. Atou, T.; Kusaba, K.; Fukuoka, K.; Kikuchi, M.; Syono, Y. Shock-induced phase transition of M_2O_3 (M = Sc, Y, Sm, Gd, and In) type compounds. J. Solid State Chem.1990, 89, 378-384.
    
    19. Epifani, M.; Siciliano, P.; Gurlo, A.; Barsan, N.; Weimar, U. Ambient pressure synthesis of corundum-type In_2O_3. J. Am. Chem. Soc. 2004, 126, 4078-4079.
    
    20. Gurlo, A.; Lauterbach, S.; Miehe, G.; Kleebe, H. J.; Riedel, R. Nanocubes or nanorhombohedra? Unusual crystal shapes of corundum-type indium oxide. J. Phys.Chem. C 2008, 112, 9209-9213.
    
    21. Yu, D. B.; Yu, S. H.; Zhang, S. Y.; Zuo, J.; Wang, D. B.; Qian, Y. T. Metastable hexagonal In_2O_3 nanofibers templated from InOOH nanofibers under ambient pressure. Adv. Funct. Mater. 2003, 13,497-501.
    
    22. Yu, D. B.; Wang, D. B.; Qian, Y. T., Synthesis of metastable hexagonal In_2O_3 nanocrystals by a precursor-dehydration route under ambient pressure. J. Solid State Chem. 2004, 177, 1230-1234.
    
    23. Zhuang, Z. B.; Peng, Q.; Liu, J. F.; Wang, X.; Li, Y. D. Indium hydroxides, oxyhydroxides, and oxides nanocrystals series. Inorg. Chem. 2007,46, 5179-5187.
    
    24. Chen, C. L.; Chen, D. R.; Jiao, X. L.; Wang, C. Q. Ultrathin corundum-type In_2O_3 nanotubes derived from orthorhombic InOOH: Synthesis and formation mechanism. Chem. Commun. 2006, 4632-4634.
    
    25. Zhong, M.; Zheng, M. J.; Ma, L.; Li, Y. B., Self-assembly of versatile tubular-like In_2O_3 nanostructures. Nanotechnology 2007, 18, 465605.
    
    26. Gurlo, A.; Ivanovskaya, M.; Barsan, N.; Weimar, U. Corundum-type indium(III) oxide: Formation under ambient conditions in Fe_2O_3-In_2O_3 system. Inorg. Chem.Commun. 2003, 6, 569-572.
    
    27. Frank, G.; Olazcuaga, R.; Rabenau, A. Occurrence of corundum-type indium(III) oxide under ambient conditions. Inorg. Chem. 1977, 16, 1251-1253.
    
    28. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269-271.
    29. Irie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-concentration dependence on photocatalytic activity of TiO_2-xNx powders. J. Phys. Chem. B 2003, 107, 5483-5486.
    
    30. Burda, C; Lou, Y. B.; Chen, X. B.; Samia, A. C. S.; Stout, J.; Gole, J. L.Enhanced nitrogen doping in TiO_2 nanoparticles. Nano Lett. 2003, 3, 1049-1051.
    
    31. Diwald, O.; Thompson, T. L.; Goralski, E. G.; Walck, S. D.; Yates, J. T. The effect of nitrogen ion implantation on the photoactivity of TiO_2 rutile single crystals. J.Phys. Chem. B 2004, 108, 52-57.
    
    32. Diwald, O.; Thompson, T. L.; Zubkov, T.; Walck, S. D.; Yates, J. T.Photochemical activity of nitrogen-doped rutile TiO_2(110) in visible light. J. Phys.Chem. B 2004, 108, 6004-6008.
    
    33. Chen, X.; Burda, C. Photoelectron spectroscopic investigation of nitrogen doped titania nanoparticles. J. Phys. Chem. B 2004, 108, 15446-15449.
    
    34. Reyes-Gil, K. R.; Reyes-Garcia, E. A.; Raftery, D. Nitrogen-doped In_2O_3 thin film electrodes for photocatalytic water splitting. J. Phys. Chem. C 2007, 111,14579-14588.
    
    35. Wang, C. Y.; Cimalla, V.; Romanus, H.; Kups, T.; Ecke, G.; Stauden, T.; Ali, M.;Lebedev, V.; Pezoldt, J.; Ambacher, O. Phase selective growth and properties of rhombohedral and cubic indium oxide. Appl. Phys. Lett. 2006, 89, 011904.
    
    36. Karazhanov, S. Z. R., P.; Vajeeston, P.; Ulyashin, A.; Finstad, T. G.; Fjellvag, H.Phase stability, electronic structure, and optical properties of indium oxide polytypes.Phys. Rev. B 2007, 76, 075129.
    
    37. Murali, A.; Barve, A.; Leppert, V. J.; Risbud, S. H.; Kennedy, I. M.; Lee, H. W.H. Synthesis and characterization of indium oxide nanoparticles. Nano Lett. 2001, 1,287-289.
    
    38. Seo, W. S.; Jo, H. H.; Lee, K.; Park, J. T. Preparation and optical properties of highly crystalline, colloidal, and size-controlled indium oxide nanoparticles. Adv.Mater. 2003, 15, 795-797.
    
    39. Kityk, I. V.; Liu, Q. S.; Sun, Z. Y.; Fang, J. Y. Low-temperature anomalies of two-photon absorption in In_2O_3 nanocrystals incorporated into PMMA matrixes. J.Phys. Chem. B 2006, 110, 8219-8222.
    40. Zhu, P.; Wu, W. Y.; Zhou, J. P.; Zhang, W. Preparation of size-controlled In_2O_3 nanoparticles. Appl. Organomet. Chem. 2007, 21, 909-912.
    
    41. Liu, Q. S.; Lu, W. G.; Ma, A. H.; Tang, J. K.; Lin, J.; Fang, J. Y. Study of quasi-monodisperse In_2O_3 nanocrystals: synthesis and optical determination. J. Am.Chem. Soc. 2005, 127, 5276-5277.
    
    42. Franzman, M. A.; Perez, V.; Brutchey, R. L. Peroxide-mediated synthesis of indium oxide nanocrystals at low temperatures. J. Phys. Chem. C 2009, 113, 630-636.
    
    43. Chen, C. L.; Chen, D. R.; Jiao, X. L.; Chen, S. H. In_2O_3 nanocrystals with a tunable size in the range of 4-10 nm: One-step synthesis, characterization, and optical properties. J. Phys. Chem. C 2007, 111, 18039-18043.
    
    44. Epifani, M.; Diaz, R.; Arbiol, J.; Comini, E.; Sergent, N.; Pagnier, T.; Siciliano,P.; Taglia, G.; Morante, J. R. Nanocrystalline metal oxides from the injection of metal oxide sols in coordinating solutions: Synthesis, characterization, thermal stabilization,device processing, and gas-sensing properties. Adv. Funct. Mater. 2006, 16,1488-1498.
    
    45. Epifani, M.; Comini, E.; Arbiol, J.; Diaz, R.; Sergent, N.; Pagnier, T.; Siciliano,P.; Faglia, G.; Morante, J. R. Chemical synthesis of In_2O_3 nanocrystals and their application in highly performing ozone-sensing devices. Sens. Actuators, B 2008, 130,483-487.
    
    46. Souza, C. C.; Rey, J. F. Q.; Muccillo, E. N. S., Synthesis and characterization of spherical and narrow size distribution indium oxide nanoparticles. Appl. Surf. Sci.2009, 255, 3779-3783.
    
    47. Tang, Q.; Zhou, W. J.; Zhang, W.; Ou, S. M.; Jiang, K.; Yu, W. C.; Qian, Y. T.Size-controllable growth of single crystal In(OH)_3 and In_2O_3 nanocubes. Cryst.Growth & Des. 2005, 5, 147-150.
    
    48. Yang, J.; Li, C. X.; Quan, Z. W.; Kong, D. Y.; Zhang, X. M.; Yang, P. P.; Lin, J.One-step aqueous solvothermal synthesis of In_2O_3 nanocrystals. Cryst. Growth & Des.2008, 8, 695-699.
    
    49. Zhao, Y. B.; Zhang, Z. J.; Wu, Z. S.; Dang, H. X. Synthesis and characterization of single-crystalline In_2O_3 nanocrystals via solution dispersion. Langmuir 2004, 20, 27-29.
    50.Shi,M.R.;Xu,F.;Yu,K.;Zhu,Z.Q.;Fang,J.H.Controllable synthesis of In_2O_3nanocubes,tnmcated nanocubes,and symmetric multipods.J.Phys.Chem.C 2007,111,16267-16271.
    51.Jia,H.B.;Zhang,Y.;Chen,X.H.;Shu,J.;Luo,X.H.;Zhang,Z.S.;Yu,D.P.Efficient field emission from single crystalline indium oxide pyramids.Appl.Phys.Lett.2003,82,4146-4148.
    52.Hao,Y.F.;Meng,G.W.;Ye,C.H.;Zhang,L.D.Controlled synthesis of In_2O_3octahedrons and nanowires.Cryst.Growth & Des.2005,5,1617-1621.
    53.Guha,P.;Kar,S.;Chaudhuri,S.Direct synthesis of single crystalline In_2O_3nanopyramids and nanocolumns and their photoluminescence properties.Appl.Phys.Lett.2004,85,3851-3853.
    54.Shi,M.R.;Xu,F.;Yu,K.;Fang,J.H.;Ji,X.M.,Evolution in shapes of a series of(111)-based In_2O_3 particles.Appl.Phys.A:Mater.Sci.& Proc.2008,90,113-117.
    55.Datta,A.;Panda,S.K.;Ganguli,D.;Mishra,P.;Chaudhuri,S.In_2S_3micropompons and their conversion to In_2O_3 nanobipyramids:Simple synthesis approaches and characterization.Cryst.Growth & Des.2007,7,163-169.
    56.Park,J.;Joo,J.;Kwon,S.G.;Jang,Y.;Hyeon,T.Synthesis of monodisperse spherical nanocrystals.Angew.Chem.Int.Ed.2007,46,4630-4660.
    57.Kumar,S.;Nann,T.Shape control of Ⅱ-Ⅵ semiconductor nanomateriats.Small 2006,2,316-329.
    58.Pan,Z.W.;Dai,Z.R.;Wang,Z.L.Nanobelts of semiconducting oxides.Science 2001,291,1947-1949.
    59.Cheng,Z.X.;Dong,X.B.;Pan,Q.Y.;Zhang,J.C.;Dong,X.W.Preparation and characterization of In_2O_3 nanorods.Mater.Lett.2006,60,3137-3140.
    60.Yang,J.;Lin,C.K.;Wang,Z.L.;Lin,J.In(OH)_3 and In_2O_3 nanorod bundles and spheres:Microemulsion-mediated hydrothermal synthesis and luminescence properties.Inorg.Chem.2006,45,8973-8979.
    61.Yan,Y.G.;Zhou,L.X.Competitive growth of In_2O_3 nanorods with rectangular cross sections.Appl.Phys.A:Mater.Sci.& Proc.2008,92,401-405.
    62.Kuo,C.Y.;Lu,S.Y.;Wei,T.Y.In_2O_3 nanorod formation induced by substrate structure.J.Cryst.Growth 2005,285,400-407.
    63.Yan,Y.G.;Zhang,Y.;Zeng,H.B.;Zhang,J.X.;Cao,X.L.;Zhang,L.D.Tunable synthesis of In_2O_3 nanowires,nanoarrows and nanorods.Nanotechnology 2007,18,175601.
    64.Kong,X.Y.;Wang,Z.L.Structures of indium oxide nanobelts.Solid State Commun.2003,128,1-4.
    65.Jeong,J.S.;Lee,J.Y.;Lee,C.J.;An,S.J.;Yi,G.C.Synthesis and characterization of high-quality In_2O_3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature.Chem.Phys.Lett.2004,384,246-250.
    66.Gao,T.;Wang,T.H.Catalytic growth of In_2O_3 nanobelts by vapor transport.J.Cryst.Growth 2006,290,660-664.
    67.Rao,C.N.R.;Gundiah,G.;Deepak,F.L.;Govindaraj,A.;Cheetham,A.K.Carbon-assisted synthesis of inorganic nanowires.J.Mater.Chem.2004,14,440-450.
    68.Liu,Y.K.;Yang,W.G.;Hou,D.D.Control synthesis of octahedral In_2O_3crystals,belts,and nanowires.Superlattices Microstruct.2008,43,93-100.
    69.Kam,K.C.;Deepak,F.L.;Cheetham,A.K.;Rao,C.N.R.In_2O_3 nanowires,nanobouquets and nanotrees.Chem.Phys.Lett.2004,397,329-334.
    70.Chun,H.J.;Choi,Y.S.;Bae,S.Y.;Park,J.Bicrystalline indium oxide nanobelts.Appl.Phys.A:Mater.Sci.& Proc.2005,81,539-542.
    71.Wang,G.X.;Park,J.;Wexler,D.;Park,M.S.;Ahn,J.H.Synthesis,characterization,and optical properties of In_2O_3 semiconductor nanowires.Inorg.Chem.2007,46,4778-4780.
    72.Wu,X.C.;Hong,J.M.;Han,Z.J.;Tao,Y.R.Fabrication and photoluminescenee characteristics of single crystalline In_2O_3 nanowires.Chem.Phys.Lett.2003,373,28-32.
    73.Wu,P.;Li,Q.;Zhao,C.X.;Zhang,D.L.;Chi,L.F.;Xiao,T.Synthesis and photoluminescence property of indium oxide nanowires.Appl.Surf.Sci.2008,255,3201-3204.
    74.Zhang,Y.J.;Ago,H.;Liu,J.;Yumura,M.;Uchida,K.;Ohshima,S.;Iijima,S.;Zhu,J.;Zhang,X.Z.The synthesis of In,In_2O_3 nanowires and In_2O_3 nanoparticles with shape-controlled.J.Cryst.Growth 2004,264,363-368.
    75.Li,C.;Zhang,D.H.;Han,S.;Liu,X.L.;Tang,T.;Zhou,C.W.Diameter controlled growth of single-crystalline In_2O_3 nanowires and their electronic properties.Adv.Mater.2003,15,143-147.
    76.Li,C.;Zhang,D.;Han,S.;Liu,X.;Tang,T.;Lei,B.;Liu,Z.;Zhou,C.Synthesis,electronic properties,and applications of indium oxide nanowires.Molecular Electronics Ⅲ 2003,1006,104-121.
    77.Jiang,X.C.;Wang,Y.L.;Herricks,T.;Xia,Y.N.Ethylene glycol-mediated synthesis of metal oxide nanowires.J.Mater.Chem.2004,14,695-703.
    78.Xu,P.C.;Cheng,Z.X.;Pan,Q.Y.;Xu,J.Q.;Xiang,Q.;Yu,W.J.;Chu,Y.L.High aspect ratio In_2O_3 nanowires:Synthesis,mechanism and NO_2 gas-sensing properties.Sens.Actuators,B 2008,130,802-808.
    79.Zhang,Y.F.;Li,J.Y.;Li,Q.;Zhu,L.;Liu,X.D.;Zhong,X.H.;Meng,J.;Cao,X.Q.Preparation of In_2O_3 ceramic nanofibers by electrospinning and their optical properties.Scripta Mater.2007,56,409-412.
    80.Cheng,B.;Samulski,E.T.Fabrication and characterization of nanotubular semiconductor oxides In_2O_3 and Ga_2O_3.J.Mater.Chem.2001,11,2901-2902.
    81.Shen,X.P.;Liu,H.J.;Fan,X.;Jiang,Y.;Hong,J.M.;Xu,Z.Construction and photoluminescence of In_2O_3 nanotube array by CVD-template method.J.Cryst.Growth 2005,276,471-477.
    82.Du,N.;Zhang,H.;Chen,B.D.;Ma,X.Y.;Liu,Z.H.;Wu,J.B.;Yang,D.R.Porous indium oxide nanotubes:Layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH_3 gas sensors.Adv.Mater.2007,19,1641-1645.
    83.Li,Y.B.;Bando,Y.;Golberg,D.Single-crystalline In_2O_3 nanotubes filled with In.Adv.Mater.2003,15,581-585.
    84.Hsin,C.L.;He,J.H.;Chen,L.J.Growth of In_2O_3 nanocrystal chains by a vapor transport and condensation method.Appl.Surf.Sci.2005,244,101-106.
    85.Magdas,D.A.;Cremades,A.;Piqueras,J.Three dimensional nanowire networks and complex nanostructures of indium oxide.J.Appl.Phys.2006,100,094320.
    86.Zhong,M.;Zheng,M.;Zeng,A.;Ma,L.Direct integration of vertical In_2O_3nanowire arrays,nanosheet chains,and photoinduced reversible switching of wettability.Appl.Phys.Lett.2008,92,093118.
    87.Zeng,A.S.;Zheng,M.J.;Ma,L.;Shen,W.Z.Formation of uniform and square nanopore arrays on(100) InP surfaces by a two-step etching method.Nanotechnology 2006,17,4163-4167.
    88.Li,B.X.;Xie,Y.;Jing,M.;Rong,G.X.;Tang,Y.C.;Zhang,G.Z.In_2O_3 hollow microspheres:Synthesis from designed In(OH)_3 precursors and applications in gas sensors and photocatalysis.Langmuir 2006,22,9380-9385.
    89.Chen,L.Y.;Zhang,Y.G.;Wang,W.Z.;Zhang,Z.D.Tunable synthesis of various hierarchical structures of In(OH)_3 and In_2O_3 assembled by nanocubes.Eur.J.Inorg.Chem.2008,1445-1451.
    90.Chen,L.Y.;Zhang,Z.D.Biomolecule-assisted synthesis of In(OH)_3 hollow spherical nanostructures constructed with well-aligned nanocubes and their conversion into C-In_2O_3.J..Phys.Chem.C 2008,112,18798-18803.
    91.Zhao,P.T.;Huang,T.;Huang,K.X.Fabrication of indium sulfide hollow spheres and their conversion to indium oxide hollow spheres consisting of multipore nanoflakes.J.Phys.Chem.C 2007,111,12890-12897.
    92.Zhu,H.;Wang,X.L.;Wang,Z.J.;Yang,C.;Yang,F.;Yang,X.R.Self-assembled 3D microflowery In(OH)_3 architecture and its conversion to In_2O_3.J.Phys.Chem.C 2008,112,15285-15292.
    93.Wang,C.;Chen,D.;Jiao,X.Flower-like In_2O_3 Nanostructures derived from novel precursor:synthesis,characterization,and formation mechanism.J.Phys.Chem.C 2009,113,7714-7718.
    94.Zhu,H.;Wang,X.L.;Yang,F.;Yang,X.R.Template-free,surfactantless route to fabricate In(OH)_3 monocrystalline nanoarchitectures and their conversion to In_2O_3.Cryst.Growth & Des.2008,8,950-956.
    95.Du,J.M.;Yang,M.;Cha,S.N.;Rhen,D.;Kang,M.;Kang,D.J.Indium hydroxide and indium oxide nanospheres,nanoflowers,microcubes,and nanorods:synthesis and optical properties.Cryst.Growth & Des.2008,8,2312-2317.
    96.Narayanaswamy,A.;Xu,H.F.;Pradhan,N.;Kim,M.;Peng,X.G.Formation of nearly monodisperse In_2O_3 nanodots and oriented-attached nanoflowers:Hydrolysis and alcoholysis vs pyrolysis.J.Am.Chem.Soc.2006,128,10310-10319.
    97.Zhang,J.;Qing,X.;Jiang,F.H.;Dai,Z.H.A route to Ag-catalyzed growth of the semiconducting In_2O_3 nanowires.Chem.Phys.Lett.2003,371,311-316.
    98.Tian,B.;L.,X.;Yang,H.;Xie,S.;Yu,C.;Tu,B.;Zhao,D.General Synthesis of Ordered Crystallized Metal Oxide Nanoarrays Replicated by Microwave-Digested Mesoporous Silica.Adv.Mater.2003,15,1370-1374.
    99.Tian,B.Z.;Liu,X.Y.;Solovyov,L.A.;Liu,Z.;Yang,H.F.;Zhang,Z.D.;Xie,S.H.;Zhang,F.Q.;Tu,B.;Yu,C.Z.;Terasaki,O.;Zhao,D.Y.Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures.J.Am.Chem.Soc.2004,126,865-875.
    100.Yang,H.F.;Shi,Q.H.;Tian,B.Z.;Lu,Q.Y.;Gao,F.;Xie,S.H.;Fan,J.;Yu,C.Z.;Tu,B.;Zhao,D.Y.One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks.J.Am.Chem.Soc.2003,125,4724-4725.
    101.Gong,J.Y.;Yu,S.H.;Qian,H.S.;Luo,L.B.;Liu,X.M.Acetic acid-assisted solution process for growth of complex copper sulfide microtubes constructed by hexagonal nanoflakes.Chem.Mater.2006,18,2012-2015.
    102.Liu,Y.;Xu,H.Y.;Qian,Y.T.Double-source approach to In_2S_3 single crystallites and their electrochemical properties.Cryst.Growth & Des.2006,6,1304-1307.
    103.Avivi,S.;Palchik,O.;Palchik,V.;Slifkin,M.A.;Weiss,A.M.;Gedanken,A.Sonochemical synthesis of nanophase indium sulfide.Chem.Mater.2001,13,2195-2200.
    104.Dalas,E.;Sakkopoulos,S.;Vitoratos,E.;Maroulis,G.;Kobotiatis,L.Aqueous precipitation and electrical-properties of In_2S_3.J.Mater.Sci.1993,28,5456-5460.
    105.Naghavi,N.;Spiering,S.;Powalla,M.;Cavana,B.;Lincot,D.High-efficiency copper indium gallium diselenide(CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition(ALCVD).Prog.Photovolt.2003,11,437-443.
    106.Sterner,J.;Malmstrom,J.;Stolt,L.Study on ALD In_2S_3 Cu(In,Ga)Se_2 interface formation.Prog.Photovolt.2005,13,179-193.
    107.Afzaal,M.;Malik,M.A.;O'Brien,P.Indium sulfide nanorods from single source precursor.Chem.Commun.2004,334-335.
    108.Kang Hyun Park;Kwonho Jang;Son,S.U.Synthesis,optical properties,and self-assembly of ultrathin hexagonal In_2S_3 nanoplates.Angew.Chem.Int.Ed.2006,45,4608-4612.
    109.Daihua,Z.;Chao,L.;Song,H.;Xiaolei,L.;Tao,T.;Wu,J.;Chongwu,Z.Electronic transport studies of single-crystalline In_2O_3 nanowires.Appl.Phys.Lett.2003,82,112-114.
    110.Naik,S.D.;Jagadale,T.C.;Apte,S.K.;Sonawane,S.;Kulkarni,M.V.;Patil,S.I.;Ogale,S.B.;Kale,B.B.Rapid phase-controlled microwave synthesis of nanostructured hierarchical tetragonal and cubic beta-In_2S_3 dandelion flowers.Chem.Phys.Lett.2008,452,301-305.
    111.Nagesha,D.K.;Liang,X.R.;Mamedov,A.A.;Gainer,G.;Eastman,M.A.;Giersig,M.;Song,J.J.;Ni,T.;Kotov,N.A.In_2S_3 nanocolloids with excitonic emission:In_2S_3 vs CdS comparative study of optical and structural characteristics.J.Phys.Chem.B 2001,105,7490-7498.
    112.James T.;Paul C.;O'Brien,P.A general route to nanodimensional powders of indium chalcogenides.J.Mater.Chem.2006,16,2082-2087.
    113.Chen,X.Y.;Zhang,Z.J.;Zhang,X.F.;Liu,J.W.;Qian,Y.T.Single-source approach to the synthesis of In_2S_3 and In_2O_3 crystallites and their optical properties.Chem.Phys.Lett.2005,407,482-486.
    114.Cao,X.B.;Gu,L.;Zhuge,L.J.;Qian,W.H.;Zhao,C.;Lan,X.M.;Sheng,W.J.;Yao,D.Template-free preparation and characterization of hollow indium sulfide nanospheres.Colloids and Surf.A 2007,297,183-190.
    115.Gao,P.;Xie,Y.;Chen,S.W.;Zhou,M.Z.Micrometre-sized In_2S_3 half-shells by a new dynamic soft template route:properties and applications.Nanotechnology 2006,17,320-324.
    116.Chen,L.Y.;Zhang,Z.D.;Wang,W.Z.Self-assembled porous 3D flowerlike beta-In_2S_3 structures:Synthesis,characterization,and optical properties.J.Phys.Chem.C 2008,112,4117-4123.
    117.Datta,A.;Panda,S.K.;Gorai,S.;Ganguli,D.;Chaudhuri,S.Room temperature synthesis of In_2S_3 micro- and nanorod textured thin films.Mater.Res.Bull 2008,43,983-989.
    118.Calixto Rodriguez,M.;Tiburcio Silver,A.;Ortiz,A.;Sanchez Juarez,A.,Optoelectronical properties of indium sulfide thin films prepared by spray pyrolysis for photovoltaic applications.Thin Solid Films 2005,480,133-137.
    119.Xiong,Y.J.;Xie,Y.;Du,G.;Tian,X.B.;Qian,Y.T.A novel in situ oxidization-sulficlation growth route via self-purification process to beta-In_2S_3dendrites.J.Solid State Chem.2002,166,336-340.
    120.Datta,A.;Gorai,S.;Ganguli,D.;Chaudhuri,S.Surfactant assisted synthesis of In_2S_3 dendrites and their characterization.Mater.Chem.Phys.2007,102,195-200.
    121.Liu,X.Y.;Tian,B.Z.;Yu,C.Z.;Tu,B.;Liu,Z.;Terasaki,O.;Zhao,D.Y.Ordered nanowire arrays of metal sulfides templated by mesoporous silica SBA-15via a simple impregnation reaction.Chem.Lett.2003,32,824-825.
    122.Rao,R.C.,H.;Gubbala,S.;Sunkara,M.K.;Daraio,C.;Jin,S.;Rao,A.M.Synthesis of low-melting metal oxide and sulfide nanowires and nanobelts.J.Electronic Mater.2006,35,941-946.
    123.A.M.Morales,C.M.L.A laser ablation method for the synthesis of crystalline semiconductor nanowires.Science 1998,279,208-211.
    124.Liang,C.H.;Shimizu,Y.;Sasaki,T.;Umehara,H.;Koshizaki,N.One-step growth of silica nanotubes and simultaneous filling with indium sulfide nanorods.J.Mater.Chem.2004,14,248-252.
    125.Zhu,X.Y.;Ma,J.F.;Wang,Y.G.;Tao,J.T.;Zhou,J.;Zhao,Z.Q.;Xie,L.J.;Tian,H.Fabrication of indium sulfide nanofibers via a hydrothermal method assisted by AAO template.Mater.Res.Bull.2006,41,1584-1588.
    126.Du,W.M.;Zhu,J.;Li,S.X.;Qian,X.F.Ultrathin beta-In_2S_3 nanobelts:Shape-controlled synthesis and optical and photocatalytic properties.Cryst.Growth &Des.2008,8,2130-2136.
    127.Xiong,Y.J.;Xie,Y.;Du,G.A.;Tian,X.B.A solvent-reduction and surfacemodification technique to morphology control of tetragonal In_2S_3 nanocrystals.J.Mater.Chem.2002,12,98-102.
    128.Hyeon,T.Chemical synthesis of magnetic nanoparticles.Chem.Commun 2003,927-934.
    129.Horley,G.A.;O'Brien,P.;Park,J.H.;White,A.J.P.;Williams,D.J.Deposition of tetragonal beta-In_2S_3 thin films from tris(N,N-diisopropylmonothiocarbamato)indium(Ⅲ),In((SocNPr_2)-Pr-i)_3,by low pressure metal-organic chemical vapour deposition.J.Mater Chem.1999,9,1289-1292.
    130.Bessergenev,V.G.;Bessergenev,A.V.;Ivanova,E.N.;Kovalevskaya,Y.A.Study of In_2S_3 thin films by diffraction of synchrotron radiation.J.Solid State Chem.1998,137,6-11.
    131.Datta,A.;Panda,S.K.;Gorai,S.;Ganguli,D.;Chaudhuri,S.Room temperature synthesis of In_2S_3 micro- and nanorod textured thin films.Mater Res.Bull.2008,43,983-989.
    132.Bodnar,I.V.;Polubok,V.A.;Gremenok,V.F.;Rud,V.Y.;Rud,Y.V.Schottky barriers based on β-In_2S_3 films obtained by laser-induced evaporation.Semiconductors 2007,41,47-51.
    133.Kosaraju,S.;Marino,J.A.;Harvey,J.A.;Wolden,C.A.,Plasma-assisted co-evaporation of beta-indium sulfide thin films.Sol.Energy Mater.Sol.Cells 2006,90,1121-1135.
    134.Asenjo,B.;Chaparro,A.M.;Gutierrez,M.T.;Heffero,J.;Maffiotte,C.Study of the electrodeposition of In_2S_3 thin films.Thin Solid Films 2005,480,151-156.
    135.Sandoval Paz,M.G.;Sotelo Lerma,M.;Valenzuela Jauregui,J.J.;Flores Acosta,M.;Ramirez Bon,R.Structural and optical studies on thermal-annealed In_2S_3 films prepared by the chemical bath deposition technique.Thin Solid Films 2005,472,5-10.
    136.Timoumi,A.;Bouzouita,H.;Kanzari,M.;Rezig,B.Fabrication and characterization of In_2S_3 thin films deposited by thermal evaporation technique. Thin Solid Films 2005, 480, 124-128.
    1.Zhang,D.H.;Liu,Z.Q.;Li,C.;Tang,T.;Liu,X.L.;Han,S.;Lei,B.;Zhou,C.W.Detection of NO_2 down to ppb levels using individual and multiple In_2O_3 nanowire devices.Nano Lett.2004,4,1919-1924.
    2.Li,Y.B.;Bando,Y.;Golberg,D.Single-crystalline In_2O_3 nanotubes filled with In.Adv.Mater.2003,15,581-585.
    3.Zhang,D.H.;Li,C.;Han,S.;Liu,X.L.;Tang,T.;Jin,W.;Zhou,C.W.Electronic transport studies of single-crystalline In_2O_3 nanowires.Appl.Phys.Lett.2003,82,112-114.
    4.Zhang,J.;Qing,X.;Jiang,F.H.;Dai,Z.H.A route to Ag catalyzed growth of the semiconducting In_2O_3 nanowires.Chem.Phys.Lett.2003,371,311-316.
    5.Li,C.;Zhang,D.H.;Liu,X.L.;Han,S.;Tang,T.;Han,J.;Zhou,C.W.In_2O_3nanowires as chemical sensors.Appl.Phys.Lett.2003,82,1613-1615.
    6.Epifani,M.;Diaz,R.;Arbiol,J.;Comini,E.;Sergent,N.;Pagnier,T.;Siciliano,P.;Taglia,G.;Morante,J.R.Nanocrystalline metal oxides from the injection of metal oxide sols in coordinating solutions:Synthesis,characterization,thermal stabilization,device processing,and gas-sensing properties.Adv.Funct.Mater.2006,16, 1488-1498.
    7.Gurlo,A.;Ivanovskaya,M.;Barsan,N.;Weimar,U.Corundum-type indium(Ⅲ)oxide:formation under ambient conditions in Fe_2O_3-In_2O_3 system.Inorg.Chem.Commun.2003,6,569-572.
    8.Gurlo,A.;Barsan,N.;Weimar,U.;Ivanovskaya,M.;Taurino,A.;Siciliano,P.Polycrystalline well-shaped blocks of indium oxide obtained by the sol-gel method and their gas-sensing properties.Chem.Mater.2003,15,4377-4383.
    9.McCue,J.T.;Ying,J.Y.SnO_2-In_2O_3 nanocomposites as semiconductor gas sensors for CO and NOx detection.Chem.Mater.2007,19,1009-1015.
    10.Pinna,N.;Neri,G.;Antonietti,M.;Niederberger,M.Nonaqueous synthesis of nanocrystalline semiconducting metal oxides for gas sensing.Angew.Chem.Int.Ed.2004,43,4345-4349.
    11.Curreli,M.;Li,C.;Sun,Y.H.;Lei,B.;Gundersen,M.A.;Thompson,M.E.;Zhou,C.W.Selective functionalization of In_2O_3 nanowire mat devices for biosensing applications.J.Am.Chem.Soc.2005,127,6922-6923.
    12.Pan,Z.W.;Dai,Z.R.;Wang,Z.L.Nanobelts of semiconducting oxides.Science 2001,291,1947-1949.
    13.Ni,J.;Yan,H.;Wang,A.C.;Yang,Y.;Stern,C.L.;Metz,A.W.;Jin,S.;Wang,L.;Marks,T.J.;Ireland,J.R.;Kannewurf,C.R.MOCVD-derived highly transparent,conductive zinc- and tin-doped indium oxide thin films:Precursor synthesis,metastable phase film growth and characterization,and application as anodes in polymer light-emitting diodes.J.Am.Chem.Soc.2005,127,5613-5624.
    14.Narayanaswamy,A.;Xu,H.F.;Pradhan,N.;Kim,M.;Peng,X.G.Formation of nearly monodisperse In_2O_3 nanodots and oriented-attached nanoflowers:Hydrolysis and alcoholysis vs pyrolysis.J.Am.Chem.Soc.2006,128,10310-10319.
    15.Jiang,X.C.;Wang,Y.L.;Herricks,T.;Xia,Y.N.Ethylene glycol-mediated synthesis of metal oxide nanowires.J.Mater.Chem.2004,14,695-703.
    16.Lee,C.H.;Kim,M.;Kim,T.;Kim,A.;Paek,J.;Lee,J.W.;Choi,S.Y.;Kim,K.;Park,J.B.;Lee,K.Ambient pressure syntheses of size-controlled corundum-type In_2O_3 nanocubes.J.Am.Chem.Soc.2006,128,9326-9327.
    17.Liu,Q.S.;Lu,W.G.;Ma,A.H.;Tang,J.K.;Lin,J.;Fang,J.Y.Study of quasi-monodisperse In_2O_3 nanocrystals:Synthesis and optical determination.J.Am.Chem.Soc.2005,127,5276-5277.
    18.Yang,J.;Li,C.X.;Quan,Z.W.;Kong,D.Y.;Zhang,X.M.;Yang,P.P.;Lin,J.One-step aqueous solvothermal synthesis of In_2O_3 nanocrystals.Cryst.Growth & Des.2008,8,695-699.
    19.Tang,Q.;Zhou,W.J.;Zhang,W.;Ou,S.M.;Jiang,K.;Yu,W.C.;Qian,Y.T.Size-controllable growth of single crystal In(OH)_3 and In_2O_3 nanocubes.Cryst.Growth & Des.2005,5,147-150.
    20.Wang,C.Q.;Chen,D.R.;Jiao,X.L.;Chen,C.L.Lotus-root-like In_2O_3nanostructures:Fabrication,characterization,and photoluminescence properties.J.Phys.Chem.C2007,111,13398-13403.
    21.Li,B.X.;Xie,Y.;Jing,M.;Rong,G.X.;Tang,Y.C.;Zhang,G.Z.In_2O_3 hollow microspheres:Synthesis from designed In(OH)_3 precursors and applications in gas sensors and photocatalysis.Langmuir 2006,22,9380-9385.
    22.Cao,H.Q.;Qiu,x.Q.;Liang,Y.;Zhu,Q.M.;Zhao,M.J.Room-temperature ultraviolet-emitting In_2O_3 nanowires.Appl.Phys.Lett.2003,83,761-763.
    23.Du,N.;Zhang,H.;Chen,B.D.;Ma,X.Y.;Liu,Z.H.;Wu,J.B.;Yang,D.R.Porous indium oxide nanotubes:Layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH_3 gas sensors.Adv.Mater.2007,19,1641-1645.
    24.Atou,T.;Kusaba,K.;Fukuoka,K.;Kikuchi,M.;Syono,Y.Shock-induced phase transition of M_2O_3(M = Sc,Y,Sm,Gd,and In)-type compounds.J.Solid State Chem.1990,89,378-384.
    25.Epifani,M.;Siciliano,P.;Gurlo,A.;Barsan,N.;Weimar,U.Ambient pressure synthesis of corundum-type In_2O_3.J.Am.Chem.Soc.2004,126,4078-4079.
    26.Yu,D.B.;Yu,S.H.;Zhang,S.Y.;Zuo,J.;Wang,D.B.;Qian,Y.T.Metastable hexagonal In_2O_3 nanofibers templated from InOOH nanofibers under ambient pressure.Adv.Funct.Mater.2003,13,497-501.
    27.Chen,C.L.;Chen,D.R.;Jiao,X.L.;Wang,C.Q.Ultrathin corundum-type In_2O_3 nanotubes derived from orthorhombic InOOH:Synthesis and formation mechanism.Chem.Commun.2006,4632-4634.
    28.Dewei,C.;Yu-Ping,Z.;Dongliang,J.;Jiaqiang,X.Tuning the phase and morphology of In_2O_3 nanocrystals via simple solution routes.Nanotechnology 2007,18,435605.
    29.Zhuang,Z.B.;Peng,Q.;Liu,J.F.;Wang,X.;Li,Y.D.Indium hydroxides,oxyhydroxides,and oxides nanocrystals series.Inorg.Chem.2007,46,5179-5187.
    30.Lai,J.Z.a.J.Synthesis of Indium tri-acetylacetonate.J.Anhui Uni.Nat.Sci.Ed.2006,30,84-85.
    31.Xing,X.;Chen,S.;Me,S.The workable index of infrared spectra(in Chinese).Tianjin Science & Technology Press,Tianjin 1992.
    32.Fackler,J.P.;Mittleman,M.L.;Weigold,H.;Barrow,G.M.Spectra of metal beta-ketoenolates.J.Phys.Chem.1968,72,4631-4636.
    33.Seo,W.S.;Jo,H.H.;Lee,K.;Park,J.T.Preparation and optical properties of highly crystalline,colloidal,and size-controlled indium oxide nanoparticles.Adv.Mater.2003,15,795-798.
    34.Buha,J.;Djerdj,I.;Niederberger,M.Nonaqueous synthesis of nanocrystalline indium oxide and zinc oxide in the oxygen-free solvent acetonitrile.Cryst.Growth &Des.2007,7,113-116.
    35.Pinna,N.;Garnweitner,G.;Antonietti,M.;Niederberger,M.A general nonaqueous route to binary metal oxide nanocrystals involving a C-C bond cleavage.J.Am.Chem.Soc.2005,127,5608-5612.
    36.Skopenko,V.V.;Amirkhanov,V.M.;Silva,T.Y.;Vasilchenko,I.S.;Anpilova E.L.;Garnovskii,A.D.Various types of metal complexes based on chelating β-diketones and their structural analogues.Russ.Chem.Rev.2004,73,737-752.
    37.Gottlieb,H.E.;Nudelman,V.K.A.NMR chemical shifts of common laboratory solvents as trace impurities.J.Org.Chem.1997,62,7512-7515.
    38.Wang,N.NMR spectroscopy application in organic chemistry(in Chinese).Chemistry Industry Press,Beijing,2006;
    Deng,Q.;L,L.;Deng,H.Spectrum analysis tutorial(in Chinese).Science Press,Beijing 2007.
    39. Gardner, S. D.; Singamsetty, C. S. K.; Booth, G. L.; He, G.-R.; Pittman, C. U.Surface characterization of carbon fibers using angle-resolved XPS and ISS. Carbon 1995, 33, 587-595.
    
    40. Bradley, D. C.; Mehrotra, R. C.; Gaur, D. P. Academic Press, London, Metal Alkoxides, 1978.
    
    41. Karazhanov, S. Z.; Ravindran, P.; Vajeeston, P.; Ulyashin, A.; Finstad, T. G.;Fjellvag, H. Phase stability, electronic structure, and optical properties of indium oxide polytypes. Phys. Rev. B 2007, 76, 075129.
    
    42. Katoh, R.; Furube, A.; Yoshihara, T.; Hara, K.; Fujihashi, G.; Takano, S.; Murata,S.; Arakawa, H.; Tachiya, M. Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO_2, TiO_2, ZnO, Nb_2O_5, SnO_2, In_2O_3) films. J.Phys. Chem. B 2004,108, 4818-4822.
    
    43. Neri, G.; Bonavita, A.; Micali, G.; Rizzo, G.; Galvagno, S.; Niederberger, M.;Pinna, N. A highly sensitive oxygen sensor operating at room temperature based on platinum-doped In_2O_3 nanocrystals. Chem. Commun. 2005, 6032-6034.
    
    44. Curreli, M.; Li, C.; Sun, Y.; Lei, B.; Gundersen, M. A.; Thompson, M. E.; Zhou,C. Selective Functionalization of In_2O_3 Nanowire Mat Devices for Biosensing Applications. J. Am. Chem. Soc. 2005, 127, 6922-6923.
    
    45. Nguyen, P.; Ng, H. T.; Yamada, T.; Smith, M. K.; Li, J.; Han, J.; Meyyappan, M.Direct integration of metal oxide nanowire in vertical field-effect transistor. Nano Lett.2004,4,651-657.
    
    46. Li, S. Q.; Liang, Y. X.; Wang, T. H. Nonlinear characteristics of the Fowler-Nordheim plot for field emission from In_2O_3 nanowires grown on InAs substrate. Appl. Phys. Lett. 2006, 88, 053107.
    
    47. Jia, H.; Zhang, Y.; Chen, X.; Shu, J.; Luo, X.; Zhang, Z.; Yu, D. Efficient field emission from single crystalline indium oxide pyramids. Appl. Phys. Lett. 2003, 82,4146-4148.
    
    48. Cui, J.; Edleman, N. L.; Ni, J.; Lee, P.; Armstrong, N. R.; Marks, T. J. Indium tin oxide alternatives? High work function transparent conducting oxides as anodes for organic light-emitting diodes. Adv. Mater. 2001, 13, 1476-1480.
    49.Chen,C.L.;Chen,D.R.;Jiao,X.L.;Chen,S.H.In_2O_3 nanocrystals with a tunable size in the range of 4-10 nm:One-step synthesis,characterization,and optical properties.J.Phys.Chem.C 2007,111,18039-18043.
    50.Liang,C.H.;Meng,G.W.;Lei,Y.;Phillipp,F.;Zhang,L.D.Catalytic growth of semiconducting In_2O_3 nanofibers.Adv.Mater.2001,13,1330-1333.
    51.Yan,Y.G.;Zhang,Y.;Zeng,H.B.;Zhang,J.X.;Cao,X.L.;Zhang,L.D.Tunable synthesis of In_2O_3 nanowires,nanoarrows and nanorods.Nanotechnology 2007,18,175601.
    52.Yang,J.;Lin,C.;Wang,Z.;Lin,J.In(OH)_3 and In_2O_3 nanorod bundles and Spheres:Microemulsion-mediated hydrothermal synthesis and luminescence properties.Inorg.Chem.2006,45,8973-8979.
    53.Kuo,C.Y.;Lu,S.Y.;Wei,T.Y.In_2O_3 nanorod formation induced by substrate structure.J.Cryst.Growth 2005,285,400-407.
    54.Zhu,H.;Wang,X.L.;Yang,F.;Yang,X.R.Template-free,surfactantless route to fabricate In(OH)_3 monocrystalline nanoarchitectures and their conversion to In_2O_3.Cryst.Growth & Des.2008,8,950-956.
    55.Jeong,J.S.;Lee,J.Y.;Lee,C.J.;An,S.J.;Yi,G.C.Synthesis and characterization of high-quality In_2O_3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature.Chem.Phys.Lett.2004,384,246-250.
    56.Kong,X.Y.;Wang,Z.L.Structures of indium oxide nanobelts.Solid State Commun.2003,128,1-4.
    57.Lao,J.Y.;Huang,J.Y.;Wang,D.Z.;Ren,Z.F.Self-assembled In_2O_3 nanocrystal chains and nanowire networks.Adv.Mater.2004,16,65-67.
    58.Shen,X.P.;Liu,H.J.;Fan,X.;Jiang,Y.;Hong,J.M.;Xu,Z.Construction and photoluminescence of In_2O_3 nanotube array by CVD-template method.J.Cryst.Growth 2005,276,471-477.
    59.Cheng,B.;Samulski,E.T.Fabrication and characterization of nanotubular semiconductor oxides In_2O_3 and Ga_2O_3.J.Mater.Chem.2001,11,2901-2902.60.Yan,Y.G.;Zhang,Y.;Zeng,H.B.;Zhang,L.D.In_2O_3 nanotowers:Controlled synthesis and mechanism analysis.Cryst.Growth & Des.2007,7,940-943.
    61.Zhao,P.T.;Huang,T.;Huang,K.X.Fabrication of indium sulfide hollow spheres and their conversion to indium oxide hollow spheres consisting of multipore nanoflakes.J.Phys.Chem.C 2007,111,12890-12897.
    62.Shi,M.R.;Xu,F.;Yu,K.;Zhu,Z.Q.;Fang,J.H.Controllable synthesis of In_2O_3nanocubes,truncated nanocubes,and symmetric multipods.J.Phys.Chem.C 2007,111,16267-16271.
    63.Sasaki,T.;Ebina,Y.;Tanaka,T.;Harada,M.;Watanabe,M.;Decher,G.Layer-by-layer assembly of titania nanosheet/polycation composite films.Chem.Mater.2001,13,4661-4667.
    64.Garnweitner,G.;Hentschel,J.;Antonietti,M.;Niederberger,M.Nonaqueous synthesis of amorphous powder precursors for nanocrystalline PbTiO_3,Pb(Zr,Ti)O_3,and PbZrO_3.Chem.Mater 2005,17,4594-4599.
    65.Ohhata,Y.;Shinoki,F.;Yoshida,S.Optical-properties of RF reactive sputtered tin-doped In_2O_3 films.Thin Solid Films 1979,59,255-261.
    66.Peng,X.S.;Meng,G.W.;Zhang,J.;Wang,X.F.;Wang,Y.W.;Wang,C.Z.;Zhang,L.D.Synthesis and photoluminescence of single-crystalline In_2O_3 nanowires.J.Mater.Chem.2002,12,1602-1605.
    67.Zheng,M.J.;Zhang,L.D.;Li,G.H.;Zhang,X.Y.;Wang,X.F.Ordered indium-oxide nanowire arrays and their photoluminescence properties.Appl.Phys.Lett.2001,79,839-841.
    68.Banfield,J.F.W.,S.A.;Zhang,H.Z.;Ebert,T.T.;Penn,R.L.Aggregationbased crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products.Science 2000,289,751-754.
    69.Penn,R.L.B.,J.F.Imperfect oriented attachment:Dislocation generation in defect-free nanocrystals.Science 1998,281,969-971.
    70.Tamaki,J.;Naruo,C.;Yamamoto,Y.;Matsuoka,M.Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation.Sens.Actuators,B 2002,83,190-194.
    71.Lee,J.H.;Song,W.C.;Yang,K.J.;Yoo,Y.S.Characteristics of the CdZnS thin film doped by indium diffusion.Thin Solid Films 2002,416,184-189.
    72.Murali,A.;Barve,A.;Leppert,V.J.;Risbud,S.H.;Kennedy,I.M.;Lee,H.W.H.Synthesis and characterization of indium oxide nanoparticles.Nano Lett.2001,1,287-289.
    73.Zhou,H.J.;Cai,W.P.;Zhang,L.D.Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica.Appl.Phys.Lett.1999,75,495-497.
    74.X.Peng,G.M.,J.Zhang,X.Wang,Y.Wang,C.Wang,L.Zhang Synthesis and photoluminescence of single-crystalline In_2O_3 nanowires.J.Mater.Chem.2002,12,1602-1605.
    75.Bagnall,D.M.C.,Y.F.;Shen,M.Y.;Zhu,Z.;Goto,T.;Yao,T.Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE.J.Cryst.Growth 1998,184/185,605-609.
    76.Yu,D.B.;Wang,D.B.;Qian,Y.T.Synthesis of metastable hexagonal In_2O_3nanocrystals by a precursor-dehydration route under ambient pressure.J.Solid State Chem.2004,177,1230-1234.
    77.G Decher,J.D.H.Makomol Chem.Macromol.Symp.1991,46,321-324.
    78.Caruso,F.;M(o|¨)hwald R.A.C.Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating.Science 1998,282,1111-1114.
    79.Ewers,T.D.S.,A.K.;Norris,B.C.;Cable,R.E.;Cheng,C.H.;Shantz,D.E;Schaak,R.E.Spontaneous hierarchical assembly of rhodium nanoparticles into spherical aggregates and superlattices.Chem.Mater.2005,17,514-520.
    80.Mann,S.The chemistry of form.Angew.Chem.,Int.Edit.2000,39,3393-3406.
    81.Hsin,C.L.;He,J.H.;Chen,L.J.Growth of In_2O_3 nanocrystal chains by a vapor transport and condensation method.Appl.Surf.Sci.2005,244,101-106.
    82.Magdas,D.A.;Cremades,A.;Piqueras,J.Three dimensional nanowire networks and complex nanostructures of indium oxide.J.Appl.Phys.2006,100,094320.
    83.Zhong,M.;Zheng,M.;Zeng,A.;Ma,L.Direct integration of vertical In_2O_3nanowire arrays,nanosheet chains,and photoinduced reversible switching of wettability.Appl.Phys.Lett.2008,92,093118.
    84.Zeng,A.S.;Zheng,M.J.;Ma,L.;Shen,W.Z.Formation of uniform and square nanopore arrays on(100) InP surfaces by a two-step etching method.Nanotechnology 2006,17,4163-4167.
    85.Chen,L.Y.;Zhang,Y.G.;Wang,W.Z.;Zhang,Z.D.Tunable synthesis of various hierarchical structures of In(OH)_3 and In_2O_3 assembled by nanocubes.Eur.J.Inorg.Chem.2008,1445-1451.
    86.Chen,L.Y.;Zhang,Z.D.Biomolecule-assisted synthesis of In(OH)_3 hollow spherical nanostructures constructed with well-aligned nanocubes and their conversion into C-In_2O_3.J.Phys.Chem.C 2008,112,18798-18803.
    87.Zhu,H.;Wang,X.L.;Wang,Z.J.;Yang,C.;Yang,F.;Yang,X.R.Self-assembled 3D microflowery In(OH)_3 architecture and its conversion to In_2O_3.J.Phys.Chem.C2008,112,15285-15292.
    88.Wang,C.;Chen,D.;Jiao,X.Flower-like In_2O_3 nanostructures derived from Novel Precursor:Synthesis,characterization,and formation mechanism.J.Phys.Chem.C 2009,113,7714-7718.
    89.Du,J.M.;Yang,M.;Cha,S.N.;Rhen,D.;Kang,M.;Kang,D.J.Indium hydroxide and indium oxide nanospheres,nanoflowers,microcubes,and nanorods:Synthesis and optical properties.Cryst.Growth & Des.2008,8,2312-2317.
    90.Ding,G.Q.;Shen,W.Z.;Zheng,M.J.;Zhou,Z.B.Indium oxide "rods in dots"nanostructures.Appl.Phys.Lett.2006,89,063113.
    91.Zheng,X.G.;Taniguchi,K.;Takahashi,A.;Liu,Y.;Xu,C.N.Room temperature sensing of ozone by transparent p-type semiconductor CuAlO_2.Appl.Phys.Lett.2004,85,1728-1729.
    92.Chang,S.C.;Huang,M.H.Formation of short In_2O_3 nanorod arrays within mesoporous silica.J.Phys.Chem.C 2008,112,2304-2307.
    93.Zhou,H.J.;Cai,W.P.;Zhang,L.D.Synthesis and structure of indium oxide nanoparticles dispersed within pores of mesoporous silica.Mater.Res.Bull.1999,34,845-849.
    94.Hsin,C.L.;He,J.H.;Lee,C.Y.;Wu,W.W.;Yeh,P.H.;Chen,L.J.;Wang,Z.L.,Lateral self-aligned p-type In_2O_3 nanowire arrays epitaxially grown on Si substrates. Nano Lett.2007,7,1799-1803.
    95.Zhong,M.;Zheng,M.J.;Ma,L.;Li,Y.B.Self-assembly of versatile tubular-like In_2O_3 nanostructures.Nanotechnology 2007,18,465605.
    96.Guo,Z.;Liu,J.Y.;Jia,Y.;Chen,X.;Meng,F.L.;Li,M.Q.;Liu,J.H.Template synthesis,organic gas-sensing and optical properties of hollow and porous In_2O_3nanospheres.Nanotechnology 2008,19,345704.
    97.Chen,L.Y.;Ma,X.C.;Liu,Y.K.;Zhang,Y.;Wang,W.Z.;Liang,Y.;Zhang,Z.3D architectures of InOOH:Ultrasonic-assisted synthesis,growth mechanism,and optical properties.Eur.J.Inorg.Chem.2007,4508-4513.
    98.Castro,S.L.;Bailey,S.G.;Raffaelle,R.P.;Banger,K.K.;Hepp,A.F.Nanocrystalline chalcopyrite materials(CuInS_2 and CuInSe_2) via low-temperature pyrolysis of molecular single-source precursors.Chem.Mater.2003,15,3142-3147.
    99.Nairn,J.J.;Shapiro,P.J.;Twamley,B.;Pounds,T.;von Wandruszka,R.;Fletcher,T.R.;Williams,M.;Wang,C.M.;Norton,M.G.Preparation of ultrafine chalcopyrite nanoparticles via the photochemical decomposition of molecular single-source precursors.Nano Lett.2006,6,1218-1223.
    100.Joseph,S.;Gardner,E.S.;Chongrnin W.;Lisa D.La Rene' G.Rodriguez Joshua J.P.Rapid synthesis and size control of CuInS_2 semi-conductor nanoparticles using microwave irradiation.J.Nanopart.Res.2008,10,633-641.
    101.Guha,P.;Kar,S.;Chaudhuri,S.Direct synthesis of single crystalline In_2O_3nanopyramids and nanocolumns and their photoluminescence properties.Appl.Phys.Lett.2004,85,3851-3853.
    102.Wu,X.C.H.,J.M.;Han,Z.J.;Tao,Y.R.Fabrication and photoluminescence characteristics of single crystalline In_2O_3 nanowires.Chem.Phys.Lett.2003,373,28-32.
    1.Gong,J.Y.;Yu,S.H.;Qian,H.S.;Luo,L.B.;Liu,X.M.Acetic acid-assisted solution process for growth of complex copper sulfide microtubes constructed by hexagonal nanoflakes.Chem.Mater.2006,18,2012-2015.
    2.Liu,Y.;Xu,H.Y.;Qian,Y.T.Double-source approach to In_2S_3 single crystallites and their electrochemical properties.Cryst.Growth & Des.2006,6,1304-1307.
    3.Avivi,S.;Palchik,O.;Palchik,V.;Slifkin,M.A.;Weiss,A.M.;Gedanken,A.Sonochemical synthesis of nanophase indium sulfide.Chem.Mater.2001,13,2195-2200.
    4.Dalas,E.;Sakkopoulos,S.;Vitoratos,E.;Maroulis,G.;Kobotiatis,L.Aqueous precipitation and electrical-propertied of In_2S_3.J.Mater.Sci.1993,28,5456-5460.
    5.Naghavi,N.;Spiering,S.;Powalla,M.;Cavana,B.;Lincot,D.High-efficiency copper indium gallium diselenide(CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition(ALCVD).Prog.Photovolt.2003,11,437-443.
    6.Sterner,J.;Malmstrom,J.;Stolt,L.Study on ALD In_2S_3/Cu(In,Ga)Se_2 interface formation. Prog. Photovolt. 2005, 13, 179-193.
    
    7. Wang, D. S.; Zheng, W.; Hao, C. H.; Peng, Q.; Li, Y. D. General synthesis of I-III-VI2 ternary semiconductor nanocrystals. Chem. Commun. 2008, 2556-2558.
    
    8. Han, W.; Yi, L.; Zhao, N.; Tang, A.; Gao, M.; Tang, Z. Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals J. Am. Chem. Soc.2008,130,13152-13161.
    
    9. Hu, X. L.; Yu, J. C; Gong, J. M.; Li, Q. Rapid mass production of hierarchically porous ZnIn_2S_4 submicrospheres via a microwave-solvothermal process. Cryst.Growth & Des. 2007, 7, 2444-2448.
    
    10. Baek, S. N.; Jeong, T. S.; Youn, C. J.; Hong, K. J.; Park, J. S.; Shin, D. C.; Yoo, Y.T. Growth and characterization of the CdIn_2S_4/GaAs epilayers by hot wall epitaxy method. J. Cryst. Growth 2004, 262, 259-264.
    
    11. Chen, X.; Zhang, Z.; Zhang, X.; Liu, J.; Qian, Y. Hydrothermal synthesis of porous FeIn_2S_4 microspheres and their electrochemical properties. J. Cryst. Growth 2005, 277, 524-528.
    
    12. Datta, A.; Gorai, S.; Chaudhuri, S. Synthesis and characterization of sol-gel derived Mn~(2+) doped In_2S_3 nanocrystallites embedded in a silica matrix. J. Nanopart.Res. 2006, 8, 919-926.
    
    13. Nagesha, D. K.; Liang, X. R.; Mamedov, A. A.; Gainer, G.; Eastman, M. A.;Giersig, M.; Song, J. J.; Ni, T.; Kotov, N. A. In_2S_3 nanocolloids with excitonic emission: In_2S_3 vs CdS comparative study of optical and structural characteristics. J.Phys. Chem. B 2001, 105, 7490-7498.
    
    14. Afzaal, M.; Malik, M. A.; O'Brien, P. Indium sulfide nanorods from single-source precursor. Chem. Commun. 2004, 334-335.
    
    15. Kang Hyun Park; Kwonho Jang; Son, S. U. Synthesis, optical properties, and self-assembly of ultrathin hexagonal In_2S_3 nanoplates. Angew. Chem. Int. Ed 2006,45,4608-4612.
    
    16. Daihua, Z.; Chao, L.; Song, H.; Xiaolei, L.; Tao, T.; Wu, J.; Chongwu, Z.Electronic transport studies of single-crystalline In_2O_3 nanowires. Appl. Phys. Lett.2003,82, 112-114.
    17.Naik,S.D.;Jagadale,T.C.;Apte,S.K.;Sonawane,S.;Kulkami,M.V.;Patil,S.I.;Ogale,S.B.;Kale,B.B.Rapid phase-controlled microwave synthesis of nanostructured hierarchical tetragonal and cubic beta-In_2S_3 dandelion flowers.Chem.Phys.Lett.2008,452,301-305.
    18.James Tabernor;Paul Christian;O'Brien,P.A general route to nanodimensional powders of indium chalcogenides.J.Mater.Chem.2006,16,2082-2087.
    19.Chen,X.Y.;Zhang,Z.J.;Zhang,X.F.;Liu,J.W.;Qian,Y.T.Single-source approach to the synthesis of In_2S_3 and In_2O_3 crystallites and their optical properties.Chem.Phys.Lett.2005,407,482-486.
    20.Cao,X.B.;Gu,L.;Zhuge,L.J.;Qian,W.H.;Zhao,C.;Lan,X.M.;Sheng,W.J.;Yao,D.Template-free preparation and characterization of hollow indium sulfide nanospheres.Colloids Surf.A 2007,297,183-190.
    21.Zhao,P.T.;Huang,T.;Huang,K.X.Fabrication of indium sulfide hollow spheres and their conversion to indium oxide hollow spheres consisting of multipore nanoflakes.J.Phys.Chem.C 2007,111,12890-12897.
    22.Gao,P.;Xie,Y.;Chen,S.W.;Zhou,M.Z.Micrometre-sized In_2S_3half-shells by a new dynamic soft template route:properties and applications.Nanotechnology 2006,17,320-324.
    23.Datta,A.;Panda,S.K.;Ganguli,D.;Mishra,P.;Chaudhuri,S.In_2S_3micropompons and their conversion to In_2O_3 nanobipyramids:Simple synthesis approaches and characterization.Cryst.Growth & Des.2007,7,163-169.
    24.Chen,L.Y.;Zhang,Z.D.;Wang,W.Z.Self-assembled porous 3D flowerlike beta-In_2S_3 structures:Synthesis,characterization,and optical properties.J.Phys.Chem.C2008,112,4117-4123.
    25.Datta,A.;Panda,S.K.;Gorai,S.;Ganguli,D.;Chaudhuri,S.Room temperature synthesis of In_2S_3 micro- and nanorod textured thin films.Mater.Res.Bull.2008,43,983-989.
    26.Calixto-Rodriguez,M.;Tiburcio-Silver,A.;Ortiz,A.;Sanchez-Juarez,A.Optoelectronical properties of indium sulfide thin films prepared by spray pyrolysis for photovoltaic applications.Thin Solid Films 2005,480,133-137.
    27.Xiong,Y.J.;Xie,Y.;Du,G.;Tian,X.B.;Qian,Y.T.A novel in situ oxidization-sulficlation growth route via self-purification process to beta-In_2S_3dendrites.J.Solid State Chem.2002,166,336-340.
    28.Datta,A.;Gorai,S.;Ganguli,D.;Chaudhuri,S.Surfactant assisted synthesis of In_2S_3 dendrites and their characterization.Mater.Chem.and Phys.2007,102,195-200.
    29.Liu,X.Y.;Tian,B.Z.;Yu,C.Z.;Tu,B.;Liu,Z.;Terasaki,O.;Zhao,D.Y.Ordered nanowire arrays of metal sulfides templated by mesoporous silica SBA-15via a simple impregnation reaction.Chem.Lett.2003,32,824-825.
    30.Rao,R.C.,H.;Gubbala,S.;Sunkara,M.K.;Daraio,C.;Jin,S.;Rao,A.M.Synthesis of low-melting metal oxide and sulfide nanowires and nanobelts.J.Electronic Mater.2006,35,941-946.
    31.Liang,C.H.;Shimizu,Y.;Sasaki,T.;Umehara,H.;Koshizaki,N.One-step growth of silica nanotubes and simultaneous filling with indium sulfide nanorods.J.Mater.Chem.2004,14,248-252.
    32.Zhu,X.Y.;Ma,J.F.;Wang,Y.G.;Tao,J.T.;Zhou,J.;Zhao,Z.Q.;Xie,L.J.;Tian,H.Fabrication of indium sulfide nanofibers via a hydrothermal,method assisted by AAO template.Mater.Res.Bull.2006,41,1584-1588.
    33.Du,W.M.;Zhu,J.;Li,S.X.;Qian,X.F.Ultrathin beta-In_2S_3 nanobelts:Shape-controlled synthesis and optical and photocatalytic properties.Cryst.Growth &Des.2008,8,2130-2136.
    34.Xiong,Y.J.;Xie,Y.;Du,G.A.;Tian,X.B.A solvent-reduction and surface-modification technique to morphology control of tetragonal In_2S_3 nanocrystals.J.Mater.Chem.2002,12,98-102.
    35.Xing,X.;Chen,S.;Me,S.The workable index of infrared spectra(in Chinese).Tianjin Science & Technology Press,Tianjin 1992.
    36.Lindmark,A.F.;Fay,R.C.Kinetics of hindered rotation about carbon-nitrogen single bonds in some N,N-diisopropyldithiocarbamates.Inorg.Chem.1983,22,2000-2006.
    37.Subrato Bhattacharya,N.S.,Dileep K.S.,Vishnu D.G.Heinrich N(O|¨)th and Martina Thomann-Albach,Neutral five-co-ordinate gallium(Ⅲ) and indium(Ⅲ)complexes derived from sulfur ligands.J.Chem.Soc.,Dalton Trans.1996,2815-2820.
    38.Yang,B.;Tian,S.;Zhao,S.A study of thermal decomposition of alkanethiols in pressure reactor.Fuel Proc.Techn.2006,87,673-678.
    39.Olsson,R.T.S.A.,G.;Hedenqvist,M.S.;Gedde,U.W.;Lindberg,F.;Savage,S.J.Controlled Synthesis of Near-Stoichiometric Cobalt Ferrite Nanoparticles.Chem.Mater.2005,17,5109-5118.
    40.James Tabernor,P.C.a.P.O.B.A general route to nanodimensional powders of indium chalcogenides.J.Mater.Chem.2006,16,2082-2087.
    41.Chen,W.;Bovin,J.O.;Joly,A.G.;Wang,S.P.;Su,F.H.;Li,G.H.Full-color emission from In_2S_3 and In_2S_3:Eu~(3+) nanoparticles.J.Phys.Chem.B 2004,108,11927-11934.
    1.Wang,X.;J,Z.;Peng,Q.;Li,Y.A general strategy for nanocrystal synthesis.Nature 2005,437,121-124.
    2.Katoh,R.;Furube,A.;Yoshihara,T.;Hara,K.;Fujihashi,G.;Takano,S.;Murata, S.; Arakawa, H.; Tachiya, M. Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO_2, TiO_2, ZnO, Nb_2O_5, SnO_2, In_2O_3) films. J.Phys. Chem. B 2004, 108, 4818-4822.
    
    3. Neri, G.; Bonavita, A.; Micali, G.; Rizzo, G.; Galvagno, S.; Niederberger, M.;Pinna, N. A highly sensitive oxygen sensor operating at room temperature based on platinum-doped In_2O_3 nanocrystals. Chem. Commun. 2005, 6032-6034.
    
    4. Zhang, D. H.; Liu, Z. Q.; Li, C.; Tang, T.; Liu, X. L.; Han, S.; Lei, B.; Zhou, C. W.Detection of NO_2 down to ppb levels using individual and multiple In_2O_3 nanowire devices. Nano Lett. 2004,4, 1919-1924.
    
    5. Curreli, M.; Li, C.; Sun, Y.; Lei, B.; Gundersen, M. A.; Thompson, M. E.; Zhou,C. Selective functionalization of In_2O_3 nanowire mat devices for biosensing applications. J. Am. Chem. Soc. 2005,127, 6922-6923.
    
    6. McCue, J. T.; Ying, J. Y. SnO_2-In_2O_3 nanocomposites as semiconductor gas sensors for CO and NOx detection. Chem. Mater. 2007, 19, 1009-1015.
    
    7. Nguyen, P.; Ng, H. T.; Yamada, T.; Smith, M. K.; Li, J.; Han, J.; Meyyappan, M.Direct integration of metal oxide nanowire in vertical field-effect transistor. Nano Lett.2004,4,651-657.
    
    8. Li, S. Q.; Liang, Y. X.; Wang, T. H. Nonlinear characteristics of the Fowler-Nordheim plot for field emission from In_2O_3 nanowires grown on InAs substrate.Appl. Phys. Lett. 2006, 88, 053107.
    
    9. Jia, H.; Zhang, Y.; Chen, X.; Shu, J.; Luo, X.; Zhang, Z.; Yu, D. Efficient field emission from single crystalline indium oxide pyramids. Appl. Phys. Lett. 2003, 82,4146-4148.
    
    10. Cui, J.; Edleman, N. L.; Ni, J.; Lee, P.; Armstrong, N. R.; Marks, T. J. Indium tin oxide alternatives? High work function transparent conducting oxides as anodes for organic light-emitting diodes. Adv. Mater. 2001, 13, 1476-1480.
    
    11. Tang, Q.; Zhou, W. J.; Zhang, W.; Ou, S. M.; Jiang, K.; Yu, W. C.; Qian, Y. T.Size-controllable growth of single crystal In(OH)_3 and In_2O_3 nanocubes. Cryst.Growth & Des. 2005, 5, 147-150.
    
    12. Lee, C. H.; Kim, M.; Kim, T.; Kim, A.; Paek, J.; Lee, J. W.; Choi, S. Y; Kim, K.; Park, J. B.; Lee, K. Ambient pressure syntheses of size-controlled corundum-type In_2O_3 nanocubes. J. Am. Chem. Soc. 2006, 128, (29), 9326-9327.
    
    13. Liu, Q. S.; Lu, W. G.; Ma, A. H.; Tang, J. K.; Lin, J.; Fang, J. Y. Study of quasi-monodisperse In_2O_3 nanocrystals: Synthesis and optical determination. J. Am. Chem. Soc. 2005, 127, 5276-5277.
    
    14. Chen, C. L.; Chen, D. R.; Jiao, X. L.; Chen, S. H. In_2O_3 nanocrystals with a tunable size in the range of 4-10 nm: One-step synthesis, characterization, and optical properties. J. Phys. Chem. C 2007, 111, 18039-18043.
    
    15. Liang, C. H.; Meng, G. W.; Lei, Y.; Phillipp, F.; Zhang, L. D. Catalytic growth of semiconducting In_2O_3 nanofibers. Adv. Mater. 2001,13, 1330-1333.
    
    16. Yan, Y. G.; Zhang, Y.; Zeng, H. B.; Zhang, J. X.; Cao, X. L.; Zhang, L. D. Tunable synthesis of In_2O_3 nanowires, nanoarrows and nanorods. Nanotechnology 2007, 18, 175601.
    
    17. Yang, J.; Lin, C.; Wang, Z.; Lin, J. In(OH)_3 and In_2O_3 nanorod bundles and spheres: Microemulsion-mediated hydrothermal synthesis and luminescence properties. Inorg. Chem. 2006, 45, 8973-8979.
    
    18. Kuo, C. Y; Lu, S. Y; Wei, T. Y. In_2O_3 nanorod formation induced by substrate structure. J. Cryst. Growth 2005, 285, 400-407.
    
    19. Zhu, H.; Wang, X. L.; Yang, F.; Yang, X. R. Template-free, surfactantless route to fabricate In(OH)_3 monocrystalline nanoarchitectures and their conversion to In_2O_3.Cryst. Growth & Des. 2008, 8, 950-956.
    
    20. Jeong, J. S.; Lee, J. Y; Lee, C. J.; An, S. J.; Yi, G. C. Synthesis and characterization of high-quality In_2O_3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature. Chem. Phys. Lett. 2004, 384,246-250.
    
    21. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001,291,1947-1949.
    
    22. Kong, X. Y.; Wang, Z. L. Structures of indium oxide nanobelts. Solid State Commun. 2003, 128, 1-4.
    
    23. Lao, J. Y.; Huang, J. Y.; Wang, D. Z.; Ren, Z. F. Self-assembled In_2O_3 nanocrystal chains and nanowire networks.Adv.Mater.2004,16,65-67.
    24.Chen,C.L.;Chen,D.R.;Jiao,X.L.;Wang,C.Q.Ultrathin corundum-type In_2O_3nanotubes derived from orthorhombic InOOH:synthesis and formation mechanism.Chem.Commun.2006,4632-4634.
    25.Shen,X.P.;Liu,H.J.;Fan,X.;Jiang,Y.;Hong,J.M.;Xu,Z.Construction and photoluminescence of In_2O_3 nanotube array by CVD-template method.J.Cryst.Growth 2005,276,471-477.
    26.Cheng,B.;Samulski,E.T.Fabrication and characterization of nanotubular semiconductor oxides In_2O_3 and Ga_2O_3.J.Mater.Chem.2001,11,2901-2902.
    27.Li,Y.B.;Bando,Y.;Golberg,D.Single-crystalline In_2O_3 nanotubes filled with In.Adv.Mater.2003,15,581-585.
    28.Yan,Y.G.;Zhang,Y.;Zeng,H.B.;Zhang,L.D.In_2O_3 nanotowers:Controlled synthesis and mechanism analysis.Cryst.Growth & Des.2007,7,940-943.
    29.Zhao,P.T.;Huang,T.;Huang,K.X.Fabrication of indium sulfide hollow spheres and their conversion to indium oxide hollow spheres consisting of multipore nanoflakes.J.Phys.Chem.C 2007,111,12890-12897.
    30.Li,B.X.;Xie,Y.;Jing,M.;Rong,G.X.;Tang,Y.C.;Zhang,G.Z.In_2O_3 hollow microspheres:Synthesis from designed In(OH)_3 precursors and applications in gas sensors and photocatalysis.Langmuir 2006,22,9380-9385.
    31.Yang,J.;Lin,C.K.;Wang,Z.L.;Lin,J.In(OH)_3 and In_2O_3 nanorod bundles and spheres:Microemulsion-mediated hydrothermal synthesis and luminescence properties,Inorg.Chem.2006,45,8973-8979.
    32.Xu,P.C.;Cheng,Z.X.;Pan,Q.Y.;Xu,J.Q.;Xiang,Q.;Yu,W.J.;Chu,Y.L.High aspect ratio In_2O_3 nanowires:Synthesis,mechanism and NO_2 gas-sensing properties.Sens.Actuators,B 2008,130,802-808.
    33.Narayanaswamy,A.;Xu,H.F.;Pradhan,N.;Kim,M.;Peng,X.G.Formation of nearly monodisperse In_2O_3 nanodots and oriented-attached nanoflowers:Hydrolysis and alcoholysis vs pyrolysis.J.Am.Chem.Soc.2006,128,10310-10319.
    34.Seo,W.S.;Jo,H.H.;Lee,K.;Park,J.T.Preparation and optical properties of highly crystalline,colloidal,and size-controlled indium oxide nanoparticles.Adv. Mater.2003,15,795-798.
    35.Zhuang,Z.B.;Peng,Q.;Liu,J.F.;Wang,X.;Li,Y.D.Indium hydroxides,oxyhydroxides,and oxides nanocrystals series.Inorg.Chem.2007,46,5179-5187.
    36.Olsson,R.T.;Salazar-Alvarez,G.;Hedenqvist,M.S.;Gedde,U.W.;Lindberg,F.;Savage,S.J.Controlled synthesis of near-stoichiometric cobalt ferrite nanoparticles.Chem.Mater.2005,17,5109-5118.
    37.X.Xing,S.C.a.S.M.The workable index of IR spectra(in Chinese).Tianjin Science & Technology Press,Tianjin,1992.
    38.Cho,K.S.;Talapin,D.V.;Gaschler,W.;Murray,C.B.Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles.J.Am.Chem.Soc.2005,127,7140-7147.
    39.Bigioni,T.P.L.,X.M.;Nguyen,T.T.Kinetically driven self assembly of highly ordered nanoparticle monolayers.Nat.Mater.2006,5,265-270.
    40.Wang,C.;Chen,D.;Jiao,X.,Flower-like In_2O_3 nanostructures derived from novel precursor:Synthesis,characterization,and formation mechanism.J.Phys.Chem.C 2009,113,7714-7718.
    1.Zhang,D.H.;Liu,Z.Q.;Li,C.;Tang,T.;Liu,X.L.;Han,S.;Lei,B.;Zhou,C.W.Detection of NO_2 down to ppb levels using individual and multiple In_2O_3 nanowire devices.Nano Lett.2004,4,1919-1924.
    2.Cui,J.;Edleman,N.L.;Ni,J.;Lee,P.;Armstrong,N.R.;Marks,T.J.Indium tin oxide alternatives? High work function transparent conducting oxides as anodes for organic light-emitting diodes.Adv.Mater.2001,13,1476-1480.
    3.Curreli,M.;Li,C.;Sun,Y.;Lei,B.;Gundersen,M.A.;Thompson,M.E.;Zhou,C.Selective Functionalization of In_2O_3 Nanowire Mat Devices for Biosensing Applications.J.Am.Chem.Soc.2005,127,6922-6923.
    4.Pinna,N.;Neri,G.;Antonietti,M.;Niederberger,M.Nonaqueous synthesis of nanocrystalline semiconducting metal oxides for gas sensing.Angew.Chem.Int.Edit.2004,43,4345-4349.
    5.McCue,J.T.;Ying,J.Y.SnO_2-In2O_3 nanocomposites as semiconductor gas sensors for CO and NOx detection.Chem,Mater.2007,19,1009-1015.
    6.Pan,Z.W.;Dai,Z.R.;Wang,Z.L.Nanobelts of semiconducting oxides.Science 2001,291,1947-1949.
    7.Narayanaswamy,A.;Xu,H.F.;Pradhan,N.;Kim,M.;Peng,X.G.Formation of nearly monodisperse In_2O_3 nanodots and oriented-attached nanoflowers:Hydrolysis and alcoholysis vs pyrolysis.J.Am.Chem.Soc.2006,128,10310-10319.
    8.Epifani,M.;Diaz,R.;Arbiol,J.;Comini,E.;Sergent,N.;Pagnier,T.;Siciliano,P.;Taglia,G.;Morante,J.R.Nanocrystalline metal oxides from the injection of metal oxide sols in coordinating solutions:Synthesis,characterization,thermal stabilization,device processing,and gas-sensing properties.Adv.Funct.Mater.2006,16,1488-1498.
    9.Jiang,X.C.;Wang,Y.L.;Herricks,T.;Xia,Y.N.Ethylene glycol-mediated synthesis of metal oxide nanowires.J.Mater.Chem.2004,14,(4),695-703.
    10.Liu,Q.S.;Lu,W.G.;Ma,A.H.;Tang,J.K.;Lin,J.;Fang,J.Y.Study of quasi-monodisperse In_2O_3 nanocrystals:Synthesis and optical determination.J.Am.Chem.Soc.2005,127,5276-5277.
    11.Yang,J.;Li,C.X.;Quan,Z.W.;Kong,D.Y.;Zhang,X.M.;Yang,P.P.;Lin,J.One-step aqueous solvothermal synthesis of In_2O_3 nanocrystals.Cryst.Growth & Des.2008,8,695-699.
    12.Tang,Q.;Zhou,W.J.;Zhang,W.;Ou,S.M.;Jiang,K.;Yu,W.C.;Qian,Y.T.Size-controllable growth of single crystal In(OH)_3 and In_2O_3 nanocubes.Cryst.Growth & Des.2005,5,147-150.
    13.Li,B.X.;Xie,Y.;Jing,M.;Rong,G.X.;Tang,Y.C.;Zhang,G.Z.In_2O_3 hollow microspheres:Synthesis from designed In(OH)_3 precursors and applications in gas sensors and photocatalysis.Langmuir 2006,22,9380-9385.
    14.Wang,C.Q.;Chen,D.R.;Jiao,X.L.;Chen,C.L.Lotus-root-like In_2O_3nanostructures:Fabrication,characterization,and photoluminescence properties.Journal of Physical Chemistry C 2007,111,13398-13403.
    15.Gurlo,A.;Barsan,N.;Weimar,U.;Ivanovskaya,M.;Taurino,A.;Siciliano,P.Polycrystalline well-shaped blocks of indium oxide obtained by the sol-gel method and their gas-sensing properties.Chem.Mater.2003,15,4377-4383.
    16.Cao,H.Q.;Qiu,x.Q.;Liang,Y.;Zhu,Q.M.;Zhao,M.J.Room-temperature ultraviolet-emitting In_2O_3 nanowires.Appl.Phys.Lett.2003,83,761-763.
    17.Du,N.;Zhang,H.;Chen,B.D.;Ma,X.Y.;Liu,Z.H.;Wu,J.B.;Yang,D.R.Porous indium oxide nanotubes:Layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH_3 gas sensors.Adv.Mater.2007,19,1641.
    18.Seo,K.H.;Lee,J.H.;Kim,J.J.;Bertoni,M.I.;Ingram,B.J.;Mason,T.O.Synthesis and electrical characterization of the polymorphic indium tin oxide nanocrystalline powders.J.Am.Chem.Soc.2006,89,3431-3436.
    19.Atou,T.;Kusaba,K.;Fukuoka,K.;Kikuchi,M.;Syono,Y.Shock-induced phase-transsition of Sc_2O_3-Type,Y_2O_3-Type,Sm_2O_3-Type,Gd_2O_3-Type,In_2O_3-type compounds.J.Solid State Chem.1990,89,378-384.
    20.Epifani,M.;Siciliano,P.;Gurlo,A.;Barsan,N.;Weimar,U.Ambient pressure synthesis of corundum-type In_2O_3.J.Am.Chem.Soc.2004,126,4078-4079.
    21.Yu,D.B.;Yu,S.H.;Zhang,S.Y.;Zuo,J.;Wang,D.B.;Qian,Y.T.Metastable hexagonal In_2O_3 nanofibers templated from InOOH nanofibers under ambient pressure.Adv.Funct.Mater.2003,13,497-501.
    22.Chen,C.L.;Chen,D.R.;Jiao,X.L.;Wang,C.Q.Ultrathin corundum-type In_2O_3 nanotubes derived from orthorhombic InOOH:Synthesis and formation mechanism.Chem.Commun.2006,4632-4634.
    23.Lee,C.H.;Kim,M.;Kim,T.;Kim,A.;Paek,J.;Lee,J.W.;Choi,S.Y.;Kim,K.;Park,J.B.;Lee,K.Ambient pressure syntheses of size-controlled corundum-type In_2O_3 nanocubes.J.Am.Chem.Soc.2006,128,9326-9327.
    24.Lai,J.Z.a.J.Synthesis of Indium tri-acetylacetonate.J.Anhui Uni.Nat.Sci.Ed.2006,30,84-85.
    25.Xing,X.;Chen,S.;Me,S.The workable index of infrared spectra(in Chinese).Tianjin Science & Technology Press,Tianjin 1992.
    26.Fackler,J.P.;Mittleman,M.L.;Weigold,H.;Barrow,G.M.Spectra of metal beta-ketoenolates.The electronic spectrum of monomeric nickel(Ⅱ) acetylacetonate and the infrared spectra of matrix-isolated acetylacetonates of cobalt(Ⅱ),copper(Ⅱ),and zinc(Ⅱ).J.Phys.Chem.1968,72,4631-4636.
    27.Seo,W.S.;Jo,H.H.;Lee,K.;Park,J.T.Preparation and optical properties of highly crystalline,colloidal,and size-controlled indium oxide nanoparticles.Adv.Mater 2003,15,795-798.
    28.Pinna,N.;Garnweitner,G.;Antonietti,M.;Niederberger,M.A general nonaqueous route to binary metal oxide nanocrystals involving a C-C bond cleavage.J.Am.Chem.Soc.2005,127,5608-5612.
    29.Buha,J.;Djerdj,I.;Niederberger,M.Nonaqueous synthesis of nanocrystalline indium oxide and zinc oxide in the oxygen-free solvent acetonitrile.Cryst.Growth &Des.2007,7,113-116.
    30.Ali,E.B.;Sorensen,G.;Querfelli,J.;Bernede,J.C.;El Maliki,H.Optimization of In_2O_3 transparent conductive films by Ge ion implantation.Appl.Surf.Sci.1999,152,1-9.
    31.Gardner,S.D.;Singamsetty,C.S.K.;Booth,G.L.;He,G.-R.;Pittman,C.U.Surface characterization of carbon fibers using angle-resolved XPS and ISS.Carbon 1995,33,587-595.
    32.Snee,P.T.;Shanoski,J.;Harris,C.B.Mechanism of Ligand Exchange Studied Using Transition Path Sampling.J.Am.Chem.Soc.2005,127,1286-1290.
    33. X. Yang, B. K., X.Feng, W. Xiao, H. Liu, C.S. Ada Crysallogr C 2002, 58, 581.
    
    34. D. C. Bradley, R. C. M. a. D. P. G. Metal Alkoxides. Academic Press, London 1978.
    
    35. Poznyak, S. K.; Talapin, D. V.; Kulak, A. I. Structural, optical, and photoelectrochemical properties of nanocrystalline TiO_2-In_2O_3 composite solids and films prepared by sol-gel method. J. Phys. Chem. B 2001, 105, 4816-4823.
    1. Liu, Y.; Xu, H. Y.; Qian, Y. T. Double-source approach to In_2S_3 single crystallites and their electrochemical properties. Cryst. Growth & Des. 2006, 6, 1304-1307.
    
    2. Avivi, S.; Palchik, O.; Palchik, V; Slifkin, M. A.; Weiss, A. M.; Gedanken, A.Sonochemical synthesis of nanophase indium sulfide. Chem. Mater. 2001, 13,2195-2200.
    
    3. Dalas, E.; Sakkopoulos, S.; Vitoratos, E.; Maroulis, G.; Kobotiatis, L. Aqueous Precipitation and Electrical-Propertied of In_2S_3. J. Mater. Sci. 1993,28, 5456-5460.
    
    4. Naghavi, N.; Spiering, S.; Powalla, M.; Cavana, B.; Lincot, D. High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD). Prog.s in Photovol.2003,11,437-443.
    
    5. Sterner, J.; Malmstrom, J.; Stolt, L. Study on ALD In_2S_3/Cu(In,Ga)Se_2 interface formation. Prog. in Photovol. 2005, 13, 179-193.
    
    6. Nagesha, D. K.; Liang, X. R.; Mamedov, A. A.; Gainer, G.; Eastman, M. A.;Giersig, M.; Song, J. J.; Ni, T.; Kotov, N. A. In_2S_3 nanocolloids with excitonic emission: In_2S_3 vs CdS comparative study of optical and structural characteristics. J.Phys. Chem. B 2001, 105, 7490-7498.
    
    7. Afzaal, M.; Malik, M. A.; O'Brien, P. Indium sulfide nanorods from single-source precursor. Chem. Comm. 2004, 334-335.
    
    8. Kang Hyun Park; Kwonho Jang; Son, S. U. Synthesis, Optical Properties, and Self-Assembly of Ultrathin Hexagonal In_2S_3 Nanoplates. Angew. Chem. Int. Edit.2006,45,4608-4612.
    
    9. Daihua, Z.; Chao, L.; Song, H.; Xiaolei, L.; Tao, T.; Wu, J.; Chongwu, Z. Electronic transport studies of single-crystalline In_2O_3 nanowires. Appl. Phys. Lett. 2003, 82,112-114.
    10.Naik,S.D.;Jagadale,T.C.;Apte,S.K.;Sonawane,S.;Kulkarni,M.V.;Patil,S.I.;Ogale,S.B.;Kale,B.B.Rapid phase-controlled microwave synthesis of nanostructured hierarchical tetragonal and cubic beta-In_2S_3 dandelion flowers.Chem.Phys.Lett.2008,452,301-305.
    11.James Tabernor;Paul Christian;O'Brien,P.A general route to nanodimensional powders of indium chalcogenides.J.Mater.Chem.2006,16,2082-2087.
    12.Chen,X.Y.;Zhang,Z.J.;Zhang,X.F.;Liu,J.W.;Qian,Y.T.Single-source approach to the synthesis of In_2S_3 and In_2O_3 crystallites and their optical properties.Chem.Phys.Lett.2005,407,482-486.
    13.Cao,X.B.;Gu,L.;Zhuge,L.J.;Qian,W.H.;Zhao,C.;Lan,X.M.;Sheng,W.J.;Yao,D.Template-free preparation and characterization of hollow indium sulfide nanospheres.Colloids Surf.,A 2007,297,183-190.
    14.Zhao,P.T.;Huang,T.;Huang,K.X.Fabrication of indium sulfide hollow spheres and their conversion to indium oxide hollow spheres consisting of multipore nanoflakes.J.Phys.Chem.C 2007,111,12890-12897.
    15.Gao,P.;Xie,Y.;Chen,S.W.;Zhou,M.Z.Micrometre-sized In_2S_3 half-shells by a new dynamic soft template route:properties and applications.Nanotechnology 2006,17,320-324.
    16.Datta,A.;Panda,S.K.;Ganguli,D.;Mishra,P.;Chaudhuri,S.In_2S_3micropompons and their conversion to In_2O_3 nanobipyramids:Simple synthesis approaches and characterization.Cryst.Growth & Des.2007,7,163-169.
    17.Chen,L.Y.;Zhang,Z.D.;Wang,W.Z.Self-assembled porous 3D flowerlike beta-In_2S_3 structures:Synthesis,characterization,and optical properties.J.Phys.Chem.C 2008,112,4117-4123.
    18.Datta,A.;Panda,S.K.;Gorai,S.;Ganguli,D.;Chaudhuri,S.Room temperature synthesis of In_2S_3 micro- and nanorod textured thin films.Mater.Res.Bullet.2008,43,983-989.
    19.Calixto-Rodriguez,M.;Tiburcio-Silver,A.;Ortiz,A.;Sanchez-Juarez,A.Optoelectronical properties of indium sulfide thin films prepared by spray pyrolysis for photovoltaic applications.Thin Solid Films 2005,480,133-137.
    20.Xiong,Y.J.;Xie,Y.;Du,G.;Tian,X.B.;Qian,Y.T.A novel in situ oxidization-sulficlation growth route via self-purification process to beta-In_2S_3dendrites.J.Solid State Chem.2002,166,336-340.
    21.Datta,A.;Gorai,S.;Ganguli,D.;Chaudhuri,S.Surfactant assisted synthesis of In_2S_3 dendrites and their characterization.Mater.Chem.Phys.2007,102,195-200.
    22.Liu,X.Y.;Tian,B.Z.;Yu,C.Z.;Tu,B.;Liu,Z.;Terasaki,O.;Zhao,D.Y.Ordered nanowire arrays of metal sulfides templated by mesoporous silica SBA-15via a simple impregnation reaction.Chem.Lett.2003,32,824-825.
    23.Rao,R.;Chandrasekaran,H.;Gubbala,S.;Sunkara,M.K.;Daraio,C.;Jin,S.;Rao,A.M.Synthesis of low-melting metal oxide and sulfide nanowires and nanobelts.J.Electro.Mater.2006,35,941-946.
    24.Liang,C.H.;Shimizu,Y.;Sasaki,T.;Umehara,H.;Koshizaki,N.One-step growth of silica nanotubes and simultaneous filling with indium sulfide nanorods.J.Mater.Chem.2004,14,248-252.
    25.Zhu,X.Y.;Ma,J.F.;Wang,Y.G.;Tao,J.T.;Zhou,J.;Zhao,Z.Q.;Xie,L.J.;Tian,H.Fabrication of indium sulfide nanofibers via a hydrothermal,method assisted by AAO template.Mater.Res.Bullet.2006,41,1584-1588.
    26.Du,W.M.;Zhu,J.;Li,S.X.;Qian,X.F.Ultrathin beta-In_2S_3 nanobelts:Shape-controlled synthesis and optical and photocatalytic properties.Cryst.Growth &Des.2008,8,2130-2136.
    27.Xiong,Y.J.;Xie,Y.;Du,G.A.;Tian,X.B.A solvent-reduction and surface-modification technique to morphology control of tetragonal In_2S_3 nanocrystals.J.Mater.Chem.2002,12,98-102.
    28.Xing,X.;Chen,S.;Me,S.The workable index of infrared spectra(in Chinese).Tianjin Science & Technology Press,Tianjin 1992.
    29.Lindmark,A.F.;Fay,R.C.Kinetics of hindered rotation about carbon-nitrogen single bonds in some N,N-diisopropyldithiocarbamates.Inorg.Chem.1983,22,2000-2006.
    30.Subrato,B.N.S.;Dileep,K.;Srivastava,V.D.G.;Heinrich,N.;Martina,T.A.Neutral five-co-ordinate gallium(Ⅲ) and indium(Ⅲ) complexes derived from sulfur ligands.J.Chem.Soc.,Dalton Trans.1996,2815-2820.
    31.Yang,B.;Tian,S.;Zhao,S.A study of thermal decomposition of alkanethiols in pressure reactor.Fuel Proce.Technol.2006,87,673-678.
    32.Olsson,R.T.;Salazar-Alvarez,G.;Hedenqvist,M.S.;Gedde,U.W.;Lindberg,F.;Savage,S.J.Controlled Synthesis of Near-Stoichiometric Cobalt Ferrite Nanoparticles.Chem.Mater 2005,17,5109-5118.
    33.Chen,W.;Bovin,J.O.;Joly,A.G.;Wang,S.P.;Su,F.H.;Li,G.H.Full-color emission from In_2S_3 and In_2S_3:Eu~(3+) nanoparticles.J.Phys.Chem.B 2004,108,11927-11934.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700