用户名: 密码: 验证码:
单分散功能聚合物微球的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在单分散功能化聚合物微球研究中存在着微球粒径均匀性不高、分离纯化困难、功能化后难以满足使用要求等问题,限制了其在生物医学领域的应用。
     为获得粒径更为均匀的聚苯乙烯微球,本文通过分散聚合和种子聚合制备了粒径为1~10μm的单分散微球,采用苯乙烯和含官能团单体共聚合成了表面官能化微球;推导了一个基于理想单体吸收过程的模型,并检测了实验过程中微球粒径的变化,同时详细分析了初始颗粒与最终微球之间粒径和变异系数的比率变化趋势。比较理论分析结果和实测数据可知,更均匀的初始种子颗粒和精细调节实验参数可制得更均匀的微球。
     研究了单分散聚合物微球在溶液中的运动,通过理论推导发现微球的运动时间(即上浮时间或沉降时间)正比于溶液的粘度,反比于微球与溶液之间的密度差和微球半径的平方。本方法依据微球在甘油水溶液中的运动时间,可简便测得毫克级单分散微球的表观密度,与供应商提供值相比,该测量值可更精确地预测微球在溶液中运动情况。此外,采用该方法能有效地分离纯化聚合后所得微球混合物,所推导的效率公式可用于优化分离过程。
     将Fe3O4纳米颗粒偶联于空白聚合物微球表面,制得磁性纳米颗粒杂化聚合物微球;使用改良的梯度选择法,从反应后的混合液中分离磁性聚合物微球。结果表明,当混合液分散在50 wt%甘油水溶液中时,密度低于溶液的杂化微球上浮,密度高于溶液的纳米颗粒沉降,由于二者在溶液中运动方向相反,微球迅速被分离纯化。经本法纯化的微球表面未除去的纳米颗粒比传统离心法和外部磁场法低35~55 %左右。
     采用溶剂逐渐挥发法,在微球染色过程中形成荧光素(即罗丹明101和吖啶橙)的高浓度溶液,制备了高亮荧光微球。结果表明,制备的微球荧光发射光谱宽,可发出黄、绿、红、猩红等各种颜色的荧光;与市售荧光微球相比,单球荧光强度相对值高约10~50 %。
     综上所述,本研究在细胞分离纯化、疾病早期诊断等领域中具有潜在的应用价值,为其提供了重要的理论支持和实验依据。
The development of multifunctional monodisperse polymer microspheres has been hampered by several problems, such as inhomogeneous size distribution, a lack of efficient purification methodology, weak performance in the application of biomedicine.
     Herein, we fabricate the monodisperse polystyrene microspheres via dispersion polymerization and seeded polymerization with a diameter range from 1 to 10μm. The functionalized microspheres were obtained by co-polymerization of styrene and co-monomers with functional groups. To clarify the size distribution relationship between the final fabricated beads (by seeded polymerization) and the initial seed particles (by dispersion polymerization), a theoretically investigation according to the principle of the ideal monomer absorption process was employed. And the size growth process was experimentally measured. In the meanwhile, the diameter and coefficient variation rates of the final fabricated beads to the initial seed particles were also investigated. Compared the measured size distribution with the estimated, it was found that the more homogeneous beads can be generated by selection of more uniform initial seed particles and meticulous adjusting synthesis parameters.
     A new, facile and milligram-scale method was developed to describe the motion of polymer beads in aqueous solution. The motion time (i.e. floating or sedimentation time) of beads in solutions is proportional to the viscosity of solutions. It is reverse proportional to the square of bead radius and the density difference between the beads and the solutions. The apparent density of monodisperse beads can be quickly and easily calculated using the motion time of polymer beads in glycerol aqueous solutions. The results indicated that the present method provided a more precise way to predict the movement of beads in aqueous solution compared with the approach for commercial use. Moreover, this method was developed to purify polymer beads from the reaction mixture containing larger beads, target beads and smaller second-nuclei beads. The efficacy equation was derived to predict the purification process.
     The magnetic nanoparticle-polymer hybrid microbeads were prepared by coupling blank polymer beads with magnetic Fe3O4 nanoparticles. A facile method, density selection method was introduced to isolate magnetic polymer beads from unattached nanoparticles based on their density difference. As the mixture of bead and nanoparticle was dispersed in 50 wt% glycerol solution, the lighter bead would float to the upper surface of medium, and the heavier nanoparticle had a tendency to settle towards the bottom of container. The bead could be efficiently collected due to the bead movement direction opposite to that of nanoparticles. The amounts of unremoved MNPs of purified beads were 35~55 % lower than those of beads by general centrifugation or external magnetic field separation methods.
     The fluorescent polystyrene beads were stained by gradual solvent evaporation method using dyes such as rhodamine 101 and acridine orange. Gradual solvent evaporation method facilitates a high concentration of fluorescent dyes on beads. This is the key to obtain fluorescent beads with high intensity. The results showed that the fabricated fluorescent microspheres could be excited to various wavelengths (such as yellow, green, red and scarlet). Our synthesized microspheres offer high fluorescence emission intensity compared to commercial fluorescent microspheres in the mean time have other properties in common.
     This study can be potentially employed in cell separation, microfluidics chip systems, early disease diagnosis, flow cytometry, suspension stability, and particle analysis systems.
引文
[1] Ann-Muriel S, Marylène F, Chantal A, et al. Detection of a decrease in green fluorescent protein fluorescence for the monitoring of cell death: An assay amenable to high-throughput screening technologiesm, Cytometry, 2001, 45: 237~243
    [2] Nolan J P, Sklar L A. The emergence of flow cytometry for the sensitive, real-time analysis of molecular assembly, Nature Biotechnology, 1998, 16: 833~838
    [3] Reese C E, Guerrero C D, Weissman J M, et al. Asher synthesis of highly charged, monodisperse polystyrene colloidal particles for the fabrication of photonic crystals, Journal of Colloid and Interface Science, 2000, 232: 76~80
    [4] Zhang J, Chen Z, Wang Z, et al. Preparation of monodisperse polystyrene spheres in aqueous alcohol system, Materials Letters, 2003, 57: 4466~4470
    [5] Zhang Q, Han Y, Wang W -C, et al. Preparation of fluorescent polystyrene microspheres by gradual solvent evaporation method, European Polymer Journal, 2009, 45: 550~556
    [6] Kim J -W, Suh K -D. Monodisperse polymer particles synthesized by seeded polymerization techniques, Journal of Industrial and Engineering Chemistry, 2008, 14: 1~9
    [7] Weisberger J, Wu C D, Liu Z, et al. Differential diagnosis of malignant lymphomas and related disorders by specific pattern of expression of immunophenotypic markers revealed by multiparameter flow cytometry, International Journal of Oncology, 2000, 17: 1165~1177
    [8] Rahmani A, Fornel F de. Near-field optical probing of fluorescent microspheres using a photon scanning tunneling microscope, Optics Communications, 1996, 131: 253~259
    [9] Park J, Joo J, Kwon S G, et al. Synthesis of monodisperse spherical nanocrystals, Angewandte Chemie, 2007, 46: 4630~4660
    [10] Working with microspheres,“http://www.bangslabs.com/files/bangs/docs/pdf/ 201A.pdf”, Tech notes 201 and 205 (accessed in Jan, 2010)
    [11]苏天升,杨树明,液相色谱用粒度单分散大孔交联聚苯乙烯微球的制备,中国专利CN1132213, 1995
    [12] Wu Y, Clerk R L. Controllable porous polymer particles generated by electrospraying, Journal of Colloid and Interface Science, 2007, 310: 529~535
    [13] Loscertales I G, Barrero A, Guerrero I, et al. Micro/nano encapsulation via electrified coaxial liquid jets, Science, 2002, 295: 1695~1698
    [14] López H J M, Barrero A, López A, et al. Coaxial jets generated from electrified Taylor cones. Scaling laws. Journal of Aerosol Science, 2003, 34: 535~552
    [15] Ahmad Z, Zhang H B, Farook U, et al. Generation of multilayered structures for biomedical applications using a novel tri-needle coaxial device and electrohydrodynamic flow, Journal of the Royal Society Interface, 2008, 5: 1255~1261
    [16] Yasunoa M, Nakajima M, Iwamoto S, et al. Visualization and characterization of SPG membrane emulsification, Journal of Membrane Science, 2002, 210: 29~37
    [17]包德才,张琼钢,刘袖洞.膜乳化-液中干燥法制备单分散高分子微球,高等学校化学学报,2004, 07: 1328~1330
    [18] Mayes A G, Mosbach K. Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase, Analytical Chemistry, 1996, 68: 3769~3774
    [19]马光辉,苏志国,高分子微球材料,北京:化学工业出版社,2005,7~10
    [20] Omi S, Katami K, et al. Synthesis of polymeric microspheres employing SPG emulsification technique, Journal of Applied Polymer Science, 1994, 51: 1~11
    [21] Omi S. Preparation of monodisperse microspheres using the Shirasu porous glass emulsification technique, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 109: 97~107
    [22] Yuyama H, Yamaoto K, et al. Preparation of polyurethaneurea (PUU) uniform spheres by SPG membrane emulsification technique, Journal of Applied Polymer Science, 2000, 77: 2237~2245
    [23] Yuyama H, Watanabe O, Ma G -H, et al. Preparation and analysis of uniform emulsion droplets using SPG membrane emulsification technique, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 168: 159~174
    [24] Chu L -Y, Xie R, Zhu J -H, et al. Study of SPG membrane emulsification processes for the preparation of monodisperse core–shell microcapsules, Journal of Colloid and Interface Science, 2003, 265: 187~196
    [25] Bai F, Yang X, Huang W. Synthesis of narrow or monodisperse poly(divinylbenzene) microspheres by distillation?precipitation polymerization, Macromolecules, 2004, 37: 9746~9752
    [26] Bai F, Huang B, Yang X, et al. Synthesis of monodisperse poly(methacrylic acid)microspheres by distillation–precipitation polymerization, European Polymer Journal, 2007, 43: 3923~3932
    [27]吕睿,分散共聚合制备St-AA-EGDMA微米级交联功能性聚合物微球的研究,[硕士学位论文],武汉:湖北大学,2003
    [28] Arshady R. Suspension, emulsion, and dispersion polymerization: A methodological survey, Colloid & Polymer Science, 1992, 270: 717~732
    [29] Markus A, Wolfgang B, et al. Synthesis and size control of polystyrene latices via polymerization in microemulsion, Macromolecules, 1991, 24: 6636~6643
    [30] Yamamoto T, Kanda Y, Higashitani K. Initial growth process of polystyrene particle investigated by AFM, Journal of Colloid and Interface Science, 2006, 299: 493~496
    [31] Liu Z, Xiao H. Soap-free emulsion copolymerisation of styrene with cationic monomer: effect of ethanol as a cosolvent, Polymer, 2000, 41: 7023~7031
    [32] Motokawa R, Nakahira T, Annaka M, et al. Time-resolved gel permeation chromatographic study on poly(N-isopropylacrylamide)-block-poly(ethylene glycol) prepared by soap-free emulsion polymerization, Polymer, 2004, 45: 9019~9022
    [33] Paine A J. Dispersion polymerization of styrene in polar solvents. 7. A simple mechanistic model to predict particle size, Macromolecules, 1990, 23: 3109~3117
    [34] Winnik F M, Paine A J. Dispersion polymerization of styrene in polar solvents, characterization of stabilizer in ordinary and precipitated particles by fluorescence quenching, Langmuir, 1989, 5: 903~910
    [35] Paine A J, Luymes W, McNulty J. Dispersion polymerization of styrene in polar solvents. 6. Influence of reaction parameters on particle size and molecular weight in poly(N-vinylpyrrolidone)-stabilized reactions, Macromolecules, 1990, 23: 3104~3109
    [36]曹同玉,戴兵,大粒径单分散聚合物微球的合成及应用,聚合物乳液通讯,1994,2: 1~7
    [37] Lee J, Ha J U, Choe S, et al. Synthesis of highly monodisperse polystyrene microspheres via dispersion polymerization using an amphoteric initiator, Journal of Colloid and Interface Science, 2006, 298: 663~671
    [38] Song J -S; Tronc F; Winnik M A. Two-stage dispersion polymerization toward monodisperse, controlled micrometer-sized copolymer particles, Journal of the American Chemical Society, 2004; 126: 6562~6563
    [39] Kawaguchi S, Ito K. Dispersion Polymerization, Advances in Polymer Science, 2005, 175: 299~328
    [40] Horák D. Uniform polymer beads of micrometer size, Acta Polymerica, 1996, 47: 20~28
    [41] Kim J W, Kim B S, Suh K D. Monodisperse micron-sized cross-linked polystyrene particles. VI. Understanding of nucleated particle formation and particle growth, Colloid and Polymer Science, 2000, 278: 591~594
    [42] Yasuda M, Seki H, Yokoyama H, et al. Simulation of a particle formation stage in the dispersion polymerization of styrene, Macromolecules, 2001, 34: 3261~3270
    [43] Barrett K E J. Dispersion polymerization in organic media, John Wiley & Sons, Inc., New York, 1975: 130-290
    [44] Bradford E B, Vanderhoff J W. Electron microscopy of monodisperse latexes, Journal of Applied Physics, 1955, 26: 864~871
    [45] Lok K P, Ober C K, Particle size control in dispersion polymerization of polystyrene, Canadian Journal of Chemistry, 1985, 63: 209~216
    [46] Horák D, ?vec F, Fréchet J M J. Preparation of colored poly(styrene-co-butyl methacrylate) micrometer size beads with narrow size distribution by dispersion polymerization in presence of dyes, Journal of Polymer Science Part A: Polymer Chemistry, 1995, 33: 2961~2968
    [47] Wu W, Wang M, Sun Y, et al. Dual-color polystyrene microspheres by two-stage dispersion copolymerization, Materials Letters, 2008, 62: 2603~2606
    [48] Tseng C M, Lu Y Y, El-Aasser M S, et al. Uniform polymer particles by dispersion polymerization in alcohol, Journal of Polymer Science Part A: Polymer Chemistry, 1986, 24: 2995~3007
    [49] Thompson B, Rudin A, Lajoie G. Dispersion copolymerization of styrene and divinylbenzene: Synthesis of monodisperse, uniformly crosslinked particles, Journal of Polymer Science Part A: Polymer Chemistry, 1995, 33: 345~357
    [50] Klein S M, Manoharan V N, Pine D J, et al. Preparation of monodisperse PMMA microspheres in nonpolar solvents by dispersion polymerization with a macromonomeric stabilizer, Colloid and Polymer Science, 2003, 282: 7~13
    [51] Okubo M, Izumi J, Takekoh R. Production of micron-sized monodispersed core-shell composite polymer particles by seeded dispersion polymerization, colloid & Polymer Science, 1999, 277: 875~880
    [52] Lepilleur C, Beckman E J. Dispersion polymerization of methyl methacrylate in supercritical CO2, Macromolecules,1997, 30: 745-756
    [53] Arshady R. Suspension, emulsion, and dispersion polymerization: A methodological survey, Colloid & Polymer Science, 1992, 270(8): 717~732
    [54] Wang D, Dimonie V L, Sudol E D, et al. Effect of PVP in dispersion and seeded dispersion polymerizations, Journal of Applied Polymer Science, 2002, 84(14): 2721~2732
    [55] Vanderhoff J W, Mohamed S EA, Ugelstad J. Polymer emulsification process, US Patent:4177177, 1979
    [56] Beckman E J, Smith R D, Fulton J L, et al. Processes for microemulsion polymerization employing novel microemulsion systems, US Patent 4933404, 1990
    [57] Cozzette S N, Davis G, Itak J, et al. Process for the manufacture of wholly microfabricated biosensors, US Patent 5837446, 1995
    [58] Emmons W D, Vogel M, Kostansek E C, et al. Process for preparing an aqueous dispersion of composite particles including polymeric latex, US Patent:6080802, 2000
    [59] Vanderhoff J W, Xun C, Clarence C, et al. Process for the preparation of aqueous dispersions of particles of water-soluble polymers and the particles obtained, US Patent 6544503, 2003
    [60] Vanderhoff J W, Fortunato J, Mohamed S, et al. Preparation of large particle size monodisperse latexes, US Patent:5106903, 1992
    [61] Lovelace A M, Vanderhoff J W, Fortunato J, et al. Process for preparation of large-particle-size monodisperse, US Patent 4247434, 1992
    [62] Huang TC C, El-Aasser M S, Vanderhoff J W, et al. Process for preparing microencapsulated particles and the resultant products and uses thereof, US Patent 4935456, 1990
    [63] Vanderhoff J W, El-Aasser M S, Micale F J, et al. Preparation of large-particle-size monodisperse latexes in space: polymerization kinetics and process development, Journal of Dispersion Science and Technology, 1984, 5: 231~246
    [64] Okubo M, Shiozaki M, Tsujihiro M. et al. Preparation of micron-size monodisperse polymer particles by seeded polymerization utilizing the dynamic monomer swelling method, Colloid Polymer Science ,1991, 269: 222~226
    [65] Okubo M, Shiozaki M. Preparation of micron-size monodisperse polymer particles having highly crosslinked structures and vinyl groups by seeded polymerization of divinylbenzene using the dynamic swelling method, Colloid and Polymer Science, 1992, 270: 853~858
    [66] Okubo M, Yamashita T, Minami H. Preparation of micron-sized monodispersed highly monomer-"adsorbed" polymer particles having snow-man shape by utilizing the dynamic swelling method with tightly cross-linked seed particles, Colloid & Polymer Science, 1998, 276: 887~892
    [67] Okubo M, Ise E, Yonehara H. Preparation of micron-sized, monodispersed, monomer-adsorbed polymer particles utilizing the dynamic swelling method with loosely cross-linked seed particles, Colloid and polymer science, 2001, 279: 539~545
    [68] Okubo M, Wang Z Q, Yamashita T. Morphology of micron-sized, monomer-adsorbed, crosslinked polymer particles having snowman-like shapes prepared by the dynamic swelling method, Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39: 3106~3111
    [69] Ugelstad J, Kaggerud K H, Hansen F K, et al. Absorption of low molecular weight compounds in aqueous dispersions of polymer-oligomer particles, 2. A two step swelling process of polymer particles giving an enormous increase in absorption capacity, Die Makromolekulare Chemie, 1979, 180: 737~744
    [70] Ugelstad J. Swelling capacity of aqueous dispersions of oligomer and polymer substances and mixtures thereof, Die Makromolekulare Chemie, 1978, 179: 815~817
    [71] Mag H, Nagai M, et al. Synthesis of uniform microspheres with higher content of 2-hydroxyethyl methacrylate by employing SPG (Shirasu Porous Glass) emulsification technique followed by swelling process of droplets, Journal of Applied Polymer Science, 1997, 66: 1325~1341
    [72] Cox R A, Creasey J M, Wilkinson M C. Anomalies in particle shape during seeded growth of polystyrene lattices, Nature, 1974, 252: 468~469
    [73] Sheu H R, El-Aasser M S, Vanderhoff J W. Uniform nonspherical latex particles as model interpenetrating polymer networks, Journal of Polymer Science: Part A: Polymer Chemistry, 1990, 28: 653~667
    [74] Mock E B, Bruyn H De, Hawkett B S, et al. Synthesis of anisotropic nanoparticles by seeded emulsion polymerization, Langmuir, 2006, 22: 4037~4043
    [75] Fujibayashi T, Okubo M. Preparation and thermodynamic stability of micron-sized, monodisperse composite polymer particles of disc-like shapes by seeded dispersion polymerization, Langmuir, 2007, 23: 7958~7962
    [76] Yu H K, Mao Z, Wang D. Genesis of anisotropic colloidal particles via protrusion of polystyrene from polyelectrolyte multilayer encapsulation, Journal of the American Chemical Society, 2009, 131: 6366~6367
    [77] Prasad N, Perumal J, Choi C -H, et al. Generation of monodisperse inorganic–organic janus microspheres in a microfluidic device, Advanced Functional Materials, 2009, 19: 1~7
    [78] Gao X, Nie S. Quantum dot-encoded mesoporous beads with high brightness and uniformity rapid readout using flow cytometry, Analytical Chemistry, 2004, 76: 2406~2410
    [79] Fana Q L, Neoh K G, et al. Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles: Synthesis, characterization and cellular uptake, Biomaterials, 2007, 28: 5426~5436
    [80] Patrick L D, Delair T, Pichot C, et al. Synthesis of poly(chloromethylstyrene -b-styrene) block copolymers by controlled free-radical polymerization, Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38: 3845~3854
    [81] Bahar T, Tuncel A. Monodisperse poly(p-chloromethylstyrene) microbeads by dispersion polymerization, Polymer Engineering and Science, 1999, 39: 1849~1855
    [82] Bahar T, Tuncel A. Immobilization of invertase onto crosslinked poly(p-chloromethylstyrene) beads, Journal of Applied Polymer Science, 2001, 83: 1268~1279
    [83] Li W H, Li K, Harald D H. Monodisperse poly(chloromethylstyrene -co-divinylbenzene) microspheres by precipitation polymerization, Journal of Polymer Science Part A: Polymer Chemistry, 2000, 37: 2295~2303
    [84] Bai F, Yang X L, et al. Monodisperse hydrophilic polymer microspheres having carboxylic acid groups prepared by distillation precipitation polymerization, Polymer, 2006, 47: 5775~5784
    [85] Song J S, Chagal L, et al. Monodisperse micrometer-size carboxyl-functionalized polystyrene particles obtained by two-stage dispersion polymerization, Macromolecules, 2006, 39: 5729~5737
    [86] Holzapfel V, Musyanovych A, et al. Preparation of fluorescent carboxyl and amino functionalized polystyrene particles by miniemulsion polymerization as markers for cells,Macromolecular Chemistry and Physics, 2005, 206: 2440~2449
    [87] Tu C F, Yang Y H, et al. Preparations of bifunctional polymeric beads simultaneously incorporated with fluorescent quantum dots and magnetic nanocrystals, Nanotechnology, 2008, 19: 1056~1063
    [88] Dunbar S A, Applications of Luminex? xMAP? technology for rapid, high-throughput multiplexed nucleic acid detection, Clinica Chimica Acta, 2006, 363: 71-82
    [89] Kang K, Kan C, Du Y, et al. Synthesis and properties of soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles prepared by seeded emulsion polymerization, European Polymer Journal, 2005, 41: 439~445
    [90] Gong B L, Long L, et al. Synthesis of monodisperse poly(chloromethylstyrene-co- divinylbenzene) beads and their application in separation of biopolymers, Journal of Separation Science, 2005, 28: 2546~2550
    [91] Rich H, Binfeld J, et al. Reaction of chloromethyl ether with primary amine, Chemistry of Heterocyclic Compounds, 2003, 26: 1637~1638
    [92] Okubo M, Minami H, et al. Preparation of micrometer-sized, monodisperse, magnetic polymer particles, Journal of Applied Polymer Science, 2003, 88: 428~433
    [93] Bahar T, Tuncel A, et al. Immobilization of invertase onto crosslinked poly(p-chloromethylstyrene) beads, Journal of Applied Polymer Science, 2002, 83: 1268~1279
    [94]王伟财,张琦等,氨基化单分散超顺磁荧光PGMA多功能微球制备,科学通报,2007, 52: 2477~2481
    [95] Reiss G, Hütten A. Magnetic nanoparticles:Applications beyond data storage, Nature Materials, 2005, 4: 725 ~ 726
    [96] Zhang L, Si H -Y, Zhang H -L. Highly ordered fluorescent rings by breath figures on patterned substrates using polymer-free CdSe quantum dots, Journal of Materials Chemistry, 2008, 18: 2660 ~ 2665
    [97] Wang H -C, Wu C -Y, Chung C -C, et al. Analysis of parameters and interaction between parameters in preparation of uniform silicon dioxide nanoparticles using response surface methodology, Industrial & Engineering Chemistry Research, 2006, 45: 8043~8048
    [98] Daniel M -C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chemical Reviews, 2004, 104: 293~346
    [99] Ahmad A, Senapati S, Khan M I, et al. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, thermomonospora sp. Langmuir, 2003, 19: 3550~3553
    [100] Hiramatsu H, Osterloh F E. A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants, Chemistry of Materials, 2004, 16: 2509~2511
    [101] Porel S, Singh S, Harsha S S, et al. Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting, Chemistry of Materials, 2005, 17: 9~12
    [102] Taleb A, Petit C, Pileni M P. Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization, Chemistry of Materials, 1997, 9: 950~959
    [103] Tapan K J, Marco A M, Sahjeeb K, et al. Iron oxide nanoparticles for sustained delivery of anticancer agents, Molecular Pharmaceutics, 2005, 3: 237~248
    [104] Zhang K, Chew C H, Kawi S, et a1. Synthesis and evaluation of Ruthemum-copper oxide/silica catalysts derived from microemulsion processing, Catalysis Letters, 2000, 64: 179~182
    [105] Massart R. Preparation of magnetite nanoparticles, IEEE Transactions on Magnetics, 1981, 17: 1247~1251
    [106] Molday R S, Magneticiron-dextran microspheres, US Patent 4452773, 1984
    [107] Lu Y, Yin Y, Mayers B T, et al. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol?gel approach, Nano Letters 2002, 2: 183~186
    [108] Jang M, Cao G. Deposition of magnetic nanoparticles suspended in the gas phase on a specific target area, Environmental Science & Technology, 2006, 40: 6730~6737
    [109] Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles, Journal of the American Chemical Society, 2002, 124: 8204~8205
    [110] Zeng H, Rice P M, Wang S X, et al. Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles, Journal of the American Chemical Society, 2004, 126: 11458~11459
    [111] Chen M, Liu J P, Sun S. One-step synthesis of FePt nanoparticles with tunable size, Journal of the American Chemical Society, 2004, 126: 8394~8395
    [112] Li J, Zeng H, Sun S, et al. Analyzing the structure of CoFe-Fe3O4 core-shell nanoparticles by electron imaging and diffraction The Journal of Physical Chemistry B, 2004, 108: 14005~14008
    [113] Xie J, Chen K, Lee H -Y, et al. Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrinαvβ3-rich tumor cells, Journal of the American Chemical Society, 2008, 130: 7542~7543
    [114] Chaubey G S, Barcena C, Poudyal N, et al. Synthesis and stabilization of FeCo nanoparticles, Journal of the American Chemical Society, 2007, 129: 7214~7215
    [115] Peng S, Wang C, Xie J, et al. Synthesis and stabilization of monodisperse Fe nanoparticles, Journal of the American Chemical Society, 2006, 128: 10676~10677
    [116] Qiu J -M, Wang J -P. Tuning the crystal structure and magnetic properties of FePt nanomagnets, Advanced Materials. 2007, 19: 1703~1706
    [117] Bai J, Wang J -P. High-magnetic-moment core-shell-type FeCo–Au/Ag nanoparticles, Applied Physics Letters, 2005, 87: 152502
    [118] Gu H, Yang Z, Gao J, et al. Heterodimers of nanoparticles: formation at a liquid-liquid interface and particle-specific surface modification by functional molecules, Journal of the American Chemical Society, 2005, 127: 34~35
    [119] Peng Z A, Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor, Journal of the American Chemical Society, 2001, 123: 183~187
    [120] Marcus J, Jovan N, Randy J E, et a1.Photoenhan cement of luminescence in colloidal CdSe quantum dot solutions, Journal of Physical Chemistry B, 2003, 107: l1346~11353
    [121] Haggata S W, Azad M M, Motevalli M, et al. Synthesis and characterization of some mixed alkyl thiocarbamates of gallium and indiam precursors for II-VI materials: the X-ray single-crystal structures of dimcthyl and diethylindium diethylditif carbamate, Chemical Materials, 1995, 7: 716~722
    [122] Manna L, Scher E C, A1ivisatos A P, Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals, Journal of the American Chemical Society, 2000, l22: l2700~12706
    [123] Taleb M, Uri B. Synthesis and properties of CdSe/ZnS core/shell nanorods, Chemical Materials, 2003, 15: 3955~3961
    [124] Li Y, Ding Y, Qian Y, et al. A solvothermal elemental reaction to produce nanocrystalline ZnSe, Inorganic Chemistry , 1998, 37; 2844~2845
    [125] Yu S H, Wu Y S, Qian Y T, et al. A novel solventothermal synthetic route to nanocrystalline CdE (E =S, Se, Te) and morphological control, Chemistry of Materials, 1998, 10(9): 2309~2312
    [126] Rossetti R, Ellison J L, Gibson J M, et al. Size effects in the excited electronic states of small colloidal CdS crystallites, Journal of Chemical Physics, 1984, 80: 4464~4469
    [127] Steigerwald M L, Alivisatos A P, Gibson J M, et al. Surface derivatization and isolation of semiconductor cluster molecules, Journal of the American Chemical Society, 1988, 110: 3046~3050
    [128] Sugimoto T, Chen S, Muramatsu A. Synthesis of uniform particles of CdS, ZnS, PbS and CuS from concentrated solutions of the metal chelates, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 135: 207~226
    [129] Huang J M, Yang Y, Yang B, et a1. Assembly and applications of the inorganic nanocrystals in polymer networks, Thin Solid Films, 1998, 327(8): 536~540
    [130] Aooklal K, Hanus L H, Ploehn H J, et al. A blue emitting CdS/dendrimer nanocomposite, Advanced Materials, 1998, 10: 1083~1087
    [131] Parla H, Winkler H, Kolbe M, et a1. Confinement of CdSe nanoparticles inside MCM-41, Advanced Materials, 2000, 12: 105~110
    [132] Suzuki T, Ding J, McCormick P G. Mechanochemical synthesis of ultrafine zinc sulfide particles, Physical Bulletin, 1997, 239: 378~381
    [133] Xie R G, Kolb U, Li J X, et a1. Synthesis and characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals, Journal of the American Chemical Society, 2005, 127: 7480~7488
    [134] Yongchi T, Theresa N, Nicholas A, et a1. Coupled composite CdS/CdSe and core-shell types of (CdS)CdSe and (CdSe) CdS nanoparticles, The Journal of Physical Chemistry B, 1996,100: 8927~8939
    [135] Youn H C, Baral S, Fendler J H. Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed cadmium sulfide and zinc sulfide semiconductor particles: preparation and utilization for photosensitized charge separation and hydrogen generation, The Journal of Physical Chemistry B, 1988, 92: 6320~6327
    [136] Kortan A R, Hull R, Opila R L, et a1. Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media, The Journal of Physical Chemistry B, 1990, 112: 1327~1333
    [137] Mews A, Eychmuller A, Giersig M, et a1. Preparation, characterization and photophysics of the quantum dot quantum well system CdS/HgS/CdS, Journal of Physical Chemistry, 1994, 98: 934~941
    [138] Curri M L, Agostiano A, Manna L, et a1. Synthesis and characterization of CdS nanoclusters in a quaternary microemulsion: the role of the cosurfactant, The Journal of Physical Chemistry B, 2000, 104: 8391~8397
    [139] Yao J X. Synthesis and characterization of CdS nanoparticles modified with organic, Journal of Inorganic Materials, 2003, 18 : 445~450
    [140] Williams S C, Parak D J, Zanchet D, et a1.Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots, The Journal of Physical Chemistry B, 2001, 105: 8861~887
    [141] Dubertret B, Skourides P, Albert L, et a1. In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science, 2002, 298: 1759~1762
    [142] Gao X H, Nie S M, Chung L W, et a1. In vivo cancer targeting and imaging with semiconductor quantum dot, Nature Biotechnology, 2004, 22: 969~976
    [143] Wang Q B, Wei Q, et al. Preparation of nano Fe3O4/polystyrene microsphere by in situ polymerization, Journal of Chemical Engineering of Japan, 2003, 36: 1227~1230
    [144] Zeng H M, Lai Q Y, et al. Factors influencing magnetic polymer microspheres prepared by dispersion polymerization, Journal of Applied Polymer Science, 2007, 106: 3474~3480
    [145] Schwartz A, Repollet E F. Fluorescent alignment microbeads with broad excitation and emission spectra and its use, US Patent 5073498, 1991
    [146] Borisov S M, Mayr T, Klimant I, et al. Poly(styrene-block-vinylpyrrolidone) beads as a versatile material for simple fabrication of optical nanosensors, Analytical Chemistry, 2008, 80: 573~582
    [147] Barbera-Guillem E, Castro S L. Fluorescent nanocrystal-embedded microspheres for fluorescence analysis, US Patent 6680211, 2004
    [148] Chandler M B, Chandler D J. Microparticles attached to nanoparticles labeled with flourescent dye, US Patent 6268222, 2001
    [149] Nynke A M, Verhaegh A van B. Dispersions of Rhodamine-labeled silica spheres: synthesis, characterization, and fluorescence confocal scanning laser microscopy, Langmuir, 1994, 10: 1427~1438
    [150] Gruber M, Wetzl B, Oswald B, et al. A new fluorescence resonance energy transfer pair and its application to oligonucleotide labeling and fluorescence resonance energy transfer, Journal of Fluorescence, 2005, 15: 207~214
    [151] Singer V L, Haugland R P. Fluorescent labeling using microparticles with controllable stokes shift, US Patent 5573909, 1996
    [152] Joshi H C, Mishra H, Tripathi H B, et al. Role of diffusion in excitation energy transfer: a time-resolved study, Journal of Luminescence, 2000, 90: 17~25
    [153] Nagao D, Anzai N, Kobayashi Y, et al. Preparation of highly monodisperse poly(methyl methacrylate) particles incorporating fluorescent rhodamine 6G for colloidal crystals, Journal of Colloid and Interface Science, 2006, 298: 232~237
    [154] Bosma G, Pathmamanoharan C, Hoog E H A De, et al. Preparation of monodisperse, fluorescent PMMA–Latex colloids by dispersion polymerization, Journal of Colloid and Interface Science, 2002, 245: 292~300
    [155] Cheung S W. Fluorescent microspheres and methods of using them, US Patent 5132242, 1992
    [156] Han M, Gao X, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nature biotechnology, 2001, 19: 631~636
    [157] Klostranec J M, Xiang Q, Farcas G A, et al. Convergence of quantum dot barcodes with microfluidics and signal processing for multiplexed high-throughput infectious disease diagnostics, Nano Letters, 2007, 7: 2812~2818
    [158] Allen C N, Lequeux N, Chassenieux C, et al. Optical analysis of beads encoded with quantum dots coated with a cationic polymer, Advanced Materials, 2007, 19: 4420~4425
    [159] Zhu X -X, Cao Y -C, Jin X, et al. Optical encoding of microbeads based on silica particle encapsulated quantum dots and its applications, Nanotechnology, 2008, 19: 025708 (8pp)
    [160] Wang Q, Seo D -K. Preparation of photostable quantum dot-polystyrene microbeads through covalent organosilane coupling of CdSe@Zns quantum dots, Journal of Material Science, 2009, 44: 816-820
    [161] Tu C, Yang Y, Gao M. Preparations of bifunctional polymeric beads simultaneously incorporated with fluorescent quantum dots and magnetic nanocrystals, Nanotechnology, 2008, 19: 105601 (8pp)
    [162] Das M, Mishra D, Maiti T K, et al. Bio-functionalization of magnetite nanoparticles using an aminophosphonic acid coupling agent: new, ultradispersed, iron-oxide folate nanoconjugates for cancer-specific targeting, Nanotechnology, 2008,19: 415101 (14pp)
    [163]王延梅,封麟先等,磁性高分子微球的研究进展,高分子材料科学与工程,1998,14(5):6~14
    [164] Vogel R, Peter P T. Fluorescent organosilica micro- and nanoparticles with controllable size, Journal of Colloid and Interface Science, 1997, 310: 144~150
    [165] Xie H Y, Zuo C. Cell-Targeting multifunctional nanospheres with both fluorescence and magnetism, Small, 2005, 1(5): 506~509
    [166] Javier G F, Serra J, Gener J. Latex agglutination procedures in immunodiagnosis, Pure and Applied Chemistry,1991, 63: 1131~1134
    [167] Moser C, Mayr T, et al. Microsphere sedimentation arrays for multiplexed bioanalytics, Analytica Chimica Acta, 2006, 558: 102~109
    [168] Gregory G, Martin J C, et al. Single particle high resolution spectral analysis flow cytometry, Cytometry Part A, 2006, 69a: 842~851
    [169] Christ D, Earle M A. High-throughput fluorescent multiplex array for indoor allergen exposure assessment, Journal of Allergy and Clinical Immunology, 2006, 119: 428~435
    [170] Waterboer T, Sehr P, Pawlita M. Suppression of non-specific binding in serological Luminex assays, Journal of Immunological Methods, 2006, 309: 200-204
    [171]周小棉,芯片实验室及其发展趋势,中国科学院大连化学物理研究所,2006
    [172] Li W, Yan B. Effects of polymer supports on the kinetics of solid-phase organic reactions: a comparison of polystyrene- and TentaGel-based resins, The Journal of Organic Chemistry 1998, 63: 4092~4097
    [173] Yang C, Liu H, Guan Y, et al. Preparation of magnetic poly(methylmethacrylate– divinylbenzene–glycidylmethacrylate) microspheres by spraying suspension polymerization and their use for protein adsorption, Journal of Magnetism and Magnetic Materials, 2005, 293: 187~192
    [174] Fordyce R G, Ham G E, Copolymerization. II. the mechanism of emulsion copolymerization of styrene and itaconic acid, Journal of the American Chemical Society, 1947, 69: 695~695
    [175] Yazdani-Pedram M, Vegaa H, Quijad R. Melt functionalization of polypropylene with methyl esters of itaconic acid, Polymer, 2001, 42: 4751~4758
    [176] Kiyohara S, Sasaki M, Saito K, et al. Amino acid addition to epoxy-group-containing polymer chain grafted onto a porous membrane. Journal of membrane science, 1996, 109: 92–97.
    [177] Kim J -W, Suh K -D. Monodisperse micron-sized polystyrene particles by seeded polymerization: effect of seed crosslinking on monomer swelling and particle morphology, Polymer, 2000, 41: 6181~6188
    [178] Nareoja T, Vehniainen M, Lamminmaki U, et al. Study on nonspecificity of an immunoassay using Eu-doped polystyrene nanoparticle labeles, Journal of Immunological Methods, 2009, 345: 80~89
    [179] Ma Q, Wang X, Li Y, et al. Multicolor quantum dot-encoded microspheres for the detection of biomolecules, Talanta, 2007, 72: 1446~1452
    [180] Wang H, Zhao Y–D, et al. Multi-color encoding of polystyrene microbeads with CdSe/ZnS quantum dots and its application in immunoassay, Journal of Colloid and interface Science, 2007, 316: 622~627
    [181] Zhang B, Gong X, Hao L, et al. A novel method to enhance quantum yield of silica-coated quantum dots for biodetection, Nanotechnology, 2008, 19: 465604 (9pp)
    [182] Larsen R J, Marx M L. An introduction to mathematical statistics and its applications, Prentice-Hall, 1981, Chapter 20, p. 111
    [183] Baruch-Sharon S, Margel S. Preparation and characterization of core-shell polystyrene/ polychloromethylstyrene and hollow polychloromethylstyrene micrometer-sized particles of narrow-size distribution, Colloid and Polymer Science, 2009, 287: 859~869
    [184] Zhang H, Huang H, Lv R, et al. Micron-size crosslinked microspheres bearing carboxyl groups via dispersion copolymerization, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 253: 217~221
    [185] Yoon D H, Ha J B, Bahk Y K, et al. Size-selective separation of micro beads by utilizing secondary flow in a curved rectangular microchannel, Lab on a Chip, 2009, 9: 87~90
    [186] Funfak A, Fischlechner M, Donath E, et al. Applications of micro-reactor engineering, The 2007 Spring National Meeting Houston, 2007, T1: 011
    [187] Srinivasan B, Li Y, Jing Y, et al. A detection system based on giant magnetoresistive sensors and high-moment magnetic nanoparticles demonstrates zeptomole sensitivity: potential for personalized medicine, Angewandte Chemie International Edition, 2009, 48: 2764~2767
    [188] Work T W, Work E. Laboratory techniques in biochemistry and molecular biology, North Holland Publication Corporation. Amsterdam, 1976
    [189] Test method for density and relative density of liquids by digital density meter, ASTM D 4052, 2002
    [190] Sun X M, Tabakman S M, Seo W -S, et al. Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals, Angewandte Chemie International Edition, 2009, 48: 939~942
    [191] Shankar P N, Kumar M. Experimental-determination of the kinematic viscosity of glycerol water mixtures, Proceedings of the Royal Society A, 1994, 444: 573~581
    [192] Zarnitsyn V G, Fedorov A G. Mechanosensing using drag force for imaging soft biological membranes, Langmuir, 2007, 23: 6245~6251
    [193] Margenau H. Van der waals forces, Reviews of modern physics, 1939, 11: 1~35
    [194] Schrum A G, Gil D, Dopfer E P, et al. High-sensitivity detection and quantitative analysis of native protein-protein interactions and multiprotein complexes by flow cytometry, Science STKE, 2007, 389: pl2. [DOI: 10.1126/stke.3892007pl2]
    [195] Hansen S, Dahl R, Hoffmann H J. Determination of blood leukocyte concentration with constant volume acquisition on a flow cytometer is comparable to individualized single platform testing with beads as internal reference standard, Journal of Immunological Methods, 2008, 338: 58~62
    [196] Gaigalas A K, Wang L. Approaches to quantitation in flow cytometry, Springer Series on Fluorescence, 2008, 6: 371~398
    [197] Introduction to Flow Cytometry: A Learning Guide, BD Biosciences, Manual Part Number: 11-11032-01, 2000.“http://www.cancer.umn.edu/exfiles/research/ fcintro.pdf”(accessed Oct 27, 2009)
    [198] Wang C, Gao Y, Nguyen N T, et al. Interface control of pressure-driven two-fluid flow in microchannels using electroosmosis, Journal of Micromechanics and Microengineering, 2005, 15: 2289~2297
    [199] Lucas J N, Pinkel D. Orientation measurements of microsphere doublets and metaphase chromosomes in flow, Cytometry, 1986, 7: 575~581
    [200] Kell J, Somaskandan K, Stewart G, et al. Superparamagnetic nanoparticle- polystyrene bead conjugates as pathogen capture mimics: a parametric study of factors affecting capture efficiency and specificity arnold, Langmuir, 2008, 24: 3493~3502
    [201] Yang S -Y, Lien K -Y, Huang K -J, et al. Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection, Biosensors and Bioelectronics, 2008, 24: 855~862
    [202] Zhou X, Xing D, Zhu D, et al. Magnetic bead and nanoparticle based electrochemi-luminescence amplification assay for direct and sensitive measuring of telomerase activity, Analytical Chemistry, 2009, 81: 255~261
    [203] MackováH, KrálováD, Horák D. Magnetic Poly(N-isopropylacrylamide) microspheres by dispersion and inverse emulsion polymerization, Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45: 5884~5898
    [204] Liu H, Wang C, Gao Q, et al. Magnetic hydrogels with supracolloidal structures prepared by suspension polymerization stabilized by Fe2O3 nanoparticles, Acta Biomaterialia,2010, 6: 275–281
    [205] Horák D, Benedyk N. Magnetic poly(glycidyl methacrylate) microspheres prepared by dispersion polymerization in the presence of electrostatically stabilized ferrofluids, Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42: 5827~5837
    [206] Fu A, Hu W, Xu L, et al. Protein-functionalized synthetic antiferromagnetic nanoparticles for biomolecule detection and magnetic manipulation, Angewandte Chemie International Edition, 2009, 48: 1~6
    [207] Akthakul A, Hochbaum A I, Stellacci F, et al. Size fractionation of metal nanoparticles by membrance filtration, Advanced Materials, 2005, 17: 532~535
    [208] Sweeney S F, Woehrle G H, Hutchison J E. Rapid purification and size separation of gold nanoparticles via diafiltration, Journal of the American Chemical Society, 2006, 128: 3190~3197
    [209] Hanauer M, Pierrat S, Zins I, et al. Separation of nanoparticles by gel electrophoresis according to size and shape, Nano Letters, 2007, 7: 2881~2885
    [210] Arnaud I, Abid J -P, Roussel C, et al. Size-selective separation of gold nanoparticles using isoelectric focusing electrophoresis (IEF), Chemical Communications, 2005: 787~788
    [211] Sperling R A, Pellegrino T, Li J K, et al. Electrophoretic separation of nanoparticles with a discrete number of functional groups, Advanced Functional Materials, 2006, 16: 943~948
    [212] Krueger K M, Al-Somali A M, Falkner J C, et al. Characterization of nanocrystalline CdSe by size exclusion chromatography, Analytical Chemistry, 2005, 77: 3511-3515
    [213] Novak J P, Nickerson C, Franzen S, et al. Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography, Analytical Chemistry, 2001, 73: 5758~5761
    [214] Suri R C, Mishra G C. Activating piezoelectric crystal surface by silanization for microgravimetric immunobiosensor application, Biosensors & bioelectronics, 1996, 11: 1199-1205
    [215] Scarberry K E, Dickerson E B, McDonald J F, et al. Magnetic Nanoparticle- Peptide conjugates for in vitro and in vivo targeting and extraction of cancer cells, Journal of the American Chemical Society, 2008, 130: 10258~10262
    [216] Ding S, Xing Y, Radosz M, et al. Magnetic nanoparticles supported catalyst for atom transfer radical polymerization, Macromolecules, 2006, 39: 6399~6405
    [217] Pamme N, Magnetism and microfluidics, Lab on a Chip, 2006, 6: 24~38
    [218] Kim K S, Park J K. Magnetic force-based multiplexed immunoassay using superpara-magnetic nanoparticles in microfluidic channel, Lab on a Chip, 2005, 5: 657~664
    [219]常津,张琦,王伟财等,聚合物微粒悬浮液及其制备方法,中国专利CN101109689, 2007
    [220] Simha R. The influence of brownian movement on the viscosity of solutions, The Journal of Physical Chemistry, 1940, 44: 25~34
    [221] Jin H -J, Choi H J, Yoon S H, et al. Carbon nanotube-adsorbed polystyrene and poly(methyl methacrylate) microspheres, Chemistry of Materials, 2005, 17: 4034~4037
    [222] Li J J, Wang Y A, Guo W Z, et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction, Journal of the American Chemical Society, 2003, 125: 12567~12575

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700