用户名: 密码: 验证码:
超声导波频散与多模态问题及其形态解卷积方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声导波无损检测技术由于其传播距离远、检测范围大等优良性能,被广泛应用于航空航天、油气管道、压力容器等领域的检测。由于沿波导的长距离传播,超声导波除了有一般体波的特点外,还具有频散和多模态特性,该特性极大地限制了超声导波的检测效果,增大了特征识别的困难。因此频散的抑制和模态的选择一直是国际上超声导波无损检测领域的研究热点。开展针对超声导波频散和多模态特性的研究具有重要的理论和现实意义。
     本文通过分析超声导波频散和多模态特性的特点,提出从导波信号处理角度出发,采用形态分量分析的信号处理技术,深入研究导波信号的建模、稀疏分解、形态分解以及解卷积等问题,并通过仿真及实验信号对方法的有效性进行了验证,为解决频散和多模态的影响以及为复杂导波信号的分析提供关键技术。
     论文首先对形态分量分析相关理论进行了探讨和研究,从信号的稀疏性及稀疏表示入手,对稀疏分解相关算法进行了分析;分析了增强信号稀疏性的范数正则化方法和压缩传感方法,为超声信号解卷积以及导波信号形态分解提供预备知识。
     基于弹性波的控制方程和超声导波传播特性,论文对波动问题在频域内进行了分析和公式推导,利用频域内频散和非频散波的传播方程以及频散波重构方程,提出了频散补偿和频散移除方法,从而更进一步了解了频散产生的机理并为频散信号建模提供基础。在此基础上,提出了包含频散参数的导波信号建模方法,利用3阶多项式对频散曲线进行拟合,多项式系数作为频散参数来刻画频散特性,为形成包含频散参数的原子库做准备。论文对不同结构中模态的分类进行了归纳,研究了互易关系和模态正交化以及简正模态展开理论,根据模态正交性为利用形态分量方法进行模态分解提供了理论支持。
     论文通过对超声信号稀疏性和解卷积过程中由于稀疏性不强所造成问题的分析,利用范数正则化方法和压缩传感方法,分别设计了基于l_0范数约束的最小熵解卷积方法和基于压缩传感重构的稀疏解卷积方法。l_0范数方法通过对稀疏先验条件的增强将解卷积问题转换为范数规范的优化问题,进而获得时域上更稀疏的结果。压缩传感重构方法获得稀疏子波,在解卷积过程中同样增强了稀疏性,由于稀疏性的增强也加快了算法收敛速度。提出用l_0范数逼近函数代替直接使用该范数,解决由于l_0范数不连续产生的问题。仿真及实验结果显示两种方法对于相邻或重叠的回波信号有很好的分离效果,对于信噪比不高的情况同样适用。
     为分析导波信号中不同模态信息,论文在研究导波信号频散、模态正交性的基础上,提出利用形态分量分析处理导波信号的方法。构建了包含Gabor原子、Chirp原子、小波原子和离散余弦原子在内的原子库。对Gabor原子增加利用3阶多项式进行频散刻画的频散参数,对Chirp原子提出用Chirp斜率进行模态识别,通过对参数的分类可以形成不同的模态库。
     论文采用所提出的原子库进行导波信号的匹配追踪分解和形态分量分解,与匹配追踪方法相比,形态分量方法能有效的对模态进行分离,同时还提出了利用离散余弦库对信号中的噪声信号进行形态方法分离。多原子库的形态分量分析方法通过仿真和实验信号验证了其有效性,获得了相应的形态解卷积结果。该方法继承了稀疏分解的优点,能够利用不同形态的字典有效地处理导波信号中多模态问题。进一步扩展模态原子库以及对其特征的精确描述,将有能力对导波信号中更复杂的多模态信息进行处理,从而降低复杂导波信号分析的困难。
     最后论文对超声导波系统协同仿真方法进行了研究。分析了导波仿真的有限元方法和半解析有限元方法。
Ultrasonic guided waves were widely used in aeronautics, pipeline, vessels and soon because of its long distance propagation and large range detection property. Due tothe long distance propagation along waveguides, the guided waves were not onlypossess the feature of ultrasonic bulk waves, but also dispersion and multi-modescharacters, which limited detection effect of guided waves and increased the difficultyof feature recognition. Hence, dispersion suppression and multi-modes selection hasbeen a research hotspot in international non-destructive testing field. It has greattheoretical and realistic sense to research the dispersion and multi-modes for ultrasonicguided waves.
     In this dissertation, the characters of dispersion and multi-modes were analyzedcarefully, and a signal processing point of view was considered. The modeling, sparsedecomposition, morphology decomposition and deconvolution of guided waves signalswere proposed by the use of morphology component analysis techniques. The validationof these methods were realized through simulations and experiments. Dispersion andmulti-modes phenomenon which increasing complexity of guided waves signals couldbe effectively eliminated though research results.
     Firstly this dissertation studied the theory of morphology component analysismethod, and the sparsity and sparse representation have been explored emphatically.Based on the properties of norm regularization and compressive sensing method, a newsparsity enhancement method was perhaps useful. Such research can provide theessential preliminary knowledge for ultrasonic signals deconvolution and morphologydecomposition.
     Based on its governing equations of elastic waves and the futures of guided wavespropagation, the wave motion problem was researched in frequency domain and studiedby theoretical deduct. By the use of dispersed or not dispersed wave propagationequations and reconstruction equations, a compensate method and a cancellationmethod of dispersion were proposed, which can further study the mechanism ofdispersion and provide useful information for modeling of dispersed signal. According to above analysis, this dissertation established a modeling method for guided waves thatincluded the parameters of dispersion. A3order polynomial was used to fit thedispersion curves and the coefficients of the polynomial were used to describe thedispersion characters, which prepared for dictionary construction with dispersionvariable. This dissertation also summarized the catalog of modes and made theoreticalguarantees for modes decomposition through the research of orthogonality of modesand normal modes expansion method.
     Because of the sparsity of signal was not guaranteed during deconvolution process,this dissertation used norm regularization method and compressive sensing method topresent two different deconvolution algorithm:l0norm regularized minimum entropydeconvolution algorithm and compressive sensing reconstructed sparse deconvolutionalgorithm. According tol0norm method, the deconvolution problem was transformedinto a norm regularized optimization problem with further regularization of sparsityprior condition to obtain more sparser results in time domain. In the process of echowavelet reconstruction, compressive sensing method can also enhance the sparsity. Inorder to solve the problem caused by discontinue ofl0norm, this dissertationpresented a smooth function to approximatel0norm. The simulation and experimentresults showed good performance in separating nearby or overlapped echoes and therobust to noisy.
     In order to separate the different modes in guided waves signals, this dissertationresearched characters of dispersion and orthogonality of modes, and then established adecomposition method based on morphology components analysis technique. Themorphology dictionary was constructed by different sub dictionaries, included Gaboratoms, Chirp atoms, wavelet atoms and discrete cosine atoms. The improvement of thesub dictionaries could be realized by add dispersion parameters which obtain from thecoefficient of3order polynomialh to Gabor sub dictionary and add Chirp slopeparameters to Chirp dictionary. The improvements were more suitable for guided wavesignals. The catalog of above parameters also can form different modes dictionaries.
     The dictionaries proposed in this dissertation could be used to realize match pursuitdecomposition and morphology decomposition and the morphology method couldachieve more efficient results compared to match pursuit method. Furthermore, theseparation of noisy by means of morphology method with discrete cosine atoms was presented and the rustles were satisfactory. The decomposition and decomvolutionresults were validated by simulation and experiment signals. The procedure inheritedthe advantages of sparse decompose method and could use different morphologydictionaries to decompose guided wave multi mode signals effectively. The expansionof mode dictionaries will achieve accurate description for mode features, and couldobtain capabilities to process complex multi modes signals, which reduced thecomplexity significantly in guided waves signals analysis.
     Finally, collaborated simulation method was researched for ultrasonic guidedwaves system. Finite element method and semi-analytical finite element method wereanalysed.
引文
[1] D. E. Chimenti. Guided waves in plates and their use in materials characterization[J]. AppliedMechanics Reviews,1997,50(5):247-284
    [2] A. K. Mal, P. C. Xu, Y. Barcohen. Leaky lamb waves for the ultrasonic nondestructiveevaluation of adhesive bonds[J]. Journal of Engineering Materials and Technology,1990,112(3):255-259
    [3] M. Castaings, B. Hosten. Lamb and SH waves generated and detected by air-coupled ultrasonictransducers in composite material plates[J]. NDT&E International,2001,34(4):249-258
    [4]何存富,吴斌,范晋伟.超声柱面导波技术及其应用研究进展[J].力学进展,2001,31(2):203-214
    [5] J. S. Hall. Adaptive dispersion compensation and ultrasonic imaging for structural healthmonitoring[D]. Georgia: Georgia Institute of Technology,2011,136-141
    [6] K. Maslov, T. Kundu. Selection of lamb modes for detecting internal defects in compositelaminates[J]. Ultrasonics,1997,35(5):141-150
    [7]李喜孟.无损检测[M].北京:机械工业出版社,2001,11-14
    [8] S. Ankit. Quantitative structural health monitoring using ultrasonic guided waves[D]. California:University of California, San Diego,2009,25-36
    [9] L. W. Katragadda, Y. S. Sun. Alternative magnetic flux leakage modalities for pipelineinspection[J]. IEEE Transactions on Magnetics,1996,32(3):1581-1584
    [10]黄建东.我国油气管道检测技术应用市场前景广阔[J].能源工程,2003,8(2):9-11
    [11] F. K. Chang. Ultra reliable and super safe structure for the new century[C]. Proc.1stEuropean Workshop on Structural Health Monitoring, Cachan,2002,101-112
    [12] Lamb wave imaging system[OL]. http://www.digitalwavecorp.com/wave, April4,2010
    [13] K. Miravete. Composites properties and applications[M]. NewYork: Woodhead publishing,1993,77-89
    [14] S. D. Dalmas, A. Laksimi. On the method of determination of stmin energy release rate duringfatigue delamination in composite materials[J]. Applied Composite Materials,1999,23(6):327-340
    [15] E. K. Gamstedt, R. Talreja. Fatigue damage mechanisms in unidirectionalcarbon·fibrereinforeed plastics[J]. Journal of Materials Science,1999,12(34):2535-2546
    [16] H. HoCheng, C. C. Tsao. Effects of special drill bits on drilling-induced delamination ofcomposite materials[J]. International Joumal of Machine Tools&Manufacture,2006,14(46):1403-1416
    [17] P. P. Parlevliet, H. E. N. Bersee, A. Beukers. Residual stresses in thermoplastic composites-Astudy of the literature-Part II: Experimental techniques[J]. Composites: Part A,2007,25(38):651-665
    [18] S. D. Thoppul, J. Finegan, R. F. Gibson. Mechanics of mechanically fastened joints inpolymer-matrix composite structures-A review[J]. Composites Science and Technology,2009,69(3-4):301-329
    [19] S. Huybrechts, S. W. Tsaib. Analysis and behavior of grid structures[J]. Composites Scienceand Technology,1996,56(9):1001-1015
    [20] S. M. Huybrechts, T. E. Meink, P. M. Wegner, et al. Manufacturing theory for advanced gridstiffned structures[J]. Composites: Part A,2002,20(33):155-161
    [21] J. S. Park, S. J. Song, Y. M, Cheong, et al. Analysis of ultrasonic guided wave dispersion inpipes using3-D FEM and2-D FFT[C]. AIP Conf. Proc, Catania,2005,219-226
    [22]刘镇清,刘骁.超声无损检测的若干新进展[J].无损检测,2000(9):403-405
    [23] J. L. Rose. Standing on the shoulders of fiants: an example of guided wave inspection[J].Materials Evaluation,2003,61(1):54-59
    [24] H. Lamb. On waves in an elastic plate[M]. London: Proc. Roy.Soc.,1917,124-137
    [25] I. A. Viktorov. Rayleigh and Lamb Waves: Physical Theory and Applications[M]. New York:Plenum Press,1967,39-57
    [26] F. Seco, J. M. Matin, A. Jimenez. PCDISP: a tool for the simulation of wave propagation incylindrical waveguides[C].9th International Congress on Sound and Vibration, Orlando,2002,235-241
    [27] J. L. Rose. Guided wave nuances for ultrasonic nondestructive evaluation[J]. IEEETransactions on Ultrasonics, Ferroelectrics and Frequency Control,2000,47(3),:575-583
    [28] A. D. Pierce. Acoustics: An Introduction to its physical principles and applications[J].Acoustical Society of America,1989,12(9):151-160
    [29] S. I. Newton. Philosophiae naturalis principia mathematica[M]. London: Royal Society,1687,89-97
    [30] L. Rayleigh. The Theory of Sound[M]. London: Dover,1945,115-123
    [31] L. Rayleigh. On waves propagated along the plane surface of an elastic solid[C]. Proc. Lond.Math. Soc.,1885,17(3):4-11
    [32] L. Rayleigh. On the free vibrations of an infinite plate of homogeneous isotropic elasticmatter[C]. Proc. Lond. Math. Soc.,1889,20(4):225-234
    [33] H. Lamb. On waves in an elastic plate[M]. Proc. Royal Soc. Lond.,1917,93(648):114-128
    [34] I. A. Viktorov. Rayleigh and Lamb Waves: Physical Theory and Applications[M]. Berlin:Plenum Press,1967,69-75
    [35] S. Y. Sokolov. On the problem of the propagation of ultrasonic oscillations in variousbodies[J]. Elec. Nachr. Tech.,1929,6(12):454-460
    [36] S. Y. Sokolov. Ultrasonic methods of detecting internal flaws in metal articles[J]. ZavodskayaLaoratoriya,1935,4(5):1468-1473
    [37] L. Minghui, G. Hayward, He Bo. Adaptive array processing for ultrasonic non-destructiveevaluation[C]. IEEE International Ultrasonics Symposium, Orlando FL,2011,2029-2032
    [38] G. Roqueta, L. Jofre, M. Feng. Microwave Non-destructive of corrosion in reinforcedconcrete structures[C]. Proceedings of the5thEuropean Conference on Antennas andPropagation, Rome,2011,787-791
    [39] T. McDonald, J. Kitaygorsky. Carbon nanotube additives for non-destructive evaluation andelectromagnetic compatibility of composites[C]. Asia-Pacific Symposium on ElectromagneticCompatibility, Beijing,2010,1100-1103
    [40] G. S. Kino. Acoustic imaging for nondestructive evaluation[J]. Proc. of the IEEE,1979,67(4):510-525
    [41] J. Chosh. Longitudinal vibrations of a hollow cylinder[J]. Bulletin of the CalcuttaMathematical Society,1923,24(14):31-40
    [42] D. N. Alleyen, P. Cawley. The interaction of Lamb wave with defects[J]. IEEE Transaction onUltrasonics, Ferroelectrics and Frequency Control,1992,39(3):381-397
    [43] J. L. Rose, W. Zhang, Y. Cho. Boundary element modeling for guided wave reflection andtransmission factor analyses in defect classification[C]. IEEE Ultrasonic Symposium, Sendia,1998,885-888
    [44] D. C. Gazis. Exact analysis of the plane-strain vibrations of thick-walled hollow cylinders[J].Journal of the Acoustical Society of America,1958,30(6):786-794
    [45] D. C. Gazis. Three dimensional investigation of the propagation of waves in hollow circularcylinders, Analytical foundation[J]. Journal of the Acoustical Society of America,1959,31(3):568-573
    [46] N. A. Armenakas, D. C. Gazis, G. Hermann. Free vibrations of circular cylindrical shells[M].Oxford: Pergamon Press,1969,55-67
    [47] J. J. Ditri, J. L. Rose. Excitation of guided wave modes in hollow cylinders by applied surfacetractions[J]. Appl. Phys.,1992,72(7):2589-2597
    [48] C. M. Fortunko, R. B. King, M. Tan. Nondestructive evaluation of planar defects in platesusing low-frequency shear horizontal waves[J]. Journal of Applied Physics1997,53(7):3450-3458
    [49] J. Li, J. L. Rose. Angular-profile tuning of guided waves in hollow cylinders using acircumferential phased array[J]. IEEE Transactions on Ultrasonics, Ferroelectrics andFrequency Control,2002,49(12):1720-1729
    [50] P. Wilcox, B. P. Evans. Long range inspection of rail using guided waves[C]. AIP Conf. Proc.,California,2003,135-142
    [51] P. Cawley. Practical long range guided wave inspection-managing complexity[C]. AIP Conf.Proc., California,2003,211-223
    [52] D. N. Alleyne, P. J. Mudge, P. Cawley. Guided wave inspection of chemical plantpipework[M]. Proc. SPIE Int. Soc. Opt. Eng., London,1996,65-77
    [53] M. J. S. Lowe. Matrix techniques for modeling ultrasonic waves in multilayered media[J].IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,1995,42(4):525-542.
    [54] D. H. Coal. The potential of ultrasonic surface waves for rail inspection[C]. San francisco,AIP Conf. Proc.,2005,224-231
    [55]焦敬品,吴斌,王秀彦,等.管道超声导波探测技术研究进展[J].实验力学,2002,17(1):1-9
    [56]何存富,刘增华,郑璟瑜,等.管道导波检测中传感器数量和频率特性研究[J].北京工业大学学报,2004,8(4):393-397
    [57]何存富,李隆涛.周向超声导波在薄壁管道中的传播研究[J].实验力学,2002,17(4):419-424
    [58]他得安,王威琪,汪源源,等.管道导波检测中激发频率的选择及灵敏度分析[J].无损检测,2005,27(2):83-86
    [59] M. J. S. Lowe. Plate waves for the NDT of diffusion bended titanium[D]. London: Universityof London,1993,77-90
    [60] L. Gavric. Finite element computation of dispersion properties of thin-walled waveguides[J].Journal of Sound Vibration,1994,173(2):113-124
    [61] P. E. Lagasse. Higher-order finite-element analysis of topographic guides supporting elasticsurface waves[J]. Journal of the Acoustical Society of America,1973,53(4):11-16
    [62] B. Aalami. Waves in prismatic guides of arbitrary cross section[J]. Journal of AppliedMechanics,1973,40(4):24-30
    [63] K. H. Huang, S. B. Dong. Propagating waves and edge vibrations in anisotropic compositecylinders[J]. Journal of Sound Vibration,1984,96(7):363-379
    [64] J. Li. Longitudinal flexural mode utility in quantitative guided wave evaluation[D].Pennsylvania: The Pennsylvania State University,1993,57-65
    [65] L. Gavric. Computation of propagative waves in free rail using a finite element technique[J].Journal of Sound and Vibration,1995,185(3):531-543
    [66] A. C. Hennion. Finite element analysis of the propagation of acoustic waves in waveguides[J].Journal of Sound and Vibration,1996,194(2):119-136
    [67] A. C. Hennion, P. Langlet. Finite element analysis of the propagation of acoustic waves alongwaveguides immersed in water[J]. Journal of Sound and Vibration,1997,200(4):519-530
    [68] J. Onipede, S. B. Dong. Propagating waves and end modes in pretwisted beams[J]. Journal ofSound and Vibration,1996,195(2):313-330
    [69] H. Taweel, S. B. Dong, M. Kazic. Wave reflection from the free end of a cylinder with anarbitrary cross-section[J]. International Journal of Solids and Structures,2000,37(12):1701-1726
    [70] S. Finnveden. Evaluation of modal density and group velocity by a finite element method[J].Journal of Sound and Vibration,2004,273(l-2):51-75
    [71] P. J. Shorter. Wave propagation and damping in linear viscoelastic laminates[J]. Journal of theAcoustical Society of America,2004,115(34):201-211
    [72]张海燕,刘镇清,吕东辉.全局矩阵法及其在层状各向异性复合板中Lamb波传播特性研究中的应用[J].复合材料学报,2004(2):111-116
    [73] A. J. Croxford, P. D. Wilcox. Strategies for guided-wave structural health monitoring[J]. Proc.Royal Soc.,2007,463(2):2961-2981
    [74] R. Sicard, J. Goyette, D. Zellouf. A numerical dispersion compensation technique for timerecompression of lamb wave signals[J]. Ultrasonics,2002,40(5):727-732
    [75] P. D. Wilcox. A rapid signal processing technique to remove the effect of dispersion fromguided wave signals[J]. IEEE Trans. Ultrason., Ferroelectr., Freq. Control,2003,50(4):419-427
    [76] R. Sicard, J. Goyette, D. Zellouf. A SAFT algorithm for lamb wave imaging of isotropic plate-like structures[J]. Ultrasonics,2002,39(8):487-494
    [77] P. D. Wilcox. Omni-directional guided wave transducer arrays for the rapid inspection of largeareas of plate structures[J]. IEEE Trans. Ultrason., Ferroelectr., Freq. Control,2003,50(6):699-709
    [78] W. Sachse, Y. H. Pao. On the determination of phase and group velocities of dispersive wavesin solids[J]. Appl. Phys.,1978,49(8):4320-4327
    [79] F. Peters, L. Petit. A broad band spectroscopy method for ultrasound wave velocity andattenuation measurement in dispersive media[J]. Ultrasonics,2003,41(4):357-363
    [80] D. A. Hutchins, K. Lundgren, S. B. Palmer. A laser study of transient lamb waves in thinmaterials[J]. Acoust. Soc. Am.,1989,85(4):1441-1448
    [81] W. H. Prosser, M. D. Seale, B. T. Smith. Time-frequency analysis of lamb modes[J]. J. Acoust.Soc. Am.,1999,105(5):2669-2676
    [82] D. Alleyne, P. Cawley. A two-dimensional fourier transform method for the measurement ofpropagating multimode signals[J]. J. Acoust. Soc. Am.,1991,89(3):1159-1168
    [83] S. Holland, T. Kosel, W. Sachse. Determination of plate source, detector separation from onesignal[J]. Ultrasonics,2000,38(8):620–623
    [84]邓明晰.平面固体结构中兰姆波二次谐波的发生与传播研究[D].上海:同济大学,2002,16-19
    [85] B. A. Auld. Acoustic field and waves in solids[M]. New York: John Wiley,1973,12-25
    [86] S. I. Hayek. Advanced mathematical methods in dcience and engineering[M]. NewYork:Basel, Marcel Dekker, Inc.,1988,55-67
    [87] X. Jia. Normal-mode theory of nonspecular phenomena for a finite-aperture ultrasonic beamreflected from layer media[J]. Appl. Phys. Lett.,1997,70(8):309-323
    [88] X. Jia. Modal analysis of lamb wave generation in elastic plates by liquid wedgetransducers[J]. J. Acoust. Soc. Am.,1997,101(5):834-842
    [89] L. Cohen. Time-requency distributions-a review[J]. Proc. IEEE,1989,77(7):941-981
    [90] L. Cohen. Time-frequency analysis: theory and applications[M]. NewYork: Prentice Hall,1995,55-71
    [91] L. Atlas, P. Duhamel. Recent developments in the core of digital signal processing[J]. IEEESignal Processing Magzine,1999,16(1):16-31
    [92] S. Qian, D. Chen. Joint time-frequency analysis[J]. IEEE Signal Precessing Magazine,1999,16(2):52-67
    [93] S. Qian. Introduction to time-frequency and wavelet transforms[M]. NewYork: Prentice Hall,2002,77-89
    [94]周正干,冯占英.时频分析在超声导波信号分析中的应用[J].北京航空航天大学学报,2008,34(7):833-837
    [95] H. Kwun, K. A. Bartels, C. Dynes. Dispersion of longitudinal waves propagating in liquid-filled cylindrical shells[J]. Journal of the Acoustical Society of America,1999,105(5):2601-2611
    [96]何存富,李颖,王秀彦,等.基于小波变换及Wigner-Ville变换方法的超声导波信号分析[J].实验力学,2005,20(4):584-588.
    [97] M. A. R. Hemandez. Ultrasonic non-destructive evaluation with spatial combination ofWigner-Ville transforms[J]. NDT and E International,2003,36(6):441-453
    [98]张文泉,李彦斌.最大熵谱估计及应用研究[J].现代电力,2001,18(1):15-18
    [99] M. Butt.地球物理学中的谱分析[M].(郑治,叶正仁,安镇文,等译).北京:地震出版社,1978,65-78
    [100] V. D. Bos. Alternative interpretation of maximum entropy spectral analysis[J]. IEEE Trans.Inform. Theory,1971,17(8):493-494
    [101]王宏禹.现代谱估计[M].南京:东南大学出版社,1990,79-87
    [102]张贤达.现代信号处理[M].北京:清华大学出版社,2001,101-127
    [103]王世一.数字信号处理[M].北京.北京理工大学出版社,1997,69-77
    [104] E. Candes, J. Romberg, T. Tao. Robust uncertainty principles: exact signal reconstructionfrom highly incomplete frequency information[J]. IEEE Trans. Inform. Theory,2006,52(2):489-509
    [105] D. L. Donoho. Compressed sensing[J]. IEEE Trans. Inform. Theory,2006,52(4):1289-1306
    [106] E. Candes. Compressive sampling[C]. Madrid: Proc. Int. Congress of Mathematics,2006,239-247
    [107] E. Candes, J. Romberg, T. Tao. Stable signal recovery from incomplete and inaccuratemeasurements[J]. Comm. Appl. Math,2006,59(8):1207-1223
    [108] R. Baraniuk, P. Steeghs. Compressive radar imaging[C]. Proceedings of the RadarConference, Washington D. C.,2007,325-331
    [109] S. Bhattacharya, T. Blumensath. Fast encoding of synthetic aperture radar raw data usingcompressed sensing[C]. Proceedings of Statistical Signal Processing, Washington D. C.,2007,159-171
    [110] S. Hu, M. Lustig, A. P. Chen. Compressed sensing for resolution enhancement ofhyperpolarized fly back3D-MRSI[J]. Journal of Magnetic Resonance,2008,92(2):258-264
    [111] F. S. Martin, G. Schmitz. Rapid measurement of ultrasound transducer fields in wateremploying compressive sensing[J]. IEEE International Ultrasonics Symposium (IUS), SanDiego,2010,245-256
    [112] D. Friboulet, H. Liebgott, R. Prost. Compressive sensing for raw RF signals reconstructionin ultrasound[J]. IEEE International Ultrasonics Symposium, San Diego,2010,167-181
    [113] F. S. Martin. Fast pulse-echo ultrasound imaging employing compressive sensing[C].Proceedings of the IEEE International Ultrasonics Symposium (IUS), Orlando,2011,56-67
    [114] M. Zibulevsky, B. A. Pearlmutter. Blind source separation by sparse decomposition in asignal dictionary[J]. Neural Comp.,2001,13(4):863-882
    [115] M. Zibulevsky, P. Kisilev, Y. Y. Zeevi. Blind source separation via multimode sparserepresentation[M]. New York: In Proc. Of NIPS,200l,33-40
    [116] S. Amari. Natural gradient learning for over-and under-complete bases in ICA[J]. NeuralComp.,1999,11(9):1875-1883
    [117] R. Coifman, M. V. Wickerhauser. Entropy-based algorithms for best basis selection[J]. IEEETransactions On Information Theory,1992,38(3):713-718
    [118] S. Mallat, Z. Zhang. Matching pursuits with time-frequency dictionaries[J]. IEEETransanctions on Signal Processing,1993,41(12):3397-3415
    [119] P. J. Huber. Projection pursuit[J]. Ann. Stat.,1998,13(2):435-475
    [120] S. Chen, D. L. Doncho, M. Saunders. Atomic decomposition by basis pursuit[J]. SIAM J.Sci. Camp.,1999,20(1):33-61
    [121] D. L. Donoho, X. Huo. Uncertainty principles and ideal atomic decomposition[J]. IEEETransanctions on Information Theory,2001,47(4):2845-2862
    [122] X. M. Huo. Sparse image representation via combined transforms[D]. Boston: StanfordUniver.,1999,48-55
    [123] B. D. Rao. Aalysis and extensions of the FOCUSS algorithm[C]. Conference Record of theThirtieth AC S, Systems and Computers. Pacific Grove,1996,1218-1223
    [124] C. Jutten, J. Heault. Independent component analysis versus principle component analysis.Signal Processing IV: Theo. and Appl[J]. Rotterdam: Elsevier publishers,1988,33-45
    [125] C. Jutten, J. Hemult. Blind separation of sources, part I: An adaptive algorithm based onneuromimetic architecture[J]. Signal Processing,1991,24(1): l-10
    [126] A. Cichocki, S. I. Amari. Adaptive blind signal and image processing: learning algorithmsand applications[M]. Chichestcr: John Wiley&Sons, Ltd.,2002,57-77
    [127] B. Widrow, J. R. Glover, J. M. Mcool. Adaptive noise canceling: Principles andapplications[M]. New Jersey: Prentice Hall, Inc.,1975,49-56
    [128] B. Widrow, S. D. Steams. Adaptive signal processing[M]. New Jersey: Prentice Hall, Inc.,1985,78-88
    [129] S. Haykin. Adaptive filter theory[M]. New Jersey: Prentice Hall, Inc.,2002,120-134
    [130] R. Godrey, F. Rocca. Zero memory non-linear deconvolution[J]. Geophysical Processing,1981,29(5):189-228
    [131] S. Haykin. Blind deconvolution[M]. New Jersey: Prentice Hall, Inc.,1994,59-73
    [132] O. Shalvi, E. Weinstein. New criteria for blind deeonvolution of nonminimum phasesystems(channels)[J]. IEEE Transaction on Information Theory,1990,36(2):312-321
    [133] K. Torkkola. Blind separation of delayed and convolved sources. Unsupervised AdaptiveFiltering[M]. New York: Wiley,2000:321-375
    [134] S. I. Amari, A. Cichocki, H. H. Yang. Blind signal separation and extraction: neural andinformation theoretic approaches. Unsupervised Adaptive Filtering[M]. New York: Wiley,2000,134-147
    [135] T. Mei, J. Xi, F. Yin. Blind source separation based on tune-domain optimization of afrequency-domain independence criterion[J]. Audio, Speech, and Language Processing,IEEE Transactions on,2006,14(6):2075-2085
    [136] E. Moulines, P. Duhamel, J. F. Cardoso. Subspace methods for the blind identification ofmultichannel FIR filters[J]. IEEE Transactions on Signal Processing,1995,43(2):516-525
    [137] C. Y. Peng, X. D. Zhang. On recursive oblique projectors[J]. IEEE Signal Processing Letters,2005,12(6):433-436
    [138]李杰.图像的方向多尺度分析及其应用研究[D].成都:电子科技大学,2007,45-50
    [139] J. L. Starck, M. Elad, D. L. Donoho. Redundant multiscale transforms and their applicationfor morphological component analysis[J]. Advances in Imaging and Electron Physics,2004,132(82):287-348
    [140] P. G. Georgiev, F. Theis, A. Cichocki. Sparse component analysis and blind sourceseparation of underdetermined mixtures[J]. IEEE Transactions on Neural Network,2005,16(4):992-996
    [141] M. Zibulevsky, B. A. Pearlmutter. Blind source separation by sparse decomposition in asignal dictionary[J]. Neural Computation,2001,13(4):863-882
    [142] J. L. Starck, M. Elad, D. L. Donoho. Image decomposition via the combination of sparserepresentation and a variational approach[J]. IEEE Transaction on Image Processing,2005,14(10):1570-1582
    [143]汪洋,肖亮.基于过完备稀疏表示分类字典的图像形态分量分析新算法[J].电子学报,2010,13(4):78-83
    [144]李映,张艳宁,许星.基于信号稀疏表示的形态成分分析:进展和展望[J].电子学报,2009,37(1):146-152
    [145]张涛,洪文学.基于自适应字典选择的MCA图像修复方法[J].光学技术,2010,36(5):672-676
    [146] S. Mallat, Z. Zhang. Adaptive time-frequency decompositions with matching pursuit[C].Proceedings of SPIE-The International Society for Optical Engineering,1994,22(42):402-413
    [147] S. D. Candes. Extrapolation and spectral estimation with iterative weighted normmodification[J]. IEEE Transactions on Signal Processing,1991,39(4):842-851
    [148] M. Petro. Ultrasonic guided waves in bone[J]. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control,2008,55(6):1277-1286
    [149] S. J. Jin. Subset Study on ultrasonic guided waves in fluid-filled pipes surrounded bywater[J]. Mathematical Problems in Engineering,2003,51(3):760-770
    [150]刘飞.COMSOL在超声中的应用[R].北京:北京工业大学无损检测与评价研究所,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700