用户名: 密码: 验证码:
农业废弃物固体碱预处理过程中木素的结构表征及其脱除机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于能源短缺和资源匮乏,利用木质纤维素等可再生资源代替石油等化石燃料来生产高附加值的化学品受到人们越来越多的关注。在众多的纤维素资源中,农业废弃物是一类来源丰富的纤维素资源,应用于生物质精炼工业具有很大的前景,因此研究它们的高效利用具有重要的现实意义。
     固体碱活性氧蒸煮是由本实验室开发的一种环保、高效的生物质预处理工艺。其中,采用的固体碱主要是氧化镁,活性氧是氧气和过氧化氢。在固体碱活性氧蒸煮中,Mg~(2+)作为唯一的无机离子被引入到蒸煮系统,它不仅与O~(2-)结合作为碱源,同时也作为碳水化合物的保护剂。基于这个理论,本论文对固体碱活性氧蒸煮的脱木素机制进行了深入研究。
     对玉米秸秆和蔗渣的木素进行3D HSQC-TOCSY NMR等分析发现,水溶性MWL与MWL中主要存在有紫丁香基(S)、愈创木基(G)和对羟基苯基(H)三种基本结构单元,β-O-4′(A/A′/A′′)、β-β′(B)和β-5′(C)等侧链连接形式,以及少量的酯化阿魏酸结构,蔗渣的MWL中没有发现紫丁香基的变形结构(S′/S′′)。水溶性MWL的分子量均比相同原料的MWL的小。此外,四种木素中均有大量的脂肪族羟基,和少量的愈创木基酚羟基与缩合的酚羟基。蔗渣的水溶性MWL中不存在对羟基苯基酚羟基、紫丁香基酚羟基和羧基。
     固体碱活性氧蒸煮具有很高的脱木素率,能脱除玉米秸秆中85.5%的木素和蔗渣中95.4%的木素,同时对碳水化合物特别是纤维素有很好的保护作用。在蒸煮中,紫丁香基单元(S/S′/S′′)的反应活性很高,愈创木基(G)可以被氧化并生成新型的G′结构;而对羟基苯基(H)在蒸煮中是稳定的。对于木素中的侧链连接形式,酚型的β-O-4′(A/A′/A′′)结构可以发生碱性自氧化反应,而非酚型的β-O-4′(A/A′/A′′)结构具有不同的反应活性。非酚型的β-β′(B)和β-5′(C)结构在蒸煮中是稳定的,而β-1′(D)结构已被完全破坏。另外,脱除的酯化阿魏酸结构(FE)已被完全破坏,而对乙酰氧基苯甲酸结构(P)是稳定的。
     目前发现,只有MgO和Mg(OH)_2两种固体碱用于蒸煮具有高脱木素率而又不发生碳化现象。固体碱可以为蒸煮提供一个弱碱性环境,防止原料的碳化,同时保护碳水化合物。氧气会与酚型木素结构反应,并将木素中的卞醇结构氧化成羰基,同时还会与环共轭结构反应。而过氧化氢会与木素侧链的羰基和双键反应,进一步提高了脱木素率。
     在固体碱活性氧蒸煮中,不同蒸煮时间下脱除的木素结构单元不同,酸溶木素主要是在100℃前的升温阶段脱除的,而酸不溶木素的脱除和碳水化合物的降解主要发生在100℃后的升温阶段。对木素模型物的分析发现,愈创木酚和部分对羟基苯甲酸在蒸煮中是稳定的,而阿魏酸、4-香豆酸、尼泊金乙酯、丁香酚、肉桂酸和苯甲酸乙酯在蒸煮中均被完全破坏。此外,固体碱活性氧蒸煮中水溶性MWL的分子量变化较小,但MWL的分子量降低非常明显,即固体碱活性氧蒸煮对MWL的破坏更严重。同时发现蒸煮中会生成P结构。
     几种固体碱活性氧蒸煮黄液的pH均较低,属于弱碱性环境,同时黄液中存在大量的甲酸和乙酸。黄液中存在的主要是碱析木素,且木素中均含有一定的Mg(OH)_2。对MgO/O_2、MgO/H_2O_2、MgO/H_2O_2/O_2三种蒸煮黄液分析发现,黄液中的酸碱抽提组分主要是邻苯二甲酸单(2-乙基己基)酯。
The use of lignocellulosic resources instead of petroleum and other fossil fuels asrenewable materials for the production of high value-added chemical products is concerenmore and more by the human because of energy shortages and resource scarcity. Among thelignocellulosic resources, agricultural residues are a type of cellulose resources with richreserves for the potential utilization in biomass refinery industry. Therefore, how to efficientlymake use of them is of great significance
     Solid alkali and active oxygen cooking is an environmentally friendly and efficienttechnology that developed by our laboratory, where MgO is used as a solid alkali, oxygen andhydrogen peroxide are used as active oxygen. In the cooking process, Mg~(2+)is the onlyinorganic ion brought into the cooking system, not only as an alkali factor reacting with O~(2-),but also as a protective agent for carbohydrate. Based on this theory, the delignificationmechanism of the solid alkali and active oxygen cooking is researched in the present work.
     Form the analysis of the cornstalk and bagasse lignins by3D HSQC-TOCSY NMR andother technologies, it was found that the water-soluble milled wood lignin (MWL) and MWLwere contained three types of basic structure units syringyl (S), guaiacyl (G) andp-hydroxyphenyl (H), main side-chain linkages β-O-4′(A/A′/A′′), β-β′(B) and β-5′(C)structures, and esterified ferulic acid structure (FE) with a little content. The transformationstructures of syringyl (S′/S′′) were not found in the water-soluble MWL of bagasse.Comparing to the MWL, the molecular weight of the water-soluble MWL from the same rawmaterial was smaller. In addition, a great amount of the aliphatic hydroxyl group, and smallamounts of phenolic hydroxyl group in guaiacyl and condensed phenolic hydroxyl group werefound in the four types of lignins. The phenolic hydroxyl groups in syringyl andp-hydroxyphenyl, and carboxyl group were not found in the MWL of bagasse.
     The solid alkali and active oxygen cooking had a high delignification rate, which couldremove85.5%of lignin in cornstalk and95.4%of lignin in bagasse, and had a protectiveeffect for the carbohydrate especially for the cellulose. In the cooking process, the syringyl(S/S′/S′′) units had a high reactivity. A novel G′structure was formed byan oxidizing reactionof the guaiacyl (G) unit. However, the p-hydroxyphenyl unit was stable in the cooking. For the sid-chain linkages, the phenolic β-O-4′(A/A′/A′′) structures could be changed by analkaline autoxidation reaction, and their non-phenolic structures had different reactivities. Thenon-phenolic β-β′(B) and β-5′(C) structures were stable in the cooking process, but the β-1′(D) structure was completely destroyed in the cooking. Moreover, the removed esterifiedferulic acid structure (FE) was also broken in the cooking, while the esterifiedp-acetoxy-benzoic acid structure (P) was stable.
     In our research, it was found that only the MgO and Mg(OH)_2used in solid alkali andactive oxygen cooking had a high delignification rate and not occurred carbonizationphenomena. The solid alkali effectively could provide a weakly alkaline environment fordelignification, prevent the raw material carbonizing, and also have a protective effect for thecarbohydrate. The oxygen affected changes in the phenolic structure, leading to the oxidationof a benzylic alcohol group into a carbonyl group, and the facile attack of the ring-conjugatedstructure. The hydrogen peroxide could react with the carbonyl groups and double bonds onlignin side-chains, and further increasing the delignification rate.
     In the solid alkali and active oxygen cooking, the lignin structure units could be removedin different cooking time. The acid soluble lignin was mainly removed in the heating stage,with the temperature under100℃, the removal of the acid-insoluble lignin and thedegradation of the carbohydrate were occurred in the heating stage also, but with thetemperature above100℃. In the analysises of the lignin models, it was found that theguaiacol and partial p-hydroxybenzoic acid were stable in the solid alkali and active oxygencooking process. While ferulic acid, p-coumaric acid, ethyl4-hydroxybenzoate, eugenol,trans-cinnamic acid and ethyl benzoate were thoroughly broken. In addition, the molecularweight of the water-soluble MWL changed smaller compared to the MWL in the cooking,namely the MWL was destroyed more seriously in the solid alkali and active oxygen cooking.And the P structure could be formed in the cooking process.
     The pH value of the yellow liquors from the solid alkali and active oxygen cooking waslow, which was a weak alkaline environment, and a large amount of the formic acid and aceticacid were found in the yellow liquors. The yellow liquors mainly contained alkali lignin, withcertain Mg(OH)_2precipitate in them. Form the analysis of the yellow liquors in the cookingwith MgO/O_2, MgO/H_2O_2and MgO/H_2O_2/O_2, the main components in alkali and acid extracts were phthalic acid, mono (2-ethylhexyl) ester.
引文
[1]胡秋龙,熊兴耀,谭琳,等.木质纤维素生物质预处理技术的研究进展[J].中国农学通报,2011,27(10):1-7.
    [2] Mosier N., Wyman C., Dale B., et al. Features of promising technologies forpretreatment of lignocellulosic biomass [J]. Bioresource Technology,2005,96(6):673-686.
    [3] Alvo P., Belkacemi K. Enzymatic saccharifcation of milled timothy (Phleum pretenseL.) and alfalfa (Medicago sativa L.)[J]. Bioresource Technology,1997,61(3):185-198.
    [4]计红果,庞浩,张容丽,等.木质纤维素的预处理及其酶解[J].化学通报,2008,71(5):329-335.
    [5] Yang C., Shen Z., Yu G., et al. Effect and aftereffect of γ radiation pretreatment onenzymatic hydrolysis of wheat straw [J]. Bioresource Technology,2008,99(14):6240-6245.
    [6] Mamar S., Hadjadj A. Radiation pretreatments of cellulose materials for theenhancement of enzymatic hydrolysis [J]. Radiation Physics and Chemistry,1990,35(1/3)451-455.
    [7] Chosdu R., Hilmy N., Erlinda T.B., et al. Radiation and chemical pretreatment ofcellulosic waste [J]. Radiation Physics and Chemistry,1993,42(4-6):695-698.
    [8] Han Y.W., Catalano E.A., Ciegler A. Chemical and physical properties of sugarcanebagasse irradiated wit γ rays [J]. Journal of Agricultural and Food Chemistry,1983,31(1):34-38.
    [9] Bak J.S., Ko J.K., Han Y.H., et al. Improved enzymatic hydrolysis yield of rice strawusing electron beam irradiation pretreatment [J]. Bioresource Technology,2009,100(3):1285-1290.
    [10] Zhu S., Wu Y., Yu Z., et al. Pretreatment by microwave/alkali of rice straw and itsenzymic hydrolysis [J]. Process Biochemistry,2005,40(9):3082-3086.
    [11]李静,杨红霞,杨勇.微波强化酸预处理玉米秸秆的乙醇化工艺的研究[J].生物工程学报,2010,26(7):888-891.
    [12] Ma H., Liu W.W., Chen X., et al. Enhanced enzymatic saccharification of rice strawby microwave pretreatment [J]. Bioresource Technology,2009,100(3):1279-1284.
    [13] Zhu S., Wu Y., Yu Z., et al. Comparison of three microwave.chemical pretreatmentprocesses for enzymatic hydrolysis of rice straw [J]. Biosystems Engineering,2006,93(3):279-283.
    [14]赵凤芹,申德超.挤压膨化参数对玉米秸秆纤维成分含量的影响[J].农业机械学报,2010,41(10):112-116.
    [15]张祖立,朱永文,刘晓峰,等.螺杆挤压膨化机加工农作物秸秆的试验研究[J].农业工程学报,2001,17(6):97-101.
    [16] Ismail F.A., Zahran G.H. Studies on extrusion conditions of some cereals andlegumes [J]. Egyptian Journal of Food Science,2001,30(1):59-76.
    [17]朱振兴,聂俊华,颜涌捷.木质纤维素生物质制取燃料乙醇的化学预处理技术[J].化学与生物工程,2009,26(9):11-14.
    [18] Agu R.C., Amadife A.E., Ude C.M., et al. Combined heat treatment and acidhydrolysis of cassava grate waste (CGW) biomass for ethanol production [J]. WasteManagement,1997,17(1):91-96.
    [19] Ballesteros I., Ballesteros M., Manzanares P., et al. Dilute sulfuric acid pretreatmentof cardoon for ethanol production [J]. Biochemical Engineering Journal,2008,42(1):84-91.
    [20]鲁杰,石淑兰,邢效工,杨汝男. NaOH预处理对植物纤维素酶解特性的影响[J].纤维素科学与技术,2004,12(1):1-7.
    [21] Silverstein R.A., Chen Y., Sharma-Shivappa R.R., et al. A comparison of chemicalpretreatment methods for improving saccharification of cotton stalks [J]. BiresourceTechnology,.2007,98(16):3000-3011.
    [22] Isci A., Himmelsbach J.N., Pometto Ⅲ A.L., et al. Aqueous ammonia soaking ofswitchgrass followed by simultaneous saccharification and fermentation [J]. AppliedBiochemistry and Biotechnology,2008,144(1):69-77.
    [23]赵志刚,程可可,张建安,等.木质纤维素原料预处理技术研究进展[J].酿酒科技,2008,(3):85-89.
    [24] Carvalheiro F., Duarte L.C., Girio F.M. Hemicellulose biorefineries: a review onbiomass pretreatments [J]. Journal of Scientific&Industrial Research,2008,67(11):849-864.
    [25] Kaar W.E., Holtzapple M.T. Using lime pretreatment to facilitate the enzymichydrolysis of corn stover [J]. Biomass and Bioenergy,2000,18(3):189-199.
    [26] Saha B.C., Cotta M.A. Lime pretreatment, enzymatic saccharification andfermentation of rice hulls to ethanol [J]. Biomass and Bioenergy,2008,32(10):971-977.
    [27]杨长军,汪勤,张光岳.木质纤维素原料预处理技术研究进展[J].酿酒科技,2008,(3):85-89.
    [28] Martin C., Klinke H.B., Thomsen A.B. Wet oxidation as a pretreatment method forenhancing the enzymatic convertibility of sugarcane bagasse [J]. Enzyme andMicrobial Technology,2007,40(3/5):426-432.
    [29] García-Cubero M.T., Gonzalez-Benito G., Indacoechea I., et al. Effect of ozonolysispretreatment on enzymatic digestibility of wheat and rye straw [J]. BioresourceTechnology,2009,100(4):1608-1613.
    [30] Zhao X., Cheng K., Liu D. Organosolv pretreatment of lignocellulosic biomass forenzymatic hydrolysis [J]. Applied Microbiology and Biotechnology,2009,82(5):815-827.
    [31] Sidiras D., Koukios E. Simulation of acid-catalysed organosolv fractionation of wheatstraw [J]. Bioresource Technology,2004,94(1):91-98.
    [32] Sun F., Chen H. Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerolpretreatment [J]. Bioresource Technology,2008,99(14):6156-6161.
    [33] Hayes D.J. An examination of biorefining processes, catalysts and challenges [J].Catalysis Today,2009,145(1/2):138-151.
    [34] Seddon K.R. Ionic liquids for clean technology [J]. Journal of Chemical Technologyand Biotechnology,1997,68(4):351-356.
    [35]刘丽英.秸秆组分分离及其高值化转化的研究[D].北京:中国科学院过程工程研究所,2006.
    [36] Li Q., He Y. Xian M., et al. Improving enzymatic hydrolysis of wheat straw usingionic liquid1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment [J].Bioresource Technology,2009,100(14):3570-3575.
    [37] Fu D., Mazza G., Tamaki Y. Lignin extraction from straw by ionic liquids andEnzymatic hydrolysis of the cellulosic residues [J]. Journal of Agricultural and FoodChemistry,2010,58(5):2915-1922.
    [38]唐爱民,梁文芷.纤维素预处理技术的发展[J].林产化学与工业,1999,19(4):81-88.
    [39] Ballesteros I., Oliva J. M., Negro M.J., et al. Enzymic hydrolysis of steam explodedherbaceous agricultural waste (Brassica carinata) at different particule sizes [J].Process Biochemistry,2002,38(2):187-192.
    [40] Mielenz J.R. Ethanol production from biomass: technology and commercializationstatus [J]. Current Opinion in Microbiology,2001,4(31):324-329.
    [41] Linde M., Jakobsson E.L., Gablbe M., et al. Steam pretreatment of diluteH2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings forbioethanol production [J]. Biomass and Bioenergy,2008,32(4):326-332.
    [42] hgren K., Bura R., Saddler J., et al. Effect of hemicellulose and lignin removal onenzymatic hydrolysis of steam p re-treated corn stover [J]. Bioresource Technology,2007,98(13):2503-2510.
    [43] Dale B.E. Moreir M. Freeze-explosion technique for increasing cellulose hydrolysis[J]. Biotechnology and Bioengineering Symposium,1982,12:31-43.
    [44] Zheng Y., Lin H.M., Tsao G.T. Pretreatment for cellulose hydrolysis by carbondioxide explosion [J]. Biotechnology Progress,1998,14(6):890-896.
    [45] Mes-Hartree M., Dale B.E., Craig W.K. Comparison of steam and ammoniapretreatment for enzymatic hydrolysis of cellulose [J]. Applied Microbilogy andBiotechnology,1988,29(5):462-468.
    [46] Taherzadeh M.J., Karimi K. Pretreatment of lignocellulosic wastes to improveethanol and biogas production: a review [J]. International Journal of MolecularSciences,2008,9(9):1621-1651.
    [47] Shafizadeh F., Lai Y.Z. Thermal degradation of2-deoxy-Darabino-hexonic acid and3-deoxy-D-ribo-hexono-1,4-lactone [J].Carbohydrate Research,1975,42(1):39-53.
    [48] Shafizadeh F., Bradbury A.G.W. Thermal degradation of cellulose in air and nitrogenat low temperatures [J]. Journal of Applied Polymer Science,1979,23(5):1431-1442.
    [49] Rogalinski T., Ingram T., Brunner G. Hydrolysis of lignocellulosic biomass in waterunder elevated temperatures and pressures [J]. The Journal of Supercritical Fluids,2008,47(1):54-63.
    [50] Kumar P., Barrett D.M., Delwich M.J., et al. Methods for pretreatment oflignocellulosic biomass for efficient hydrolysis and biofuel production [J]. Industrial&Engineering Chemistry Research,2009,48(8):3713-3729.
    [51] Mosier N., Wyman C., Dale B., et al. Features of promising technologies forpretreatment of lignocellulosic biomass [J]. Bioresource Technology,2005,96(6):673-686.
    [52] Singh P., Suman A., Tiwari P., et al. Biological pretreatment of sugarcane trash for itsconversion to fermentable sugars [J]. World ournal of Microbiology andBiotechnology,2008,24(5):667-673.
    [53] Adler E. Lignin chemistry–past, present and future [J]. Wood Science andTechnology,1977,11(3):169-218.
    [54] Bj rkman A. Studies on finely divided wood. Part1. Extraction of lignin with neutralsolvents [J]. Svensk Papperstid,1956,59:477-485.
    [55] Hu Z.J., Yeh T.F., Chang H.M., et al. Elucidation of the structure of cellulolyticenzyme lignin [J]. Holzforschung,2006,60(4):389-397.
    [56] Whiting P., Goring D. The morphological origin of milled wood lignin [J]. SvenskPapperstidn,1981,84:120-122.
    [57] Terashinma N., Fukushima K., Imai T. Morphological origin of milled wood ligninstudied by radiotracer method [J]. Holzforschung,1992,46:271-275.
    [58] Lundquist K., Simonson R., Tingsvik K. Studies on lignin carbohydrate linkages inmilled wood lignin preparations [J]. Sevensk Papperstidning,1980,83(16):452-454.
    [59] Lundquist K., Simonson R., Tingsvik K. Lignin carbohydrate linkages in milledwood lignin preparations from spruce wood [J]. Sevensk Papperstidning,1986,86(6):44-47.
    [60] Jung H.J.G., Himmelsbach D.S. Isolation and characterization of wheat straw lignin[J]. Journal of Agricultural and Food Chemistry,1989,37(1):81-87.
    [61] Pew J., Weyna P. Fine grinding, enzyme digestion and lignin-cellulose bond in wood[J]. Tappi,1962,45:247-25. Pew J.C. Properties of powered wood and isolation oflignin by cellulytic enzymes [J]. Tappi,1957,40:553-558.
    [62] Chang H.M., Cowling E.B., Brown W., et al. Comparative studies on cellulolyticenzyme lignin and milled wood lignin of sweetgum and spruce [J]. Holzforschung,1975,29:153-159.
    [63] Iversen T., W nnstr m S. Lignin-carbohydrate bonds in a residual lignin isolatedfrom pine kraft pulp [J]. Holzforschung,1986,40:19-22.
    [64] Chen J.Y., Shimizu Y., Takai M., et al. A method for isolation of milled-wood lignininvolving solvent swelling prior to enzyme treatment [J]. Wood Science andTechnology,1995,29:295-306.
    [65] Wu S., Argyropoulos D.S. An improved method for isolating lignin in high yield andpurity [J]. Journal of Pulp and Paper Science,2003,29(7):235-240.
    [66] Guerra A., Filpponen I., Lucia L.A., et al. Toward a better understanding of the ligninisolation process from wood [J]. Journal of Agricultural and Food Chemistry,2006,54(16):5939-5947.
    [67] Guerra A., Filpponen I., Lucia L.A., et al. Comparative evaluation of three ligninisolation protocols for various wood species [J]. Journal of Agricultural and FoodChemistry,2006,54(26):9696-9705.
    [68] Lawther J.M., Sun R.C., Banks W.B. Characterization of dissolved lignins intwo-stage organosolv delignification of wheat straw [J]. Journal of Wood Chemistryand Technology,1996,16:439-457.
    [69] Brauns F.E. Native lignin Ⅰ. Its isolation and methylation [J]. Journal of theAmerican Society,1939,61(8):2120-2127.
    [70] Herbert H.L. Infrared spectra of lignin and related compounds. Ⅱ. Comifer ligninand model compounds [J]. The Journal of Organic Chemistry,1960,25(3):405-413.
    [71] Nimz H., Der abbau des lignins durch schonende hydrolyse [J]. Holzforschung,1966,20(4):105-109.
    [72] Liu X.A., Lee Z.Z., Tai D.S. Fractional studies on the characteristics of highalkali-soluble lignins of wheat straw [J]. Cellulose Chemistry and Technology,1989,23:559-572.
    [73] Lapierre C., Jouin D., Monties B. On the molecular origin of the alkali solubility ofGramineae lignins [J]. Phytochemistry,1989,28:1401-1402.
    [74] Higuchi T., Ito Y., Kawamura I. p-Hyroxyphenylpropane component of grass ligninand roles of tyrosine-ammonia lyase in its formation [J]. Phytochemistry,1967,6:875-881.
    [75] Lam T.B.T., Iiyama K., Stone B.A. Lignin in wheat straw internodes. Part2: Alkalinenitrobenzene oxidation of wheat straw lignin and its fractions [J]. Journal of theScience of Food and Agriculture,1990,51:493-506.
    [76] Sun R., Lawther J.M., Banks W.B. Influence of alkaline pre-treatments on the cellwall components of wheat straw [J]. Industrial Crops and Products,1995,4(2):127-145.
    [77] Sun R.C., Lawther J.M., Banks W.B. Fractional isolation and physico-chemicalcharacterization of alkali-soluble lignins from wheat straw [J]. Holzforschung,1997,51(3):244-250.
    [78]田部浩三,御园生诚,小野嘉夫,等.新固体酸和碱及其催化作用[M].北京:化学工业出版社,1992.
    [79] Choudary B.M., Kantam M.L., Santhi P.L. New and econfriendly options for theproduction of speciality and fine chemicals [J]. Catalysis Today,2000,57(1/2)17-32.
    [80] Coluccia S., Boccuzzi F., Ghiotti G., et al. Infrared study of hydrogen adsoption onMgO, CaO and SrO [J]. Journal of the Chemical Society, Faraday Transactions,1982,78(1):2111-2119.
    [81]陈忠明,陶克毅.固体碱催化剂的研究进展[J].化工进展,1994(2):18-25.
    [82]朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社,2002.
    [83] Hattori H. Solid base catalysts: generation of basic sites and application to organicsynthesis [J]. Applied Catalysis A: General,2001,222(1/2):247-259.
    [84] Hattori H. Heterogeneous basic catalysis [J]. Chemical Reviews.1995,95(3):537-558.
    [85] Zhang G., Hattori H., Tanabe K. Aldol addition of acetone, catalyzed by solid basecatalysts: magnesium oxide, Lanthanum(Ⅲ) oxide and zirconium oxide [J]. AppliedCatalysis,1988,36(1/2):189-197.
    [86] Akutu K., Kabashima H., Seki T., et al. Nitroaldol reaction over solid base catalysts[J]. Applied Catalysis A: Journal,2003,247(1):65-74.
    [87]赵雷洪,郑小明,费金华.稀土氧化物固体碱催化剂的表面性质[J].催化学报,1996,17(3):227-231.
    [88] Zhang H., Qi R., Evans D.G., et al. Synthesis and characterization of a novelnano-scale magnetic solid base catalyst invoving a layered double hydroxidesupported on ferrite core [J]. Journal of Solid State Chemistry,2004,177(3):772-780.
    [89] Lee S.E., Kim J.S., Kennedy I.R., et al. Biotransformation of an organochlorineinsecticide, endosulfan by anabaena species [J]. Journal of Agricultural and FoodChemistry,2003,51(5):1336-1340.
    [90] Park M. Lee C.I., Lee E.J., et al. Layered double hydroxides as potential solid basefor beneficial remediation of endosulfan-contaminated soils [J]. Journal of Physicsand Chemistry of Solids,2004,65(2/3):513-513.
    [91] Cavani F., Trifiro F., Vaccari A. Hydrotalcite-type anionic clays: preparation,properties and applications [J]. Catalysis Today,1991,11(2):173-301.
    [92] Climent M.J., Corma A., Iborra S., et al. Activated hydrotalcites as catalysts for thesynthesis of chalcones of pharmaceutical interest [J]. Journal of Cata lysis,2004,221(2):474-482.
    [93] Climent M.J., Corma A., Iborra S., et al. Base catalysis for fine chemicals production:claisen-schmidt condensation on zeolites and hydrotalcites for the production ofchalcones and flavanones of pharmaceutical interest [J]. Journal of Catalysis,1995,151(1):60-66.
    [94] Hattori H. Heterogeneous basic catalysis [J]. Chemical Reviews,1995,95(3):537-558.
    [95] Bordawekar S.V., Doskocil E.J., Davis R.J. Microcalorimetric study of CO2and NH3adsorption on Rb-and Sr-modified catalyst supports [J]. Langmuir,1998,14(7):1734-1738.
    [96] Tanabe K., Holderich W.F. Industrial application of solid acid-base catalysts [J].Applied Catalysis A: General,1999,181(2):399-434.
    [97] Ono Y. Solid base catalysts for the synthesis of fine chemicals [J]. Jour nal ofCatalysis,2003,216(1/2):406-415.
    [98]陈嘉翔.制浆原理与工程[M].北京:中国轻工业出版社,1990.
    [99] Gratzl J.S. The chemical basis of pulp bleaching with oxygen, hydrogen peroxide andozone-a short review. Papier,1992,10A, V1-V8.
    [100]陈晓军,邱玉桂.纸浆氧漂过程中金属离子的作用与控制[J].华南理工大学学报(自然科学版).2000,25(2):29-34.
    [101]杨玲,李文俊.竹子氧碱法制浆工艺条件的探讨[J].纸和造纸.2005(2):56-58.
    [102]刘明友.马尾松硫酸盐浆高白度完全无氯漂白的研究[D].广州:华南理工大学,1997.
    [103]牛梅红.芦苇NS法深度脱木素及全无氯漂白的研究[D].天津科技大学.2002.
    [104] Ole L., Teder A. The kinetics of oxygen bleaching [J]. Tappi Journal,1979,62(12):43-46.
    [105] Guay D.F., Cole B.J.W., Fort R.C., et al. Mechanisms of oxidative degradation ofcarbohydrates during oxygen delignification. Part Ⅲ: Reaction of photochemicallygenerated hydroxyl radicals with1,5-anhydrocellobitol and cellulose [J]. Journal ofpulp and paper science,2002,28(7):217-221.
    [106]黄文荣,陈中豪. ECF和TCF漂白是造纸工业可持续发展的方向[J].中国造纸,2003,22(8):40-41.
    [107] Giere J. Jansbo K., Reitberger T. A study on the selectivity of bleaching withoxygen-containing species. Holzforschung,1989,43(6):391-396.
    [108] Yasumoto M. Matsumoto Y., Ishizu A. A model study on the degradation mechanismof carbohydrate during oxygen delignification [C].7thInternational Symposium onWood and Pulping Chemistry,1993,192-196.
    [109] Yasumoto M. Matsumoto Y., Meshisuta G. The role of peroxide species incarbohydrate degradation during oxygen bleaching. Part Ⅲ: effect of metal ions onthe reaction selectivity between lignin and carbohydrate model compounds [J].Journal of Pulp and Paper Science,1999,25(2):42-46.
    [110]黄干强,张曾,何翠萍,等.硫酸盐竹浆高压高温过氧化氢漂白[J].中华纸业,2003,24(5):28-30.
    [111]詹怀宇,张厚民.针叶木硫酸盐浆压力高温过氧化氢漂白的研究[J].中国造纸,1997(3):9-12.
    [112] Sun X.F., Sun R.C., Tomkinson J., et al. Isolation and characterization of lignins,hemicelluloses, and celluloses from wheat straw by alkaline peroxide treatment [J].Cellulose Chemistry and Technology,2003,37(3/4):283-30.
    [113] Seca A.M.L., Cavaleiro J.A.S., Domingues F.M.J., et al. Structural characterization ofthe lignin from the nodes and internodes of Arundo donax reed[J]. Journal of Agricultural and Food Chemistry,2000,48(3):817-824.
    [114]王丽娟,杨汝男.光谱在木素结构上的应用[J].黑龙江造纸,2004,(1):21-22.
    [115]付时雨.生物漂白过程木素结构的红外光谱分析[J].纤维素科学与技术,2000,8(2):30-35.
    [116] Xu Q., Qin M., Shi S., et al. Structural changes in lignin during the deinking of oldnewsprint with laccase-violuric acid system [J]. Enzyme and Microbial Technology,2006,39(5):969-975.
    [117]陈方,陈嘉翔.桉木木素结构特性[J].中国造学报,1994,9:80-86.
    [118] Sun J., Xu F., Sun X., et al. conparative study of lignins from ultrasomic irradiatedsugar-cane bagasse [J]. Polymer International,2004,53(11):1711-1721.
    [119] Evtuguin D.V., Neto C.P., Silva A.M.S., et al. Comprehensive study on the chemicalstructure of dioxane lignin from plantation eucalyptus globulus wood [J]. Journal ofAgricultural and Food Chemistry,2001,49(9):4252-4261.
    [120] J skel inen A.S., Sun Y., Argyropoulos D.S., et al. The effect of isolation method onthe chemical structure of residual lignin [J]. Wood Science and Technology,2003,37(2):91-102.
    [121] Sun Y, Argyropoulos D.S. A comparison of the reactivity and efficiency of oaonechlorine dioxide, dimethyldioxirane and hydrogen peroxide with residual kraft lignin[J] Holzforschung,1996,50:175-182.
    [122] Ramirez F. Comdensations of carbonyl compounds with phosphite esters [J]. Pureand Applied Chemistry,1964,9(2):337-370.
    [123] Argyropoulos D.S., Heitner C., Morin F.G.31P NMR spectroscopy in wood chemistry.Part Ⅲ. Solid state31P NMR of trimethyl phosphite derivatives of chromophores inmechanical pulp [J]. Holzforschung,1992,46(3):211-218.
    [124] Xu F., Sun R., Zhong X. Anatomy, ultrastructure and lignin distribution in cell wall ofcaragana korshinskii [J]. Abstracts of Papers of the American Chemical Society,2006,24(2):186-193.
    [125]付时雨,詹怀宇,何为.硫酸盐浆残余木素在漆酶/介体体系中的降解[J].华南理工大学学报(自然科学版),2002,30(12):30-36.
    [126] Lu F., Ralph J. Non-degradative dissolution and acetylation of ball-milled plant cellwalls: high-resolution solution-state NMR [J]. Plant Journal,2003,35(4):535-544.
    [127]张华,郭国宁,王娟,等.微波消解-电感耦合等离子体原子发射光谱法测定烟叶中多种元素[J].中国烟草学报,2009,15(1):12-15.
    [128]王小如.电感耦合等离子体质谱应用实例[M].北京:化学工业出版社,2005:102.
    [129] Sun X.F., Sun R.C., Sun J.X. Acetylation of sugarcane bagasse using NBS as acatalyst under mild reaction conditions for the production of oil sorption-activematerials [J]. Bioresource Technology,2004,95(3):342-350.
    [130] Crestini C., Argyropoulos D.S. Structural analysis of wheat straw lignin byquantitative31Pand2D NMR spectroscopy. The occurrence ofester bonds and-O-4substructures [J]. Journal of Agricultural and Food Chemistry,1997,45(4),1212-1219.
    [131] Granata A., Argyropoulos D.S.2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a reagent for the accurate determination of the uncondensed andcondensed phenolic moieties in lignins [J]. Journal of Agricultural and FoodChemistry,1995,43(6):1538-1544.
    [132] Jahan M.S., Chowdhury D.A.N., Isiam M.K. Characterization of lignin isolated fromsome nonwood available in Bangladesh [J]. Bioresource Technology,2007,98(2):465-469.
    [133] Faix O. Classification of lignins from different botanical origins by FT-IRspectroscopy [J]. Holzforschung,1991,45(Suppl.):21–27.
    [134] Hage R.E., Brosse N., Chrusciel L., et al. Characterization of milled wood lignin andethanol organosolv lignin from miscanthus [J]. Polymer Degradation and Stability,2009,94(10):1632-1638.
    [135] Liitia T.M., Maunu S.L., Hortling B., et al. Analysis of technical lignins by two-andthree-dimensional NMR spectroscopy [J]. Journal of Agricultural and FoodChemistry,2003,51(8):2136-2143.
    [136] Kilpelainen I., Ammalahti E., Brunow G., et al. Application of three-dimensionalHMQC-HOHAHA NMR spectroscopy to wood lignin, a natural polymer [J].Terahedron Letters,1994,35(49):9267-9270.
    [137] Ammalahti E., Brunow G., Bardet M., et al. Identification of side-chain structures inan poplar using three-dimensional HMQC-HOHAHA NMR spectroscopy [J]. Journalof Agricultural and Food Chemistry,1998,46(12):5113-5117.
    [138]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工出版社,2003.
    [139]康素敏,周金池.核磁共振波谱在木素结构研究中的应用[J].中国造纸,2012,31(10):58-63.
    [140] Argyropoulos D.S., Sun Y., Palus E. Isolation of residual kraft lignin in high yield andpurity [J]. Journal of Pulp and Paper Science,2002,28(2):50-54.
    [141] Pang C., Xie T., Lin L., et al. Changes of the surface structure of corn stalk in thecooking process with active oxygen and MgO-based solid alkali as a pretreatment ofits biomass conversion [J]. Bioresource Technology,2012,103(1),432-439.
    [142] Hatori H. Heterogeneous Basic Catalysis [J]. Chemical Reviews,1995,95(3):537-558.
    [143] Johansson E., Ljunggren S. The kinetics of lignin reactions during oxygen bleaching.IV. The reactivities of different lignin model compounds and the influence of metalions on the rate of degradation [J]. Journal of Wood Chemistry and Technology,1994,14(4):507-525.
    [144]陈晓军,邱玉桂.纸浆氧漂过程中金属离子的作用与控制[J].华南理工大学学报(自然科学版),2000,28(5):29-34.
    [145] Kaar W.E., Brink D.L. Simplified analysis of acid soluble lignin [J]. Journal of WoodChemistry and Technology,1991,11(4):465-477.
    [146] Wise L.E., Murphy M., D’Addiecs A.A. Chlorite holocellulose, its fraction andbearing on summative wood ananlysis and on studies on the hemicelluloses [J]. PaperTrade Journal,1946,122(2):11-19.
    [147] Browning B.L. Methods of Wood Chemistry [M]; Interscience Publishers: New York,1967, vol. II.
    [148] Samuel R., Foston M., Jaing N., et al. HSQC (heteronuclear single quantumcoherence)13C–1H correlation spectra of whole biomass in perdeuterated pyridiniumchloride–DMSO system: An effective tool for evaluating pretreatment [J]. Fuel,2011,90(9):2836-2842.
    [149] Martinez A.T., Rencoret J., Marques G., et al. Monolignol acylation and ligninstructure in some nonwoody plants: A2D NMR study [J]. Phytochemistry,2008,69(16):2831-2843.
    [150] Rencoret J., Marques G., Gutierrez A., et al. Isolation and structural characterizationof the milled-wood lignin from paulownia fortunei wood [J]. Industrial Crops andProducts,2009,30(1):137-143.
    [151] Zhang A., Lu F., Sun R., et al. Isolation of cellulolytic enzyme lignin from woodpreswollen/dissolved in dimethyl sulfoxide/N-methylimidazole [J]. Journal ofAgricultural and food Chemistry,2010,58(6):3446-3450.
    [152]宁丰收,陈嘉翔.广州清篱竹硫酸盐和烧碱-蒽醌法蒸煮过程中木素结构变化的研究[J].中国造纸,1987,6:11-18.
    [153] Gierer J. Formation and involvement of superoxide (O2-/HO2·) and hydroxyl (OH·)radicals in TCF bleaching process: A review [J]. Holzforschung,1997,51(1):34-46.
    [154] Ralling, Y.; Lucian, L.; Arthur, J. R.; Hasan, J. Oxygen delignification chemistry andits impact on pulp fibers [J]. Journal of Wood Chemistry Technology,2003,23(1):13-29.
    [155] Gierer J. Chemistry of delignification [J]. Wood Science and Technology,1986,20(4):1-33.
    [156] Gierer J.; Jansbo, K. Formation of hydroxyl radicals from hydrogen peroxide andtheir effect on bleaching of mechanical pulp [J]. Journal of Wood ChemistryTechnology,1993,13(4):561-581.
    [157]张学金,李友明,陆瑞江.纸浆碱性漂白体系中H2O2分解的若干认知[J].中国造纸.2009,28(12):66-73
    [158] Goh C.S., Tan K.T., Lee K.T., et al. Bio-ethanol from lignocelluloses: Status,perspectives and challenges in Malaysia [J]. Bioresource Technology,2010,101(13):4834-4841.
    [159] Kim S., Dale B.E. Global potential bioethanol production from wasted crops and cropresidues [J]. Biomass and Bioenergy,2004,26(4):361-375.
    [160] Lal R. World crop residues production and implications of its use as a biofuel [J].Environment International,2005,31(4):575-584.
    [161] Nigam P.S., Singh, A. Production of liquid biofuels from renewable resources [J].Progress in Energy and Combustion Science,2011,37(1):52-68.
    [162] Kumar P., Barrett D.M., Delwiche M.J., et al. Methods for pretreatment oflignocellulosic biomass for efficient hydrolysis and biofuel production [J]. IndustralEngineering&Chemistry Research.2009,48(8):3713-3729.
    [163] Zhu J.Y., Pan X.J. Woody biomass pretreatment for cellulosic ethanol production:Technology and energy consumption evaluation [J]. Bioresource Technology,2010,101(13):4992-5002.
    [164] Gierer J. Chemistry of delignification [J]. Wood Science and Technology,1985,19(4):289-312.
    [165] Gellerstedt G., Agnemo R.The reactions of lignin with alkali hydrogen peroxide. PartШ. The oxidation of conjugated carbonyl structures [J]. Acta Chemica Scandinavica,1980, B34:275-280.
    [166] Chang S.T., Chang H.T. Comparisons of the photostab ility of esterfied wood [J].Polymer Degradation and Stability,2001,71(2):261-266.
    [167] Gidley M.J., Bociek S. M.13C CP/MAS NMR studies of amylase inclusioncomplexes, cyclodextrins, and the amorphous phase of starch granules: Relationshipsbetween glycosidic linkage conformation and solid-state13C chemical shifts [J].Journal of Agricultural and Food Chemistry,1988,110(12):3820-3829.
    [168] Bardet M., Foray M.F., Tran Q.K. High-resolution solid-state CPMAS NMR study ofarchaeological woods [J]. Ananlytical Chemistry,2002,74(17):4386-4390.
    [169]刘传富,孙润仓,叶君.固体核磁CP/MAS13C-NMR在植物纤维原料研究中的应用[J].2005,20(2):184-188.
    [170] Love G.D., Snape C.E., Jarbis M.S. Comparison of leaf and stem cell-wallcomponents in barley starw solid-state13C NMR [J]. Phytochemistry,1998,49(5):1191-1194.
    [171] Jarvis M.C., McCann M.C. Macromolecular biophysics of the plant cell wall:concepts and methodology [J]. Plant Physiology Biochemistry,2000,38(1/2):1-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700