用户名: 密码: 验证码:
实验和理论模拟研究共聚焦X射线荧光谱仪的性能及对古文物的层状结构分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对微材料、样品元素分布信息的日益重视,能够进行无损测量的微束X射线荧光光谱分析(MXRF)得到了充分的发展。近两年国际上已经研究出多台三维共聚焦X射线荧光谱仪,并对其应用发展作了一定的研究。
     本文介绍了北师大低能所X光室利用Mo靶微焦斑光源研制的三维共聚焦X射线荧光谱仪,该谱仪是以微焦斑光源前加会聚透镜和探测器前加半透镜构成的双透镜共聚焦系统。文中对该三维共聚焦X射线荧光谱仪的基本性能作了详细的测量,其中包括对共聚焦荧光谱仪的空间分辨率(FWHM)、深度分辨率及其与荧光能量的关系、最小探测极限的测量。根据三维共聚焦X射线荧光谱仪自身的特点,我们利用对古陶瓷、故宫壁画等样品的深度分析,发展了对层状样品的无损探测方法,并对无损探测方法的优势和劣势作了分析。
     本文也详细介绍了使用同步辐射光源研制的一台新的三维共聚焦X射线荧光谱仪。该谱仪是在北京高能所同步辐射荧光站上搭建的,是以同步辐射光源前加Kirkpatrick–Baez mirrors(KB镜)和探测器前加半透镜构成的共聚焦系统。与双透镜共聚焦系统相比,该谱仪一个很大的优点:调节共焦斑用时很短,能够节省大量的时间。利用该荧光谱仪,我们对壁画、小叶黄杨和大气颗粒物进行了分析。
     三维共聚焦X射线荧光谱仪是一种新发展的微束荧光分析设备,需要有理论的证实和指导。文中根据X射线荧光强度的理论计算和X光透镜出射光束的光强分布建立了三维共聚焦X射线荧光谱仪的理论模型。并利用该理论模型进行了一系列的模拟实验,与真实的实验结果符合很好。使用该理论模型,还可以进行实验条件下无法进行的实验,对实验的设计和构思有很好的指导作用。
The concern about element distribution information of micro material and micro zone of sample is getting more deeply nowadays. And the micro X-ray fluorescence analysis which is a scatheless method for samples has a great development. In recent years, people developed a kind of new 3D confocal X-ray fluorescence spectrometer and studied the application of the new spectrometer.
     In this paper, we introduced the new 3D confocal X-ray fluorescence spectrometer in Institute of Low Energy Nuclear Physics, Beijing Normal University, which consists of a monolithic polycapillary lens in the excitation channel and a half-lens in the detection channel, placed in front of a micro-focus X-ray tube and of a Si detector respectively. We investigated the confocal X-ray fluorescence spectrometer’s performance- the FWHM of three-dimensional confocal volume, the relationship between the FWHM and X-ray energy, the depth resolution and the minimum detect limit. Moreover, using ancient ceramics samples, we measured the layered structure with scatheless method and analyzed the merits and demerits of the scatheless method.
     At the same time, a new confocal X-ray fluorescence facility with synchrotron radiation source based on polycapillary x-ray optics in the detection channel and Kirkpatrick–Baez (KB) mirrors in the excitation channel is designed. With this confocal facility, we measured the several kinds of samples.
     In this paper, a simulation model was built based on the theories calculation of X-ray fluorescence strength and the X-ray beams’distribution of X-ray lens. Using the simulation model, we made a series of simulation experiments, and the simulation results were in good agreement with the experimental results.
引文
[1] 吉昂,陶光仪,卓尚军等. X 射线荧光光谱分析[M]. 北京:科学出版社,2003.
    [2] 庹先国,徐争启,郭向利.能量色散 X 射线荧光光谱仪的进展.岩矿测试,2002,21:48–49.
    [3] 齐文启,汪志国.X 射线荧光分析法及其在环境监测中的应用.环境监测管理与技术,2004,16(4):9–12.
    [4] E. Selin,P. Standzenieks,J. Boman,V. Teeyasoontranont.Multi-element analysis of tree rings by EDXRF spectrometry.X-Ray Spectrometry,1993,22(4):281–285.
    [5] Jerzy Ostachowicz,Beata Ostachowicz,Barbara Holyńska,Wladys law Baran. Application of EDXRF in a survey of concentrations of lead, zinc and arsenic in soil from selected areas in Krakow, Poland. X-Ray Spectrometry,1995,24(2):81–83
    [6] Motoyuki Yamagami,Masahiro Nonoguchi,Takashi Yamada etc. VPD/TXRF Analysis of Trace Elements on a Silicon Wafer. X-Ray Spectrom,1999,28:451–455.
    [7] 田宇,刘恺,邬旭然,郑素华.基于全反射原理的 X 荧光分析技术及其应用研究.光谱学与光谱分析,1999,16(3),430–433.
    [8] 罗立强. X 射线光谱分析的现状与趋势.光谱学与光谱分析,2006,26(1):189–191.
    [9] 杨明太,张连平. 全反射 X 射线荧光分析. 核电子学与探测技术. 2002,22(6):572-575.
    [10] 田宇,刘恺,邬旭然,郑素华.基于全反射原理的X 荧光分析技术及其应用研究.光谱学与光谱分析,1999,16(3),430–433.
    [11] 陈雪亮 , 巩岩 , 陈波. 掠出射 X 射线荧光分析技术与掠入射 X 射线荧光分析技术,光学精密工程. 2004,02 期,
    [12] 黄宇营,李光城,何伟,吴应荣.北京同步辐射X 射线荧光微束分析进展.报告.
    [13] Yingrong Wu, Zhiyu Chao, Yanan Xiao, Juxiang Pan, Esheng Tang, XRF Experiments at BSRF, Nuclear Instruments and Methods in Physics Research A 1995,359:291.
    [14] John D. Frantz, H.K.Mao, Yi-Gang Zhang et al, Chem. Geol., 1988,69:235.
    [15] 严京峰,吴念祖,张宏霞,谢有畅,唐有祺,朱永法,姚文清. MoO3 在 Al2O3 薄膜表面扩散的研究物理化学学报. 1999,8:
    [16] 颜一鸣,丁训良.使用 X 光聚束系统的 X 射线荧光分析,核技术,1994,17(6):340-342
    [17] 丁训良 赫业军 颜一鸣, X 光透镜在 μ -XRF 分析中的应用,原子核分析技术,1997,14(3):155-158
    [18] 丁训良 刘志国 潘秋丽 颜一鸣, 一种新型的微束 XRF 谱仪,核技术, 2004,27(10):778-782
    [19] I.C.Noyan, P.C.Wang, S.K.Kaldor, J.L. Jordan-Sweet and E.G.Liniger. Divergence effectsin monochromatic x-ray microdiffraction using tapered capillary optics. REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71(5): 1991-2000.
    [20] L. Vincze and C. Riekel. Status and perspectives of capillary optics at a third-generation synchrotron radiation source. X-Ray Spectrom , 2003, 32: 208–214
    [21] Rong Huanga and Donald H. Bilderbacka, Single-bounce monocapillaries for focusing synchrotron radiation: modeling, measurements and theoretical limits. J. Synchrotron Rad. 2006. 13, 74–84
    [22] Kumakhov K M, Komarov F F. Phys Rep 191, 1990, 5:289
    [23] M.A.Kumakhov. SPIE, 1998-2000, 4155:2
    [24] A B Bинoгpaдoв,И В ,Кoжeвниkoв,ЖТФ, 1984, 9: 1755
    [25] M.A.Kumakhov. et al. SPIE, 1998-2000, 4155:148
    [26] Ding Xunliang, et al. Journal of Beijing Normal University (Natural sience), 1995, 31(Sup): 40
    [27] Yan Yiming, et al. Journal of Beijing Normal University(Natural Science),1995,31(Sup):20
    [28] Wang Dachun, et al. Journal of Beijing Normal University(NaturalScience), 1995, 31(Sup): 51
    [29] Ding Xunliang, et al. Journal of Beijing Normal University(Natural Science), 1995, 31 (Sup): 75
    [30] Ding Xunliang, et al. X-ray Spectrom, 1997, 26:374
    [31] D.M.Gibson, et al.EDRS-98,San Giovanni in Monte Bologna,ITALY,7-12 June,1998
    [32] J.B. Ullich, V.Kovantsev, C.A.MacDonald, Measurements of polycapillary x-ray optics, J.Appl.Phys., 74 (1993), 5933
    [33] Wang L., Rath B.K., Gibson W.M. Kimball J.C. and McDonalds C.A., J. Appl. Phys., 80, (1996), 3628.
    [34] K.Furuta, Y.Nakayama, M.Shoji, R.Kaigawa,K.Hanamoto, H.Nakano, Y.Hosokawa, Theoretical consideration of intensity of an x-ray microbeam formed by a hollow glass pipe, Rev. Sci. Instrum., 64, (1993), 135.
    [35] L. Vincze, K.Janssens, F.Adams, A.Rindby, P.Engstrom, Interpretation of capillary generated spatial and angular distributions of x rays: Theoretical modeling and experimental verification using the European Synchrotron Radiation Facility Optical beam line, Rev. Sci. Instrum., 69, (1998), 3494.
    [36] Brown F.C., Kim, K.H., Heald B.M., and Stern E.A., Use of the program SHADOW in designing a capillary focusing beamline, Rev. Sci. Isctrum., 67(9), (1996), 3379.
    [37] Liu A., Simulation of X-ray propagation in a straight capillary, Mathematics and Computers in Simulation, 65(3), (2004), 251-256.
    [38] Liu A. and Lin Y., Simulation of X-ray transmission in capillaries with different profiles, Mathematics and computers in Simulation, 66(6), (2004), 577-584
    [39] Chen B., A new algorithm for x-ray transmission through a cylinder capillary, Nucl.Instrum. & Methods in phys. Res. B, 170, (2000), 230-234
    [40] 颜一鸣,等.整体平行束 X 透镜及其在衍射技术中的应用.1997,14(3):151
    [41] 李玉德,赫业军,等。 北京师范大学学报(自然科学版), 1999, 35 :208
    [42] Yan Yiming, Ding Xunliang. Nucl Instrum and Meth, 1993, B82 : 121
    [43] Ding Xunliang, et al. Journal of Beijing Normal University (Natural Science), 1995, 31(Sup) : 40
    [44] 谢晋东,丁训良,赫业军,潘秋丽,魏福忠,颜一鸣.整体 X 光会聚透镜及其在微束 X射线荧光分析中的应用.北京师范大学学报(自然科学版),1999,35(1):46–49.
    [45] 闫玉梅,丁训良,潘秋丽.整体 X 光透镜对点源、面源、线源的传输效率的计算.北京师范大学(自然科学版),2003,39(2):178-183.
    [46] 王大 椿 陈 俊 李 玉 德 赫 业 军 颜一鸣. X 光透镜在 X 射线衍射技术中的应用. 核技术. 2003, 3: 221-223.
    [47] M E L I S S A A . D E N E C K E , K O E N J A N S S E N S , K R I S T O F P R O O S T , J O? R G R O T H E , A N D U L R I C H N O S E C K. Confocal Micrometer-Scale X-ray Fluorescence and X-ray Absorption Fine Structure Studies of Uranium Speciation in a Tertiary Sediment from a Waste Disposal Natural Analogue Site Environ. Sci. Technol. 2005, 39, 2049-2058
    [48] L. Vincze, B. Vekemans, F.E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, F. Adams, Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging, Anal. Chem. 76 (2004) 6786–6791.
    [49] a.r. woll, j. mass, c. bisulca, r. huang, d.h. bilderback, s. gruner, n. gao. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source. Appl. Phys. A 83, 235–238 (2006)
    [50] Wolfgang Malzer, Brigit Kanngie?er. A model for the confocal volume of 3D micro X-ray fluorescence spectrometer. Spectrochimica Acta Part B. 2005, 60: 1334-1341
    [51] Wolfgang Malzer, 3D MICRO X-RAY FLUORESCENCE ANALYSIS. THE RIGAKU JOURNAL. 2006, 23: 40-47
    [52] Kouichi Tsuji, Kazuhiko Nakano, Xunliang Ding. Development of Confocal Micro-XRF Instrument using Two X-ray Beams. Spectrochimica Acta Part B: Atomic Spectroscopy. In press.
    [53] Kouichi Tsuji, and Kazuhiko Nakano. Development of confocal 3D micro-XRF spectrometer with dual Cr–Mo excitation. X-Ray Spectrom. 2007; 36: 145–149
    [54] B. Kanngieβer, W. Malzer, I. Reiche, A new 3d micro X-ray fluorescence analysis set-up — first archaeometric applications, Nucl. Instrum. Methods Phys. Res., B Beam Interact. Mater. Atoms 211 (2003) 259–264.
    [55] K. Janssens, K. Proost, G. Falkenberg, Confocal microscopic X-ray Fluorescence at the hasylab microfocus beamline: characteristics and possibilities, Spectrochim. Acta, Part B: Atom. Spectrosc. 59 (2004) 1637– 1645.
    [56] Z. Smit, K. Janssens, K. Proost, et al.. Confocal μ-XRF depth analysis of paint layers[J]. Nuclear Instruments and Methods in Physics Research B,2004,219–220:35-40.
    [57] B. Kanngieher, W. Malzer, A.F. Rodriguez, I. Reiche, Threedimensional micro-XRF investigations of paint layers with a tabletop setup, Spectrochim. Acta, Part B: Atom. Spectrosc. 60 (2005) 41– 47.
    [58] Kouichi Tsuji, Kazuhiko Nakano, Xunliang Ding. Development of confocal micro X-ray fluorescence instrument using two X-ray beams. Spectrochimica Acta Part B. 2007, 62 549–553
    [59] Tianxi Sun and Xunliang Ding,Measurements of energy dependence of properties of polycapillary x-ray lens by using organic glass as a scatterer[J]. JOURNAL OF APPLIED PHYSICS. 2005, 97, 124904
    [60] Tianxi Sun, Zhiguo Liu, and Xunliang Ding. Characterization of a polycapillary focusing X-ray lens for application in spatially resolved EXAFS experiments. 2007, 31: 105
    [61] Tianxi Sun and Xunliang Ding, Measurements of energy dependence of properties of polycapillary x-ray lens by using organic glass as a scatterer. J. Appl. Phys. 2005, 97, 124904
    [62] Jalas P, Sipila H, Eranen S, et al.. X-Ray Spectrom[J],1995,24:63-69.
    [63] K. Proost,L. Vincze,K. Janssens,et al.. Characterization of a polycapillary lens for use in micro-XANES experiments[J]. X-Ray Spectrom,2003,32:215–222.
    [64] 丁训良 赫业军 颜一鸣, X 光透镜在 L- XRF 分析中的应用. N uclear Physics Review. 1997, 14 (3): 155-158
    [65] 李国霞 , 韩松 , 赵维娟 , 贾秀琴 , 高正耀 , 黄忠祥 , 李融武 , 姚桂芳 , 谢建忠 , 吴晓力. 中子活化分析在古陶瓷原料产地研究中的应用. 原子核物理评论. 2000, 4:
    [66] 李国霞 , 胥爱军 , 李融武 , 谢建忠 , 冯松林 , 范东宇 , 张颖 , 柴之芳 , 禚振西 , 高正耀 , 赵维娟. 古耀州瓷釉起源的中子活化分析. 原子核物理评论. 2003, 4:
    [67] 赵维娟 , 谢建忠 , 李融武 , 张斌 , 高正耀 , 李国霞. 用中子活化分析法研究古钧瓷和古汝瓷起源关系. 核技术. 2002, 2:
    [68] 李国霞 , 赵维娟 , 李融武 , 孙洪巍 , 郭敏 , 王彦芳 , 刘慧 , 赵青云 , 孙新民 , 赵文军 , 承焕生. 汝官瓷和钧官瓷胎料来源的质子激发 X 射线荧光分析. 中国科学 G辑. 2006, 3
    [69] 赵维娟 , 李国霞 , 谢建忠 , 郭敏 , 鲁晓珂 , 高正耀 , 承焕生 , 张斌 , 孙新民 , 郭木森 , 靳雯清. 用 PIXE 方法分析汝州张公巷窑与清凉寺窑青瓷胎的原料来源. 科学通报. 2004, 19:
    [70] S.X. Zhang, Palace Museum Journal. 2003, 3: 54.
    [71] C. Liu, J. Cao, S.W. Wang, Palace Museum Journal. 2004, 1: 13.
    [72] 初学莲 , 林晓燕 , 程琳 , 潘秋丽 , 杨君 , 丁训良. 微束 X 射线荧光分析谱仪及其对松针中元素的分布分析. 北京师范大学学报(自然科学版). 2007, 5:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700