用户名: 密码: 验证码:
超声楔形键合界面连接物理机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电子、光电子系统中芯片级封装超声互连接头界面接合机制问题严重困扰着超声键合设备和技术的创新方向,也直接影响着元器件性能和可靠性。因此,解析超声键合接头界面特征并厘清超声对接合过程所起到的本质作用对于指导封装互连设备升级、提高超声键合技术能力和改善元器件功能及寿命都具有重大意义。
     本文针对常温超声楔形键合25μm Al-1wt.%Si引线与薄Au层Au/Ni/Cu、厚Au层Au/Ni/Cu、Cu三种焊盘之间形成的接头,原位测量了接头电阻;揭示了接头接合部连接物理过程和特征;考察了Au/Al和Al/Au系统高温老化时接头界面演变特点;运用聚焦离子束-透射电子显微镜(FIB-TEM)方法,在纳观尺度上给出了接头界面构成情况,在原子尺度上观察了界面接合特征;基于固相扩散反应原理,全面阐释了超声楔形键合接头界面弥散有纳米Au8Al3颗粒的固溶体形成过程中超声振动作用的物理实质。
     设计了原位电阻测试电路,分别考察对比了三种焊盘所形成接头的电阻变化率。随着键合参数增大,接头电阻呈先减小后增大的趋势,最大变化率超过+10%,并且具有周期性波动特点。接头界面有效连接面积和接头上引线横截面变形量的变化分别是造成接头电阻波动性和整体增大趋势的原因。接头电阻与接头拉力测试结果具有很好的互补性,是一个拥有实际物理意义的无损评价接头连接质量的新指标。接头电阻性能的波动性变化特点在一定程度上揭示了超声楔形键合接合过程的周期性特征。
     机械剥离法和化学腐蚀法去除引线后,利用SEM观察焊盘上接合部印痕,结果发现,表面较硬的薄Au层Au/Ni/Cu焊盘上方向性接合痕特征非常明显,纵向(沿超声振动方向)和在其上的横向(垂直于超声振动方向)接合痕分布具有空间立体特征和周期性规律,它们分别是超声振动和引线径向塑性流动的作用结果;相对较软的其它两种焊盘上接合痕方向性特征不明显。
     利用高温老化试验方法,对比了Au/Al和Al/Au两系统楔形接头界面演化过程,反演了超声楔形键合接头接合过程开始于接合部周边,尤其是跟部和趾部的特点。
     采用FIB制备了TEM试样,高分辨透射电子显微镜下观察分析了超声楔形键合接头界面的接合特征。纳观尺度上的TEM明场像和暗场像表明接头界面存在扩散分层现象;EDS线分析证明Al、Au两元素之间发生了互扩散,距离不超过100nm;CBED衍射花样标定结果显示扩散反应层内生成了Au8Al3中间相;原子尺度上的高分辨像揭示了该中间相的晶粒尺度仅有几个纳米,并且离散地分布于扩散反应层内,同时,Al元素向Au层内的扩散具有垂直于界面方向上的阶梯式波浪形的W型扩散和平行于界面方向上的明暗相间干涉花样式的F型扩散的特征。近界面引线和反应层内存在大量孪晶。超声功率能够明显促进界面扩散反应,但是也会造成反应生成层与Au层之间界面的剥离效应。
     给出了超声楔形键合接合过程和界面特征的模型。根据扩散反应原理,分别分析了热、摩擦、塑性变形和超声(声量子和振动)对接头形成所发挥的作用。综合理论分析和试验结果发现,超声振动效应(振动去膜、摩擦生热、增强塑性、快速剪切流变、搅拌)为接头界面元素扩散提供快速扩散通道的同时,也为较低温度下的扩散提供了驱动能量。
Interfacial joining physical mechanism of the ultrasonic wedge bonding has become to be the key issue for severely limiting the innovation for the ultrasonic bonding equipments and techologies, and directly affecting the qualities and reliabilities of the electronic components and devices in chip-level packaging in the micro-electronic and optic-electronic systems. Therefore, clarifying the joining characteristics of the ultrasonic bond interface and understanding the effects of acoustic on the bonding process have important significance on guiding the upgrade of the interconnection equipments in electronic packaing, optimizing the ultrasonic bonding technologies and improving the functions and life of the components and devices.
     In this paper, the Al-1wt.%Si wire with 25μm diameter was ultrasonic wedge bonded on thin Au layer Au/Ni/Cu, thick Au layer Au/Ni/Cu and Cu pad at atmosphere temperature. The bond resistance was in-situ measured; the physical process and characteristics on the bond footprints were uncovered; also, the interfacial evolution in Au/Al and Al/Au systems was investigated based on high temperature aging method; at the same time, by using the focused ion beam-transmission electron microscopy (FIB-TEM), nano-scale constructions of the bond interface were presented and atomic-scale characterization of the bond interface was observed. According to the theories of the solid-state reaction diffusion, the function of the ultrasonic vibrations during the ultrasonic wedge bonding process for the formation of interfacial solid solutions added with discontinuous nano Au8Al3 particles was given.
     To evaluate the bond properties, the circuit of in-situ resistance measurement was designed. The resistance variations of the bonds obtained with the three kinds of pads were measured. It was found that with the increase of the bonding parameters, the bond resistance firstly decreased and then increased rapidly, and the maximum ratio was above +10%, furthermore, the curves possessed periodical features. The real contact area of the bond interface and the cross-sectional deformation of the bond wire were the causations respectively for the fluctuation and wholly increase of the resistance. Compared with pull force method, this factor was complementary with the pull force and had real physical meaning to evaluate the bond properties. The fluctuation of the bond resistance also reflected the periodic features of the ultrasonic bonding process.
     By mechanically peeling and chemically etching the bond wire away, the footprints on the bond pad were observed under SEM. It was found that directional joint marks were evident on the thin Au layer Au/Ni/Cu pad with a relatively hard surface. The longitudinal (along ultrasonic vibration directions) and the above lateral (perpendicular to the ultrasonic vibration) joint marks possessed stereo and periodic features. They were ascribed to the ultrasonic vibration and lateral plastic flow of the bond wire, respectively. However, the directional features were unobvious for the other two pads with relatively softer surfaces.
     By using the high temperature aging method, the evolution processes of the bond interfaces in the Au/Al and Al/Au systems were compared, and certificated that the actual joining area started from the bond periphery, especially at the bond heel and toe.
     To analyze the interfacial characteristics of the bond cross-section, the TEM samples were prepared by FIB equipments. In nano-scale, the interfacial layered structures were observed on TEM bright field images (BFI) and dark field images (DFI); the interdiffusion distance between elemental Al and Au was measured and the intermediate phase of Au8Al3 among the reactant layer was identified by convergent beam electron diffraction (CBED). In atomic scale, the high resolution electron microscope (HREM) images showed that the intermediate phase was with a diameter of a few nanometers and distributed discontinuously. At the same time, the diffusion of elemental Al into Au layer has evident features: multistep waveform W type diffusion along the direction perpendicular to the bond interface and interference patterns with dark and bright bars F type diffusion along the direction parallel to the bond interface. Large amounts of crystal twins were observed in the bond wire near the interface and among the reactants. Increasing the ultrasonic power enhanced the diffusion process, and also made the interface of the reactants and the Au layer overburdened.
     Based on the experimental results, the models of the ultrasonic wedge bonding process and the interfacial bonding characteristics were illustrated. The effects of the heat, friction, plastic deformation and ultrasonic (phonon and vibration) on the formation of the metallurgical bonds were analyzed one by one. Combining the theoretical analysis and experimental results, the secondary effects of the ultrasonic vibration, such as removing the oxides and contaminants away, producing friction heat, enhancing plasticity of the bond wire, producing rapid shear strain/stress flow in the bond wire and interface, stirring the plastic and viscous bonding couples at local interface and so on, provided not only the fast diffusion path, but also the activation energy for the elemental interdiffusion at bond interface at relatively lower temperature.
引文
1 G. G. Harman. Wire Bonding in Microelectronics: Materials, Processes Reliability and Yield. 2nd Ed. McGraw-Hill, 1997:1~19
    2 B. L. Gehman. Bonding Wire Microelectronic Interconnections. IEEE Transactions on Components, Hybrids, and Manufacturing Technology. 1980,3( 3):375~383
    3 J. Qi, N. C. Huang, M. Li, D. M. Liu. Effects of Process Parameters on Bondability in Ultrasonic Ball Bonding. Scripta Materialia. 2006,54:293~297
    4 F. D. Baldwin, in: R. R. Tummala. Fundamentals of Microsystems Packaging. McGraw-Hill, 2001:342~397
    5 J. N. Antonevich, R. E. Monroe. Fundamental Studies of Ultrasonic Welding. Welding Journal Research Supplement. 1960,39:331~341
    6 P. M. Uthe. Variables Affecting Weld Quality in Ultrasonic Aluminum Wire Bonding. Solid State Tech. 1969:72~77
    7 B. Langenecker. Effects of Ultrasound on Deformation Characteristics of Metals. IEEE Trans. Sonics and Ultrasonics. 1966,SU-13:1~8
    8 M. Mayer, O. Paul, and H. Baltes. In-situ Measurement of Stress and Temperature under Bonding Pads during Wire Bonding Using Integrated Microsensors. Proc. 2nd International Conference of Emerging Microelectronic and Interconnection Technology EMIT’98. Bangalore, India, 1998:129~133
    9 J. R. Ho, C. C. Chen, C. H. Wang. Thin Film Thermal Sensor for Real Time Measurement of Contact Temperature during Ultrasonic Wire Bonding Process. Sensors and Actuators A. 2004,111: 188~195
    10 G. G. Harman, J. Albers. The Ultrasonic Welding Mechanism as Applied to Aluminum-and Gold-Wire Bonding in Microelectronics. IEEE Trans. on Parts, Hybrids, and Packaging. 1977,3(4):406~412
    11 V. H. Winchell, H. M. Berg. Enhancing Ultrasonic Bond Development. IEEE Trans. on Components, Hybrids, and Manufacturing Technology. 1978,1(3): 211~219
    12 Y. Takahashi, M. Inoue. Numerical Study of Wire Bonding Analysis ofInterfacial Deformation between Wire and Pad. ASME Journal of Electronic Packaging. 2002,124:27~36
    13 K. C. Joshi. The Formation of Ultrasonic Bonds between Metals. Welding Journal. 1971,50:840~848
    14 G. G. Harman, K. O. Leedy. An Experimental Modal of the Microelectronic Wire Bonding Mechanism. 10th Annu. Pro. Reliability Physics Symposium. Las Vegas, NE.1972:49~56
    15 A. Schneuwly, P. Gr?ning, L. Schlapbach, G. Müller. Bondability Analysis of Bond Pads by Thermoelectric Temperature Measurements. Journal of Electronic Materials. 1998,27:1254~1261
    16 P. Gr?ning, P. Schwaller, A. Schneuwly, L. Schlapbach. Thermoelectric Measurements for Bondability Analysis of Bond Pads: a New Concept for a Bondability Analyzer. Surf. Interface Anal. 1999,28:191~194
    17 P. Schwaller, P. Gr?ning, A. Schneuwly, P. Boschung, E. Müller, M. Blanc, L. Schlapbach. Surface and Friction Characterization by Thermoelectric Measurements during Ultrasonic Friction Processes. Ultrasonics. 2000,38: 212~214
    18谢敬华,李小平,范良志等.提高引线键合机超声系统性能的若干因素的分析.现代电子技术. 2003,5(3):65~67
    19韩为民.键合机中超声波的基本控制原理及方法.电子工业专用设备. 2003,8(5):21~26
    20 C. Chen, L. Yan, E. S. Kong, Y. Zhang. Ultrasonic Nano welding of Carbon Nanotubes to Metal Electrodes. Nanotechnology. 2006,17:2192~2197
    21 S. W. Chan. Direct TEM Observation of the Welding of Asperities between Two Single-Crystal Gold Films. IEEE Trans. on Components, Hybrids, Manufacturing Technology. 1989,12(1):39~42
    22 N. Zhou, X. Li, N. J. Noolu. A Footprint Study of Bond Initiation in Gold Wire Crescent Bonding. IEEE Trans. on Components Packaging Technology. 2005,28(4):810~816
    23 I. Lum, M. Mayer, Y. Zhou. Footprint Study of Ultrasonic Wedge-Bonding with Aluminum Wire on Copper Substrate. Journal of Electronic Materials. 2006,35(3):433~442
    24 I. Lum, J. P. Jung, Y. Zhou. Bonding Mechanism in Ultrasonic Gold Ball Bonds on Copper Substrate. Metallurgical and Materials Transactions A. 2005,36A:1279~1286
    25 C. D. Breach, F. Wulff. New Observation on Intermetallic Compound Formation in Gold Ball Bonds: General Growth Patterns and Identification of Two Forms of Au4Al. Microelectronics Reliability. 2004,44(6):973~981
    26 A. Coucoulas. Ultrasonic Welding of Aluminum Leads to Tantalum Thin Films. AIME. Trans. on Met. Soc. 1966,6:587~589
    27 J. L. Chevalier, D. F. Gibbons, L. Leonard. High-Frequency Fatigue in Aluminum. Journal of Apply Physics. 1972,43(1):73~77
    28 S. Murali, N. Srikanth, Charles J. Vath III. Grains, Deformation Substructures, and Slip Bands Observed in Thermosonic Copper Ball Bonding. Materials Characterization. 2003,50:39~50
    29 N. Srikanth, S. Murali, Y. M. Wong, Charles J. Vath III. Critical Study of Thermosonic Copper Ball Bonding. Thin Solid Films. 2004,462-463: 339~345
    30 S. Murali, N. Srikanth, Y. M. Wong, Charles J. Vath III. Fundamentals of Thermo-Sonic Copper Wire Bonding in Microelectronics Packaging. Journal of Materials Science. 2007,42:615~623
    31 U. Geiβler, S. R. Martin, K. D. Lang, H. Reichl. Investigation of Microstructure Processes during Ultrasonic Wedge/Wedge Bonding of AlSi1 Wires. Journal of Electronic Materials. 2006,35(1): 173~180
    32计红军.超声楔焊键合物理过程及其规律研究.哈尔滨工业大学硕士学位论文. 2005:34~42
    33 J. E. Krzanowski. A Transmission Electron Microscopy Study of Ultrasonic Wire Bonding. IEEE Trans. on Components, Hybrids and Manufacturing Technology. 1990,13(1):176~181
    34 H. Kreye. Melting Phenomena in Solid-State Welding Process. Welding Journal. 1977,56(5):154~158
    35 R. D. Mindlin. Compliance of Elastic Bodies in Contact. ASME J. Appl. Mech. 1949,16:259~268
    36 Y. R. Jeng, J. H. Horng. A Microcontact Approach for Ultrasonic Wire Bonding in Microelectronics. ASME Trans. J. Tribol. 2001,123:725~731
    37 I. Jeon. The Study on Failure Mechanisms of Bond Pad Metal Peeling: Part B–Numerical Analysis. Microelectronics Reliability. 2003,43: 2055~2064
    38 F. Wulff, C. D. Breach, K. Dittmer. Crystallographic Texture of Drawn Gold Bonding Wires Using Electron Backscattered Diffraction (EBSD). Journal of Materials Science Letters. 2003,22:1373~1376
    39 C. M. Li, P. Yang, D. M. Liu, M. Hung, and Ming Li. A Preliminary EBSD Study of Microstructures Evolution during Au Stud and Flip Chip Thermosonic Bonding. IEEE 2006 7th International Conference on Electronics Packaging Technology. Aug.26-29, Shanghai, China. 2006: 96~100
    40 C. M. Li, P. Yang, D. M. Liu, N. C. Huang, M. Li. A Preliminary Electron Backscatter Diffraction Study of Microstructures and Microtextures Evolution during Au Stud and Flip Chip Thermosonic Bonding. Journal of Electronic Materials. 2007,36(5):587~592
    41李春梅,杨平,刘德明,毛卫民.微电子封装中热超声金丝球键合过程的组织及织构.中国体视学与图像分析. 2005,10(4):247~252
    42 A. Karpel, G. Gur, Z. Atzmon, W. D. Kaplan. TEM Microstructural Analysis of As-Bonded Al-Au Wire-bonds. Journal of Materials Science. 2007,42:2334~2346
    43 A. Karpel, G. Gur, G. Gur, Z. Atzmon, W. D. Kaplan. Microstructural Evolution of Gold-Aluminum Wire-Bonds. Journal of Materials Science. 2007,42:2347~2357
    44 J. Li, L. Han, J. Duan, J. Zhong. Interface Mechanism of Ultrasonic Flip Chip Bonding. Applied Physics Letters. 2007,90:242902~242904
    45 J. H. Li, L. Han, J. Zhong. Observation on HRTEM Features of Thermosonic Flip Chip Bonding Interface. Materials Chemistry and Physics. 2007,106:457~460
    46 J. H. Li, L. Han, J. Zhong. Microstructural Characteristics of Au/Al Bonded Interfaces. Materials Characterization. 2007,58(2):103~107
    47 Y. L. Seng. Characterization of Intermetallic Growth for Gold Bonding and Copper Bonding on Aluminum Metallization in Power Transistors. 2007 9th Electronics Packaging Technology Conference. Dec.10-12, Singapore, Singapore. 2007:731~736
    48洪守玉.微电子器件铜丝球焊工艺及键合行为研究.哈尔滨工业大学硕士学位论文. 2005,29~42
    49 S. Murali, N. Srikanth, Charles J. Vath III. An analysis of Intermetallics Formation of Gold and Copper Ball Bonding on Thermal Aging. Materials Research Bulletin. 2003,38:637~646
    50 F. Oldervoll, F. Strisland. Wire-bond Failure Mechanism in Plastic Encapsulated microcircuits and Ceramic Hybrids at High Temperatuers. Microelectronics Reliability. 2004,44(6):1009~1015
    51 N. Noolu, N. Murdeshwar, K. Ely, J. Lippold, W. Baeslack III. Phase Transformations in Thermally Exposed Au-Al Ball Bonds. Journal of Electronic Materials. 2004,33(4):340~352
    52 N. J. Noolu, N. M. Murdeshwar, K. J. Ely, J. C. Lippold, W. A. Baeslack III. Partial Diffusion Reactions and Associated Volume Changes in Thermally Exposed Au-Al Ball Bonds. Metallurgical and Materials Transactions A. 2004,35A:1273~1280
    53 H. J. Kim, J. S. Cho, Y. J. Park, J. Lee, K. W. Paik. Effects of Pd Addition on Au Stud Bumps/Al Pads Interfacial Reactions and Bond Reliability. Journal of Electronic Materials. 2004,33(10):1210~1218
    54 M. H. Lue, C. T. Huang, S. T. Huang, K. C. Hsieh. Bromine-and Chlorine-Induced Degradation of Gold-Aluminum Bonds. Journal of Electronic Materials. 2004,33(10):1111~1117
    55 G. G. Harman, C. E. Johnson. Wire Bonding to Advanced Copper, Low-k Integrated Circuits, the Metal/Dielectric Stacks, and Materials Considerations. IEEE Transactions on Components and Packaging Technologies. 2002,25(4):677~683
    56 C. Tan, W. Hee, R. D. Abdul. Mechanical and Electrical Properties of Au-Al and Cu-Al Intermetallics Layer at Wire Bonding Interface. Journal of Electronic Packaging. 2003,125:617~620
    57 S. Murali, N. Srikanth, C. J. Vath III. Effect of Wire Size on the Formation of Intermetallics and Kirkendall Voids on Thermal Aging of Thermosonic Wire Bonds. Materials Letters. 2004,58:3096~3101
    58 T. Uno, K. Tatsumi. Thermal Reliability of Gold-aluminum Bonds Encapsulated in Biphenyl Epoxy Resin. Microelectronics Reliability.2000,40: 145~153
    59 H. S. Chang, K. C. Hsieh, T. Martens, A. Yang. Wire-bond Void Formation during High Temperature Aging. IEEE Trans. on Components and Packaging Technologies. 2004,27(1):155~160
    60 X. R. Zhang, T. Y. Tee. Numerical and Experimental Correlation of High Temperature Reliability of Gold Wire Bonding to Intermetallics (Au/Al) Uniformity. Thin Solid Films. 2006,504:355~361
    61 C. H. Xu, H. L.W. Chan, W. Y. Ng, K. Y. M. Cheung, P. C. K. Liu. Characteristics of Bonds Produced by Full Ceramic and Composite Ultrasonic Transducers. Solid-State Electronics. 2004,48:1531~1537
    62 S. S. Chiu, H. L. W. Chan, S. W. Or, Y. M. Cheung, P. C. K. Liu. Effect of Electrode Pattern on the Outputs of Piezosensors for Wire Bonding Process Control. Materials Science and Engineering B. 2003,99:121~126
    63 J. Tsujino, H. Yoshihara, T. Sano, S. Ihara. High-Frequency Ultrasonic Wire Bonding Systems. Ultrasonics. 2000,38: 77~80
    64 L. Parrini. New Technology for the Design of Advanced Ultrasonic Transducers for High-power Applications. Ultrasonics. 2003,41:261~269
    65 P. W. P. Chua, C. P. Chong, H. L. W. Chan, K. M. W. Ng, P. C. K. Liu. Placement of Piezoelectric Ceramic Sensors in Ultrasonic Wire-bonding Transducers. Microelectronic Engineering. 2003,66: 750~759
    66 P. W. P. Chu, H. L. Li, H. L. W. Chan, K. M. W. Ng, P. C. K. Liu. Smart Ultrasonic Transducer for Wire-bonding Applications. Materials Chemistry and Physics. 2002,75:95~100
    67 H. K. Charles Jr., K. J. Mach, S. J. Lehtonen, A. S. Francomacaro, J. S. DeBoy, R. L. Edwards. Wirebonding at Higher Ultrasonic Frequencies: Reliability and Process Implications. Microelectronics Reliability. 2003,43: 141~153
    68 Y. H. Chan, J. K. Kim, D. M. Liu, P. C. K. Liu, Y. M. Cheung, M. W. Ng. Effects of Bonding Frequency on Au Wedge Wire Bondability. Journal of Materials Science. 2008,19:281~288
    69 Y. H. Chan, J. K. Kim, D. Liu, P. C. K. Liu, Y. M. Cheung, M. W. Ng. Process Windows for Low-Temperature Au Wire Bonding. Journal of Electronic Materials. 2004, 33:146~155
    70 Y. H. Chan, J. K. Kim, D. Liu, P. C. K. Liu, Y. M. Cheung, M. W. Ng. Effects of Plasma Treatment of Au-Ni-Cu Bond Pads on Process Windows of Au Wire Bonding. IEEE Transactions on Advanced Packaging. 2005,28:674~684
    71 O. S. Wing. High Frequency Transducer for Ultrasonic Bonding. The Hong Kong Polytechnic University Doctor Thesis. 2001.
    72 J. Tsujino, H. Yoshihara, K. Kamimoto, Y. Osada. Welding Characteristics and Temperature Rise of High-frequency and Complex Vibration Ultrasonic Wire Bonding. Ultrasonics. 1998,36:59~65
    73 S. W. Or, H. L. W. Chan, P. C. K. Liu. Piezocomposite Ultrasonic Transducer for High-Frequency Wire-Bonding of Microelectronics Devices. Sensors and Actuators A. 2007,133:195~199
    74 R. S. Ignacio, A. Carlos. Analysis of Wirebonding Techniques for Contacting High Concentrator Solar Cells. IEEE Transactions on Advanced Packaging. 2003,26(1):47~53
    75 T. C. Wei, A. R. Daud. The Effects of Aged Cu-Al Intermetallics to Electrical Resistance in Microelectronics Packaging. Mciroelectronics International. 2002,19:38~43
    76 Y. Takahashi, S. Shibamoto, K. Inoue. Numerical Analysis of the Interfacial Contact Process in Wire Thermocompression Bonding. IEEE Trans. on Components Packaging Manufacturing Technology. 1996,19(2):213~223
    77 A. Ishizaka, S. I wata, H. Yamamoto. Formation of Clean Al Surface by Interface Deformation in Au-Al Thermo-compression Bonding. J. Jap. Met. Soc. 1977,41(11):1154~1160
    78 S. Narasimalu. Wire Bond Challenges in Low-K Devices. Mciroelectronics International. 2008,25(1):34~40
    79 L. Battezzati, P. Pappalepore, F. Durbiano, I. Gallino. Solid State Reactions in Al/Ni Alternate Foils Induced by Cold Rolling and Annealing. Acta Mater. 1999,47(6):1901~1914
    80 H. Chang, K. Hsieh, T. Martens, A. Yang. The Effect of Pd and Cu in the Intermetallic Growth of Alloy Au Wire. Journal of Electronic Materials. 2003,32(11):1182~1187
    81 T. S. Saraswati, T. Sritharan, C. I. Pang, Y. H. Chew, C. D. Breach, F. Wulff, S. G. Mhaisalkar, C. C. Wong. The Effects of Ca and Pd Dopants on GoldBonding Wire and Gold Rod. Thin Solid Films. 2004,462-463:351~356
    82 J. Li, T. Malis, S. Dionne. Recent Advances in FIB-TEM Specimen Preparation Techniques. Materials Characterization. 2006,57:64~70
    83章晓中.电子显微分析.清华大学出版社, 2006
    84常铁军.材料近代分析测试方法.哈尔滨工业大学出版社, 1999
    85孟庆昌.透射电子显微学.哈尔滨工业大学出版社, 1998
    86 D. B. Wlliams, C. B. Carter. Transmission Electron Microscopy: A Textbook for Materials Science. Plenum Publishing Corporation, 1996
    87 Y. Liu, W. K. Jones. Microstructure and Mechanical Properties of Annealed Al-1%Si Bonding Wire. Journal of Electronic Materials. 2004, 33(9):929~934
    88 J. H. Cho, J. S. Cho, J. T. Moon, et al. Recrystallization and Grain Growth of Cold-Draw Gold Bonding Wire. Metallurgical and Materials Transactions A. 2003,34A:1113~1125
    89 J. H. Cho, A. D. Rollett, J. S. Cho, et al. Investigation of Recrystallization and Grain Growth of Copper Gold Bonding Wires. Metallurgical and Materials Transactions A. 2006,34A:3085~3097
    90李超.金属学原理.第二版,哈尔滨工业大学出版社,1996:301
    91 D. R. Askeland, P. P. Phulé. Essentials of Materials Science and Engineering. Thomson Learning.清华大学出版社影印版, 2005:114~137
    92 E. A. Brandes. Smithells Metals Reference Book. 6th edition. London, UK: Butterworths, 1983: chapter 13-14~chapter 13-15
    93 T. Jiromaru, Y. Hiroyuki, K. Kazuyoshi. Welding Characteristics and Temperature Rise of High Frequency and Complex Vibration Ultrasonic Wire Bonding. Ultrasonics. 2002,36(2):59~65
    94 S. Shivesh, J. Yogendra, G. Harman. Wire Bond Temperature Sensor. Natl Inst Standards Technol. 2002,1:5~14
    95 D. Kuhlmann-Wilsdorf. Temperatures at Interfacial Contact Spots: Dependence on Velocity and on Role Reversal of Two Materials in Sliding Contact. ASME Journal of Tribology. 1987,109:321~329
    96 D. Kuhlmann-Wilsdorf. Sample Calculation of Flash Temperatures at a Silver-Graphite Electric Contact Sliding on Copper. Wear. 1986,107:71~90
    97 S. Kang, P. Williams, Y. Lee. Modeling and Experiment Studies onThermosonic Flip Chip Bonding. IEEE Trans. on Comp. Packag. Manuf. Technol. 1995,18(4):728~733
    98 E. Peter, L. Levine. Comparing Flip-Chip and Wire-Bond Interconnection Technologies. IEEE Trans. on Advanced Packaging. 2000,8:81~87
    99 Q. Tan, B. Schaible, J. Leonard. Thermosonic Flip Chip with a Self-Planarization Feature Using Polymer. IEEE Trans. on Comp. Packag. Manuf. Technol. 1998,9(5):1~8
    100 K. Astashev, I. Vladimir, Vladimir Babitsky. Ultrasonic Processes and Machines: Dynamics, Control and Applications. Springer-Verlag Berlin Heidelberg New York, 2007:1~33
    101 T. Xu. A Model for Intergranular Segregation/Dilution Induced by Applied Stress. Journal of Materials Science. 2000,35:5621~5628

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700