用户名: 密码: 验证码:
金属锚杆端锚状态下的动测度量参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有效锚固长度、固结波速等特征量参数已经证明其可用定性反映锚杆的锚固质量,但为了能对锚固系统进行定量评价,本文开展了动测度量参数化研究。
     首先,为了能够准确地模拟复杂的现场锚固情形,对室内各种锚固测试影响因素进行了分解,然后分别对单一因素的影响进行分析,并据此设计各种工况,再按照逐因素递加的方法进行复杂的工况试验。主要包括:
     (1)对自由状态下的单独锚杆,测试加速度传感器的安装方式和激励方式;
     (2)托盘与锚杆的连接方式,以及加速度传感器的安装方式和激励方式;
     (3)锚杆的不同约束方式与张拉方式。
     通过自由状态下锚杆的这种单因素以及逐渐增加因素的方法,得到了加速度传感器最佳安装方式和激励方式与最佳激发波。然后据此设计了以下几种主要的复杂工况:
     (1)将锚杆固定于试验台上,设定张拉荷载等级,分别测定从一端固定一端自由到张拉至设计拉力值各张拉等级下的动态响应曲线;
     (2)将锚杆锚固于预先制作好的“稳定岩体”中,在同固定张拉工况相同的张拉荷载等级下,分别测定各个张拉等级下的动态响应曲线;
     (3)针对锚固系统有可能出现的锚杆杆体非轴拉(剪拉、弯拉)工况,室内条件下分别模拟了一端固定一端剪拉、弯拉、一端锚固一端剪拉、弯拉工况。
     第二,理论上以一维应力波在杆中传播规律为依据,计算出一端固定一端弹性支承锚杆模型在瞬态激发力作用下的振动,分析了在无能量损失时的理想状况下,从一端固定一端自由至两端固定边界条件,计算得到一次纵向振动各次谐振频率所含能量特性的规律,指出基频所含能量比例均占80%以上,从而为试验中重点分析振动信号的低频部分奠定了一定的理论基础。
     第三,根据应力波在介质交界面上的能量衰减、反射特性,建立了锚杆杆体吸收衰减能量损失解析式,并对散射衰减下的锚固体系一次行波周期的固端反射衰减进行了计算,得出了动态影响区域,即控制体积的大小,从而为确定模型尺寸以及现场评价奠定了理论基础。
     第四,采用小波分析和长度分形维的方法,不仅提取出了有效信号,而且也提取出了整周期位置。其中,对于自由锚杆等边界条件简单的条件下,对信噪比较高的工况,提出了直接进行时域波形衰减的计算方法;而对信噪比相对较低,且频谱分布较宽的振动信号,首先采用了小波消噪的方法,然后再选择合适的小波基,分析逼近信号,得到了有用逼近信号以及细节信号频谱图;进而再采用长度分形维的MATLAB编程方法以及建立在逼近信号上的衰减计算,找到了可较准确反映锚固状态相关的两个特征量,即单个平均行波周期所需时间以及锚固段张拉时的衰减系数。最后,得到了新的可用于反映锚固状态的衰减系数特征量的计算方法,以及三种动态量化参数,即衰减系数、行波周期和频率谱。
Some characteristic quantity parameters such as valid bonding length, consolidation wave speed, have been proved that these parameters can qualitative reflect the bolt bonding quality. For anchor system quantitative assessment, the dynamic parameterized testing is studied in this paper.
     In order to accurately simulate complex field anchoring condition, first, a variety of anchor test factors is decomposed, then single factor of the system is tested respectively. According to the design condition and factors ascending, complex loading level test is carried on in the next three aspects:
     (1) The accelerometer installation and incentive methods are done in the condition of single free rock bolt;
     (2) The connection between bolt plate and rock bolt, the installation and incentive methods;
     (3) The different restriction and tension style.
     Base on the free rock bolt test and the factors ascending way, the best accelerometer installation and optimum excitation wave is gotten. Some complex load levels work is done:
     (1) Fix the bolt and set the level tensile load, then the dynamic response curves is obtained respectively on every condition from one end is fixed and one end is free to design tension values.
     (2) Using the same tension method above to test the response curves after the bolt is anchorage in pre-simulated“stable rock”;
     (3) On account of non-axial tension working condition, shear-stretch and flexural-tensile experiment is also implemented respectively by fixed and anchorage.
     The second, based on the one-dimensional stress wave propagation in the rod, vertical vibration at three boundary conditions and vibration characteristics under the excitation force for one end is fixed end the other is free, vibration characteristics is calculated by the tension end. Via the calculate, we will know relationship between resonant frequency and energy, and the first frequency have occupied more than 80%, all of which will provided a foundation to analysis the low frequency signal.
     For the third, on the foundation of energy attenuation, reflectance at the interface of media, attenuation energy loss analytic is established, fixed end reflection for one wave cycle scattering attenuation is calculated, then the size of control volume dynamic effects of regional is got, and we can easy to assure the model size and definite some theoretical foundation for site evaluation.
     Fourth, utilize wavelet analysis and the length method of fractal dimension, effective signal position and the entire cycle are both extracted. In free rock bolt signal-to-noise ratio is relatively high; time-domain waveform calculation of attenuation can be done directly, on the contrary, wavelet denoising, appropriate wavelet is used to analysis the signal, then the approximation signal in time domain and useful approximation signal and detail signal spectrum is got. After that, the average time single wave cycle and tension anchorage section attenuation coefficient which can more accurately reflect the anchorage, has been got by the length method of fractal dimension and attenuation coefficient calculation which is based on the approximation signal. At last, three new methods, attenuation coefficient, single wave cycle and frequency spectrum, is got which can reflect the anchorage.
引文
[1]高大水,吴海斌,王莉.峡船闸高边坡预应力锚索耐久性研究[J].岩土力学,2005,26(sup):126-135.
    [2] Jarred D J, Haberfield C M. Tendon/grout interface performance in grouted anchors [J]. Proc. Ground Anchorages and Anchored Structures[C]. London: Thomas Telford, 1997.
    [3]张乐文,汪稔.岩土锚固理论研究之现状[J].岩土力学,2002,23(5):628-631.
    [4]程良奎.岩土锚固的现状与发展[J].土木工程学报,2001,34(3):7-16.
    [5]邹志晖,汪志林.锚杆在不同岩体中的工作机理[J].岩土工程学报,1993,16(5):71-78.
    [6]王金华.我国煤巷锚杆支护技术的新发展[J].煤炭学报,2007,32(2):113-118.
    [7] Nakakyama, M.Beaudoin, B.B. A novel technique determining bond strength developed between cement paste and steel [J]. Cement and Concrete Research, 1987, 22(3):478-488.
    [8] Hyett A J, Bawden W F and Reichert R D. The effect of rock mass confinement on the bond strength of fully grouted cable bolts [J]. Int.J,Rock Mech.Min.Sic.and Genomic.Abstr, 1992, 29(5):503-524.
    [9] A.Kilic, E.Yasar, C.D.Atis. Effect of bar shape on the pull-out capacity of fully-grouted rock bolts [J]. Tunnelling and Underground Space Technology, 2002, 18:1-6.
    [10] D.H.Zou, Y.Cui, V.Madenga, C.Zhang. Effects of frequency and grouted length on the behavior of guided ultrasonic waves in rock bolts [J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44:813-819.
    [11] M.D.Beard, M.J.S.Lowe. Non-destructive testing of rock bolts using guided ultrasonic waves [J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 40:527-536.
    [12]吴斌,孙雅欣,何存富,等.全长黏结型锚杆高频超声导波检测应用研究[J].岩石力学与工程学报,2007,26(2):397-402.
    [13]何存富,孙雅欣,吴斌,等.超声导波技术在埋地锚杆检测中的应用研究[J].岩土工程学报,2006,28(9):1144-1147.
    [14]陈波,鲁永康,郭玉,等.电磁法检测锚固质量初探[J].工程地球物理学报,2004,1(4):336-339.
    [15] M.A.Shahin, M.B.Jaksa. Neural network prediction of pullout capacity of marquee ground anchors [J]. Computers and Geotechnics, 2005, 32:153-163.
    [16]汪明武,王鹤龄.锚固质量的无损检测技术[J].岩石力学与工程学报,2002,21(1):126-129.
    [17]王雪峰,吴世明.基桩动测技术[M].北京:科学出版社,2001.
    [18]李志辉,李亮,李建生.应力波法锚杆无损检测技术研究[J].测绘科学,2009,31(1):205-206.
    [19]郭凤卿,张昌锁.锚杆锚固质量无损检测技术及研究进展[J].太原理工大学学报,2006,36(sup):11-14.
    [20] Agnew G D. An investigation of methods for producing a non-destructive grouted tendon tester [J]. Consultancy report, University of Witwatersrand, Johannesburg, 1990.
    [21]薛晶,任齐.瞬态击振法在桩基完整性检测中的应用[J].噪声与振动控制,2004,5:33-44.
    [22]李义,王成.应力反射波法检测锚杆锚固质量的实验研究[J].煤炭学报,2000,25(2):160-164.
    [23]程良奎,范景伦,韩军,等.岩土锚固[M].北京:中国建筑工业出版社,2003.
    [24]李义,张昌锁,王成.锚杆锚固质量无损检测几个关键问题的研究[J].岩石力学与工程学报,2008,27(1):108-116.
    [25] Ana Ivanovic, Richard D. Neilson. Influence of Geometry and Material Properties on the Axial Vibration of a Rock Bolt [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5):941-951.
    [26] Ana Ivanovic, Richard D. Neilson. Modelling of debonding along the fixed anchor length [J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46:699-707.
    [27]王秋萍,张虎,吴迎春.金属杆中纵振动固有频率的研究[J].兰州交通大学学报:自然科学版,2005,24(3): 144-150.
    [28]吴迪,张涛,刘广亮,等.瑞利波勘探原理及应用实例[J].地质装备,2009,10(5): 26-29.
    [29]刘明贵,岳向红.基于小波神经网络的锚杆锚固质量分析[J].岩石力学与工程学报,2006,25(1):83-87.
    [30]肖国强,刘天佑,周黎明,王法刚,等.小波多尺度分析在岩石锚杆质量弹性波无损检测中的应用[J].长江科学院院报,2006,23(4):67-70.
    [31]晏石林,秦莹,池秀文.基于小波分析的锚杆锚固质量评价研究[J].华中科技大学学报(城市科学版),2009,26(1):39-41.
    [32] Richard D. Neilson, Ana Ivanovic, Andrew J. Starkey, Albert A. Rodger. Design and dynamic analysis of a pneumatic impulse generating device for the non-destructive testing of ground anchorages [J]. Mechanical Systems and Signal Processing, 2007, 21:2523-2545.
    [33]曹茂森,任青文,史立红.小波-分形联合的结构损伤无损振动诊断[J].实验力学,2004,19(3):359-365.
    [34]曹茂森,刘经强,任青文.基于最优基小波的基桩弱损伤应力波检测[J].振动与冲击,2006,25(3):155-158.
    [35] SEVCIK C. A procedure to estimate the fractal dimension of waveforms [J].Complexity International, 1998, (5):17-21.
    [36] Ana Ivanovic, AndyStarkey, RichardD.Neilson, AlbertA.Rodger. The influence of load on the frequency response of rock bolt anchorage [J]. Advances in Engineering Software, 2003, 34:697-705.
    [37]朱宏平,翁顺.运用小波分析方法进行结构模态参数识别[J].振动与冲击,2007,26(4): 1-4.
    [38]包世华编著.结构动力学[M].武汉:武汉理工大学出版社,2005.
    [39]钟宏伟,胡祥云,熊永红,等.锚杆锚固质量声波检测技术的现状分析[J].工程地球物理学报,2005,2(1):50-55.
    [40]孙国,李桂华,顾元宪.基于小波包分解的应力波无损检测分析方法[J].振动工程学报,2002,15(4):488-491.
    [41]曹茂森,任青文,李妮.长度分形维的建立及其在工程检测中的应用[J].河海大学学报(自然科学版),2004,32(1):51-54.
    [42] Mallat S. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Pattern Anal. and Machine Intell, 1989, 11(7):674—693.
    [43] Patrice Abry, Paulo Goncalves, Jacques Levy Vehel. Scaling Fractals and Wavelets [M]. British Library, 2007.
    [44]郭凌云,肖明,任祎.端锚式锚杆数值模拟及其受力分析[J].岩石力学与工程学报,2007,26(2):4221-4226.
    [45] Phillips SHE, Factors affecting the design of anchorages in rock[R]. London: cementation Research Ltd., 1970.
    [46]张季如,唐保付.锚杆荷载传递机理分析的双曲线函数模型[J].岩土工程学报, 2002, 24(2):188-192.
    [47]弗洛林B A.土力学原理(第一卷)[M].北京:中国工业出版社,1965.
    [48]雷林源,杨长特.桩基瞬态动测响应的数学模型及基本特性[J].地球物理学报,1992, 35(4):503-509.
    [49]柳祖亭,顾利平,骆英,等.桩基振动分析与质量监测[M].南京:东南大学出版社,1995.
    [50] H.J.佩因著[英],陈难先,赫松安译.振动与波动物理学[M].北京:人民教育出版社,1980.
    [51]李青锋,茅献彪,徐金海,等.预应力锚杆弹性波检测原理与应用[J].采矿与安全学报,2007, 24(1): 32-36.
    [52]黄文梅,熊桂林,杨勇.信号分析与处理-MATLAB语言及应用[M].长沙:国防科技大学出版社,2000.
    [53]王靖涛.桩基应力波检测理论及应用[M].北京:地震出版社,1999.
    [54]王礼立.应力波基础[M].北京:国防工业出版社. 1985.
    [55]刘海峰,崔自治,朱学福,李义.锚杆锚固质量无损检测技术研究[J].宁夏工程技术, 2003, 2(3):266-268.
    [56]王成,阵寿榕.应力波理论在动测锚杆锚固质量中的应用[J].地震工程与工程振动, 2001, 21(3):6-9.
    [57]宋守志.固体介质中的应力波[M].北京:煤炭工业出版社, 1989.
    [58]王成,宁建国,李朋.锚杆锚固系统在瞬态激励下的动态响应特性[J].煤炭学报,2008, 33(1):7-10.
    [59]沈邦兴,文昌俊.实验设计及工程应用[M].北京:中国计量出版社,2005.
    [60] Ishii T, Ooka N. Development of a non-destrcutive testing technique using ultrasonic wave for evaluation of irradiation embrittlement in nuclear materials [J]. Journal of Nuclear Materials, 2002,307-311,240,244.
    [61]何文,王成,宁建国,等.端锚锚杆工作载荷的导波确定法[J].岩石力学与工程学报,2009,28(9): 1767-1772.
    [62]徐纪成.用等径冲击获取不同加载应力波波形的新方法[J].矿冶工程,1998,18(2):5-8.
    [63]李青锋,朱川曲,唐海.锚杆无损检测力锤激励机理与实验[J].物探与化探,2009,33(2):224-228.
    [64]张昌锁,李义,赵阳升.等.锚杆锚固质量无损检测中的激发波研究[J].岩石力学与工程学报, 2006, 25(6):1240-1245.
    [65]吴正毅.测试技术与测试信号处理[M].北京:清华大学出版社,2001.
    [66]王伯雄.测试技术基础[M].北京:清华大学出版社,2003.
    [67]应怀樵.振动测试和分析[M].北京:中国铁道出版社,1979.
    [68]丁启财.固体中的非线性波[M].北京:中国友谊出版公司,1985.
    [69] A. Zubaydi, M.R. Haddara, A.S.J. Swamidas. On the use of the autocorrelation function to identify the damage in the side shell of a ship’s hull [J]. Marine Structures, 2000, 13:537-551.
    [70]王怀秀,朱国维.矿用树脂锚杆锚固质量无损检测的试验研究[J].煤炭科学技术,2003,31(4):38-41.
    [71]李德葆,陆秋海.工程振动试验分析[M].北京:清华大学出版社,2004.
    [72]刘习军,贾启芬,张文德.工程振动与测试技术[M].天津:天津大学出版社,1999.
    [73]黄永强,陈树勋.机械振动理论[M].北京:机械工业出版社,1996.
    [74]闫莫明,徐祯祥,苏自约.岩土锚固技术手册[M].北京:人民交通出版社,2004.
    [75]肖炀燚.应力波法锚杆锚固质量无损检测技术研究[D](硕士学位论文).安徽:安徽理工大学,2009.
    [76]董志勇,胡金榜.超声波衰减系数法评估材料损伤的研究[J].化工机械,2007,34(3):139-143.
    [77]尹昌,刘晓宙,龚秀芬,等.钢材料中声速与声衰减系数的测量[J].声学技术,2007,26(5):974-975.
    [78] T Ohtani, K Nishiyama, S Yoshikawa. Ultrasonic attenuation and microstructural evolution throughout tension-compression fatigue of a low-carbon steel[J]. Materials Science and Engineering A, 2006, 442:466-470.
    [79]曹茂森,任青文,王怀洪.基于小波与分形理论的地震异常检测[J].地球物理学报,2005,48(3):672-679.
    [80] Holschneider M, Kronland-Martinet R, Mlrlet J, Tchamitchian P. Wavelets, Time-frequency Methods and Phase Space, chapter A Real-Time Algorithm for Signal Analysis with the help of the Wavelet Transform, pages 289-291, Springer-Verlag, Berlin, 1989.
    [81] Shensa M J. The discrete wavelet transform: Wedding theàtrous and Mallat algorithms [J]. Trans, Signal Proc., 1992, 40(10):2464-2482.
    [82] Mallat S, Zhong S. Characterization of signals from multiscale edges [J]. Trans. Patt. Anal. and Mach. Intell., 1992, 14(7):710-732.
    [83] Nason G P, Sapatinas T, Sawczenko A. Wavelet packet modeling of infant sleep state using heart rate data. Sankhya, Series B, 2001, (63):199-217.
    [84]程正兴.小波分析与应用实例[M].西安:西安交通大学出版社,2006.
    [85]李建平.小波分析与信号处理-理论、应用及软件实现[M].重庆:重庆大学出版社,1997.
    [86]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,1999.
    [87]葛哲学,沙威.小波分析理论与MATLABR2007实现[M].北京:电子工业出版社,2007.
    [88]曾锦光,舒雅琴,钟勇.地震波的分形与混沌性质[J].石油地球物理勘探,1995,30(6):743-748.
    [89]曹茂森,任青文,万林梅,等. Length分形维算法拾取地震波初至[J].石油地球物理勘探,2004,39(5):510-514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700