用户名: 密码: 验证码:
车载电动空调用基于滑模观测器的无传感器PMSM控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着电力电子技术、微处理器技术、计算科学和现代控制理论的飞速发展,促进了汽车电子技术的不断进步,许多传统的液压或燃气系统逐渐被电子系统所替代,后者的性能也逐渐接近甚至超越了前者,汽车的全电气化控制已成为一种趋势。论文在此背景下,针对国内缺少成熟的汽车电动空调技术,开展车载电动空调用永磁同步电机无位置传感器控制系统研究。
     永磁同步电机因其体积小、寿命长、噪音低、效率高等优点,非常适合于车载空调系统中,但因为压缩机中很难安装位置传感器,需要使用无位置传感器控制技术,因而复杂的控制算法成为应用的瓶颈。文章首先在绪论部分对永磁同步电机无传感器控制技术进行了概述,对现有的主流控制方法和其优缺点进行分析后,选择基于滑模观测器的无传感器控制技术,该控制策略适用于高速运行下的电机调速,鲁棒性好、控制算法易于工程实现。
     在分析了滑模变结构控制理论和永磁同步电机的数学模型后,建立了一套基于滑模观测器的无位置传感器矢量控制策略,给出了详细的数学表达,并在MATLAB/SIMULINK下搭建了仿真模型进行仿真研究,分析了系统在动态和稳态条件下滑模观测器输出的转子估计位置和实际位置,并就滑模增益参数的选择问题进行了仿真研究,为实际系统设计提供了理论依据。
     然后以Freescale DSP 56F8346为控制核心,设计了一套永磁同步电机控制系统,详细阐述了系统的软硬件设计。对主电路、驱动电路、采样及滤波放大电流、以及DSP控制板设计做了详细的阐述。从小数的定标、滑模观测器数字化实现、以及设计规范和流程图方面介绍了系统的软件设计,并简单介绍了如何使用FreeMaster搭建在线监视及调试系统。
     最后,针对论文提出的控制算法和软硬件平台进行了实验研究。首先利用一台装有位置传感器的永磁同步电机进行软件的调试和滑模算法的验证,给出了滑模观测器输出的转子估计位置和传感器输出的转子实际位置对比波形,验证了软硬件系统的可行性和可靠性。然后针对永磁同步电机驱动一体化空调样机进行了实验,详细分析了电机的启动过程和启动参数的设置,然后就滑模增益的选取进行了实验研究,最后给出了压缩机接上空调系统后,在不同转速下定子电流波形。实验表明该控制系统已初步达到样机要求,为进一步的实验打下了基础。
In recent years, with the rapid development of power electronics technology, microprocessor technology, computing science and modern control theory, automotive electronics has developed significantly. Many traditional hydraulic systems and gas systems has been replaced by electric systems whose performance are generally approaching to or even over the traditional ones. The all-electric control of vehicle becomes a trend. According to the domestic immature technology of electric air-condition for vehicle, the thesis aims to research & develop a sensorless PMSM control system based on SMO (Sliding Mode Observer) for electric air-condition.
     PMSM (Permanent Magnet Synchronous Motor) is suitable for the automobile air-condition system because of its attractive characteristics such as small size, long life, low noise, high efficiency and so on so forth. But the application of PMSM to air-condition system is not easy because the position sensors are limited to install in the compressor which leads to a more complicated control method called sensorless control technology while this technology is the bottleneck of engineering application. At the beginning of the thesis, the brief introduction of sensorless control technology is presented. The mainstream sensorless PMSM control methods are analyzed and compared. Then the method based on SMO is selected which is suitable and robust for high speed application, and easy for engineering application.
     After analyzing and introducing of the sliding mode variable structure theory and the mathematic model of PMSM, the control strategy based on SMO and its math expression are presented. The simulation model in MATLAB/SIMULINK is established, in which the real rotor position and the estimated rotor position calculated by SMO under dynamic and static state are analyzed. Besides, the principle of sliding gain selection is raised. The simulation provides the theoretical foundation.
     Then the real PMSM control system based on the Freescale DSP 56F8346 is designed in the thesis, in which the main circuit, driving circuit, sample & amplified filter circuit, and the DSP control board are presented in details. Subsequently, from the perspective of the fractional numbers representation, the digital realization of SMO, software design standard and flow chart, the control system software design is proposed. Besides, the paper introduces the on-line monitoring and debugging system based on FreeMaster.
     Finally, according to the control strategy and the software-hardware platform proposed in the thesis, the experiment study is presented. Firstly, a PMSM with rotor position sensors is used to debug the software and verify the algorithm, in which the real rotor position from sensors and the estimated rotor position calculated by SMO algorithm are compared to testify the feasibility of this control system. Then an integration air-condition prototype is experimented. Through analyzing of motor starting process, the suitable starting parameters are set. Then the detailed experiments with different sliding gain are conducted. At last, the stator currents in different operation condition are presented. The experiment results indicate that the sensorless control system proposed by the thesis preliminarily meets the qualification of prototype which lays a solid foundation for the further experiment.
引文
[1]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社, 2002.
    [2]曹中义.电动汽车空调系统解决方案.设计与研究[J]. 2008, 3 : 1-4.
    [3]马国远,史保新,陈观生等.电动汽车热泵空调系统的试验研究[J].低温工程, 2000, (4) : 40- 41.
    [4]孔德玲,赵兰萍,杨志刚.汽车空调的研究现状及发展前景[J]. 2008, 310 (5) : (10-11,28)
    [5]中国汽车电机网,汽车空调电机市场分析及发展预测[E]. 2007-06-15. http://www.cmwin.com/CBPResource/StageHtmlPage/A281/A281200752819333625.htm
    [6]宋萍.基于无位置传感器的永磁电动机在变频空调中应用的研究进展[J].暖通空调, 2005, (4) : 27~30.
    [7] L. A. Jones, J. H. Lang. A State Observer for the Permanent-magnet Synchronous Motor [J]. IEEE Transactions on Industrial Electronics. 1989, 36 (3) : 374~382.
    [8] R. Wu, G R. Slemon. A Permanent Magnet Motor Drive without a Shaft Sensor[J]. Record of Industry Applications Society Annual Meeting. 1990 : 7~12.
    [9]梁艳,李永东.无传感器永磁同步电机矢量控制系统概述[J].电气传动, 2003 (4) : 4~9.
    [10]王丽梅,郭庆鼎.基于转子凸极跟踪的永磁同步电动机转子位置的自检测方法[J].电工技术学报, 2001, (2) : 14~17.
    [11]张剑.新型无位置传感器永磁同步电动机状态估计及其误差补偿方法研究[J].电工技术学报, 2006, (1) : 8~11.
    [12]刘宇,刘杰,戴丽,喻春明.基于滑模估计器和卡尔曼滤波的PMSM速度估计[J].系统仿真学报, 2008, 20(1) : 12~15.
    [13]于海生,赵克友,郭雷,王海亮.基于端口受控哈密顿方法的PMSM最大转矩/电流控制[J].中国电机工程学报, 2008, 26(8) : 22~25.
    [14] P. L. Jansen, D. Lorenz. Robert. Transducerless Field Orientation Concepts Employing Saturation Induced Saliencies in Induction Machines [C]. IEEE IAS Conf. Rec. 1995 : 174~181.
    [15] Coney, J. Matthew, Lorenz. Rotor Position and Velocity Estimation for a Permanent Magnet Synchronous Machine at Standstill and High Speeds [C]. IEEE-IAS Annual Meeting. 1996:36~41
    [16] SHOUSE K. R., TAYLOR D. G, Sensorless Velocity Control of Permanent Magnet Synchronous Motors [C] . Proceedings of the IEEE Conference on Decision and Control, 1994 : 1844~1849.
    [17] LOW T. S., LEE T. H., CHANG K. T., A Nonlinear Speed Observer for Permanent MagnetSynchronous Motors [J]. IEEE Trans. Ind., 1993, 40(3) : 307~316.
    [18] KIM J. S., SUL S. K. New Approach for High Performance PMSM Drives without Rotational Position Sensors [J]. IEEE Transactions on Power Electronics, 1997, 12(5) : 904~911.
    [19] FU Minghua, XU Longya. A Novel Sensorless Control Technique for Permanent Magnet Synchronous Motor (PMSM) Using Digital Signal Processor (DSP) [C]. IEEE Aerospace and Electronics Conference, 1997 : 403~408.
    [20] French C, Acarnley P. Control of Permanent Magnet Motor Drives Using a New Position Estimation Technique [J]. IEEE Trans. Ind. 1996, 32 (5) : 1089-1097.
    [21] Senjyu T, Shimabukuro T, Uezato K. Vector Control of Permanent Magnet Synchronous Motors Without Position and Speed Sensors [C]. IEEE PESC Record, 1995, (2) : 759-765.
    [22] Matsui Nobuyuki, Shigyo Masakance. Brushless DC Motor Control without Position and Speed Sensors [J]. IEEE Trans. on IA. 1992, 28 (1) : 120~127.
    [23] Solsona J., Valla M. I., Muravchik C., A Nonlinear Reduced Order Observer for Permanent Magnet Synchronous Motors [J]. IEEE Trans. Ind. 1996, 43 (4) : 492~497.
    [24] Kan-Ping Chin, Zong-Hwang Hong, Hong-Ru Wang. Shaftsensorless Control of Permanent Magnet Synchronous Motors Using a sliding Observer [C]. Proceedings of the 1998 IEEE International Conference. 1998, (1) : 388~392
    [25] Jun Hu, Dong-qi Zhu, Bin Wu. Permanent Magnet Synchronous Motor Drive Without Mechanical Sensors [C]. IEEE Electrical and Computer Engineering Conference, 1996, (2) : 603~606.
    [26]雷华,王明渝.基于神经网络的速度估计方法[J].重庆大学学报, 2004, (2) : 107~110.
    [27] Jui-Hong Horng, Neural Adaptive Tracking Control of a DC Motor [J]. Information Sciences, 1999, vo1.118 : 1~13
    [28]陈伯时.电力拖动自动控制系统[M]。北京:机械工出版社, 2005.
    [29] A. Utkin, J. Guldner, J. X. Shi. Sliding Mode Control in Electromechanical Systems [M]. Taylor & Francis. 1999 : 37~45.
    [30]王丰尧.滑模变结构控制[M].机械工业出版社, 1998, 2~4.
    [31]刘金棍.滑模变结构MATLAB仿真.北京:清华大学出版社, 2005.
    [32] J. J. Slotime, S. S. Sastry. Tracking Control of Nonlinear Systems Using Sliding Surfaces with Application to Robot Manipulator. International Journal of Control. 1983, 38(2) : 465-492.
    [33]高为炳.变结构控制的理论及设计方法.科学出版社, 1996 : 50-62.
    [34] S. W. Su, S. V. Drakunov, U. Ozguner. Sliding Mode with Chattering Reduction in Sampled Data Systems. Proceedings of the 32nd IEEE Conference on Decision and Control. 1993 : 2452-2457.
    [35] P. Kachroo, M. Tomizuka. Chattering Reduction and Error Convergence in the Sliding ModeControl of a Class of Nonlinear Systems. IEEE Transaction on Automatic Control. 1996, 41 (7) : 1063-1068.
    [36] H. Kawamura, K. Itoh, Sakamoto. Chattering Reduction of Distubance Observer Based Sliding Mode Control. IEEE Transactions on Industry Application. 1994, 30 (2) : 456-461.
    [37] G. Bartolini, A. Pisano, E. Punta, E. Usai. A Surver of Applications of Second-order Sliding Mode Control to Mechanical Systmes. International Journal of Control. 2003, 76 (9) : 875-892.
    [38] C. L. Hwang. Sliding Mode Control Using Time-varying Switching Gain and Boundary Layer for Electrohydraulic Position and Differential Pressure Control. IEE Proceedings-control Theory and Applications. 1996, 143 (4) : 325-332.
    [39] Q. P. Ha, Q. H. Nguyen, D. C. Rye. Fuzzy Sliding-Mode Controllers with Application. IEEE Transactions on Industrial Electronics. 2001, 48 (1) : 38-41.
    [40] H. Morioka, K. Wada, A. Sabanovic, K. Jezernik. Neural Network Based Chattering Free Sliding Mode Control. Processdings of the 34th SICE Annual Conference. 1995 : 1303-1308.
    [41] K. C. Ng, D. Y. Li, J. Murray-Smith. Genetic Algorithms Applied to Fuzzy Sliding Mode Controller Design. Genetic Algorithms in Engineering Systems, Innovations and Application, First International Conference. 1995 : 220-225.
    [42] P. Vas. Electrical machines and drives: a space-vector theory approach. Oxford University Press, 1993.
    [43]陈晓青.高性能交流伺服系统的研究与开发.浙江大学博士论文. 1996 : 33-36.
    [44]胡军,朱东起,高景德.滑模观测器及其在无机械传感器永磁同步电机驱动系统的应用.清华大学学报, 1997, 37 (1) : 13-17.
    [45] Gu Jie, Zhang Yu, Wu Zhigan, Ying Jianping. Rotor position and velocity estimation for PMSM based on sliding mode observer [C]. Conference Proceedings-IPEMC 2004,4th International Power Electronics and Motion Control Conference, 2004 : 1351~1355.
    [46]基于改进滑模观测器的SPMSM无位置传感器矢量控制系统
    [47]金树强,基于改进滑模观测器的SPMSM无位置传感器矢量控制系统,电气传动自动化, 2008, 30 (3) : 15~19.
    [48]杨贵杰,孙力.空间矢量脉宽调制方法的研究.中国电机工程学报. 2001,21(10) : 79~83
    [49]杨志忠,高锡秋,郭顺华.电磁干扰的抑制方法.电力自动化设备, 1994 (3) : 4~9.
    [50] Howard W. Johnson, Martin Graham. High-speed Digital Design [M]. Prentice Hall PTR. 2005.
    [51] Processor Expert CodeWarrior Plug-in for Freescale User Manual, UNIS, 2005.
    [52] Free Master Software Users Manual, Freescale Semiconductor, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700