用户名: 密码: 验证码:
离子液体中纳米碳酸锶形貌可控合成及其成核动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸锶(SrCO3)作为一种重要的化工原料,广泛应用在显像管玻壳、小型磁性电机、荧光材料等生产中。超细碳酸锶尤其是纳米级高纯SrCO3是一种现代电子元器件的基础材料之一,具有良好的发展前景。离子液体(ILs)是一种潜在的绿色溶剂,常被用于化工反应、分离及纳米材料制备中。本文的主要目的是采用ILs作为模板剂和反应介质来控制合成不同形貌的纳米SrCO3,研究SrCO3形貌与性能之间的关系,并从ILs对纳米SrCO3的成核动力学影响规律解释纳米SrCO3制备的机理问题。主要研究成果如下:
     (1)利用不同ILs对纳米SrCO3的形貌控制作用,在ILs-水体系中制备出了纳米晶须,纳米梭、纳米棒、海葵状聚集体等纳米SrCO3晶体。研究发现:功能性离子液体1-(2-羟基乙基)-3-甲基咪唑双(三氟甲磺酰基)亚胺盐([HOEmim]NTf2)因能与CO2发生化学反应而增加了溶液中CO2的浓度,体系成核速率大,获得的SrCO3晶体颗粒小。改变体系中1-丁基-3-甲基咪唑六氟磷酸盐([C4mim]PF6)离子液体的浓度可实现不同形貌纳米SrCO3的可控制备。采用1-丁基-3-甲基咪唑氯盐([C4mim]Cl)为反应介质,考察不同时间间隔SrCO3的形貌演化过程,提出了“晶核-纳米梭-棒形-花束形聚集体-海葵状聚集体”的SrCO3晶体形貌演化模型。不同形貌的SrCO3在紫外-可见光范围内都表现出吸收现象,粒径越小,比表面积越大,对紫外-可见光的吸收越强。
     (2)以ILs-甲醇混合液作为CO2+Sr(OH)2的碳化反应介质,分别制备出了纳米晶须、纳米梭形、椭球体、球形聚集体、纳米球、棒形聚集体等SrCO3晶体,产品的均匀性和分散性好,纳米球的直径仅为80nm。甲醇在体系中起到了增加Sr(OH)2溶解度的作用,因而制备出的纳米SrCO3的形貌及均匀性比ILs-水中好。不同浓度的[C4mim]Cl可实现对SrCO3不同形貌和粒径的调控。反应温度高有利于减小产品的粒径。不同形貌的纳米SrCO3,其开始分解的温度不同,粒径越小,表面越粗糙,开始分解温度越低。实验结果表明,纳米球和纳米晶须的分解温度最低为938℃,而不定形SrCO3分解温度最高为1000℃。
     (3)在甲醇-水体系中成功合成出椭球形、棒形、哑铃形纳米SrCO3多级结构。纯甲醇中制备的纳米SrCO3晶体结晶度低,反应温度低有利于多孔结构SrCO3的形成。水-甲醇体系中反应得到了高结晶度和高长径比的棒形碳酸锶。红外分析表明,甲醇通过氢键作用影响碳酸锶晶体的表面自由能,从而改变SrCO3的形貌。N2等温吸附-脱附分析表明,哑铃型碳酸锶的比表面积为14.9m2·g-1,具有中孔结构,孔径分布为12-32nm。
     (4)采用溶剂热法在ILs-水体系中制备出具有特殊形貌的花状聚集体、高长径比纳米棒、六面体结构椭球体、纳米球和空心微球等特殊形貌纳米SrCO3晶体。研究表明,疏水型离子液体通过微乳液影响产品SrCO3的形貌,亲水型离子液体通过晶面吸附改变晶体的形态。熟化温度高,产品的晶粒小,延长熟化时间SrCO3晶体发展越完全。通过对ILs中合成的SrCO3:1%Eu3+的荧光性质研究发现,产品在325nm激发光下激发的荧光发光光谱以5Do-7F2跃迁激发的614nnl红光为主。三种掺杂了铕离子的不同形貌碳酸锶荧光强度顺序为:花状聚集体>纳米球>空心微球。
     (5)通过扫描电子显微分析技术(SEM)和原子吸收分光光度技术(AAS),研究了添加1-辛基-3-甲基咪唑溴盐([C8mim]Br)离子液体对Sr(OH)2-CO2-H2O碳化体系成核动力学的影响。在cSr(OH)20=0.lmol·dm-3时,[C8mim]Br添加量的不同直接影响到碳化速率的演化过程,[C8inim]Br添加量越大,碳化速率越慢。在碳化开始的很短时间内,SrCO3成核速率快,体系中Sr(OH)2主要消耗于SrCO3的成核。SrCO3的成核速率J随反应进程逐渐变小。添加72.7mmol [C8mim]Br下,反应进行到20s时,SrCO3的成核速率达84.9×1017number·m-3·s-1,而晶体的线生长速率为0.63nm·s-1。随着[C8mim]Br添加量的增大,SrCO3的成核速率增大,[Cgmim]Br的添加促进了碳化结晶过程中SrCO3的非均相成核。
Strontium carbonate (SrCO3) is one of the basic chemical reagents, and it has been widely used in the producing of glass for color television tubes, ferrite magnets for small DC motors and fluorescence materials etc. Superfine SrCO3with high purity is one of basic material in modern manufacturing electronic units and has bright use potential. Ionic liquids (ILs) has been regarded as one of green solvents and been used in chemical reaction, separation process and nanomaterials preparation. The main goals of this article is to use ILs as template agents and reaction media to synthesis nanostructure SrCO3with different morphology and try to explain the mechanism of how ILs effect the nucleation kinetics when prepare nanostructure SrCO3in ILs. The performances of the different morphology nanostructure SrCO3have also been investigated. The main results are as follow.
     (1) By used the different ILs, we successfully prepared nano SrCO3with special morphology such as nanowhisker, nanospindle, nanorod, seaflower-like aggregate etc. and it is found that SrCO3synthesis in ILs with special task groups [HOEmim]NTf2gain smaller particle; different concentration of [C4mim]PF6can modulate suitable reaction environment, and it lead the auto assembling nano SrCO3with special morphology. When [C4mim]Cl was taken into account as reaction media, by recording the morphology of SrCO3in different time interval using SEM techniques, we propose the model of "nucleus-nanospindle-rodlike-flower bundles aggregate-seaflower aggregate" morphology evolution. The different morphology nano SrCO3shows good UV-Vis absorption phenomena, and the smaller particle, the stronger UV-Vis absorption it revealed.
     (2) In ILs-methanol bi-system, nano SrCO3with special morphology such as nanowhisker, nanospindle, ellipsoidal, sphere aggregate, nanosphere, rodlike aggregate, etc. have been obtained. The as-synthesized product show good uniformity and monodisperse, the diameter of nanosphere is about80nm. Methanol can enhance the solubility of Sr(OH)2in the system, and the morphology and uniformity of nano SrCO3obtained better than that obtained in ILs-water system. However, when the higher reaction temperature was presented the smaller diameter of the product it has. Different diameters of nano SrCO3show different initial decomposing temperature. The smaller grain and the rougher surface, the lower decomposing temperature it has. The experimental results indicate that nanosphere and nanowhisker showed the lowest decomposition temperature of938℃, and the irregular shape SrCO3showed the decomposition temperature as high as1000℃
     (3) In water-methanol system, nano SrCO3with dumbbell like, ellipsoidal and high length to diameter ratio of rodlike have been obtained. Nanometer SrCO3crystal prepared in pure methanol shows low crystallinity, low reaction temperature is beneficial to the formation of the porous structure. FTIR analysis show that the hydrogen bond was found in the product indicate the methanol's absorption can low down the surface free energy of strontium carbonate crystal nucleus, thereby change the morphology of SrCO3, N2isothermal adsorption-desorption analysis showed that the dumbbell strontium carbonate surface area is14.9m2·-g-1, and its pore size distribution is range from12nm to32nm.
     (4)By using solvothermal method, nanostructure of SrCO3with morphology of flower-like aggregate, nanorod, hexahedral ellipsoids, nanosphere, hollow microsphere etc. has been obtained. Study results revealed that hydrophobic ionic liquids can affect SrCO3morphology by microemulsion while hydrophilic ionic liquids can change the crystal morphology by absorbing certain crystal plane. The higher the solvothermal temperature, the smaller grain size the product it has; by prolong the solvothermal time, the strontium carbonate crystal development more completely. By studying the fluorescence properties of SrCO3:1%Eu3+with different morphology synthesis in ILs, it is found that under325nm light excitation, the spectra of the luminous intensity central around614nm and it belongs to red light region, which is due to the electron transition of5D0-7F2. The order of the intensity of fluorescence prepared from three different morphology of strontium carbonate is:flowerlike aggregate> nanosphere> hollow microsphere.
     (5) By using the technology of scanning electron microscope (SEM) and atomic absorption spectrophotometer (AAS), we studied the effect of the present of [Cgmim] Br to the nucleation kinetics in Sr (OH)2-CO2-H2O carbonation system. With a starting concentration of cSr(OH)20=0.1mol·dm-3, the relationship between the heterogeneity nucleation rate J and time reveals that in the starting period of nucleation, nucleation took place rapidly, the Sr(OH)2in the system were mainly supplied the nucleation of SrCO3crystallization, and the nucleation speed decreased as the crystallization proceeding. Higher concentration [C8mim]Br resulted in lower carbonation speed. At20s after reaction, the present of72.7mmol [C8min]Br can reach a nucleation rate of84.9×1017number·m-3·s-1and a growth speed of0.63nm·s-1. High concentration [C8mim]Br can speed up the nucleation rate. The presented of [C8mim]Br can promote the heterogeneity nucleation.
引文
[1]Seddon R. K. Ionic liquids for clean technology [J]. Chemical Biotechnology,1997(2): 351-356.
    [2]Holbrey J. D., Seddon R. K. The phase behavior of 1-alkyl-3-methylimidazolium tetrafluoro-borates:ionic liquids and ionic liquids crystals [J]. J. Chem. Soc. Dalton Trans.,1999,13:2133-2139.
    [3]Wasserscheid P., Keim W. Ionic liquids-new"solution" for transition metal catalysis [J]. Angew. Chem. Int. Ed.,2000,39:3773-3789.
    [4]Wier T. P., Hurley F. H., US Pat.,4446349 (1948)
    [5]Wilkes J. S. A short history of ionic liquids-from molten salts to neoteric solvents [J]. Green Chem.,2002,4(2):73-80.
    [6]Chum H. L., Koch A. R., Miller L. L. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt [J]. J. Am. Chem. Soc.,1975,97(11):3264-3265.
    [7]Wilkes J. S., Levisky J. A., Wilson R. A., Hussey C. L. Dialkylimidazolium chloroaluminate mmelts:a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis [J]. Inorg. Chem.,1982,21(3): 1263-1264.
    [8]Hussey C. L. Room temperature haloaluminate ionic liquids-novel solvents for transition metal solution chemistry [J]. Pure & Appl. CHem.,1988,60(12):1763-1772.
    [9]Sun J., Zhang S., Cheng W., et al. Hydroxyl-functionalized ionic liquid:a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate [J]. Tetrahedron Letters,2008,49:3588-3591.
    [10]Yu G., Zhang S., Yao X., et al. Design of Task-Specific Ionic Liquids for Capturing CO2: A Molecular Orbital Study [J]. Ind. Eng. Chem. Res.,2006,46:2875-2880.
    [11]Li P. Synthesis of Room Temperature Ionic Liquid Based Polyimides for Gas Separation [D]. Singapore:National University of Singapore,2010.
    [12]Brennecke J. F., Maginn E. J. Ionic liquids:Innovative fluids for chemical processing [J]. AICHEJ,2001,47(11):2384-2389.
    [13]Ahmed E, Ahrens E., Heise M., et al. An Ionic Liquid Based Single Step Room Temperature Route for the Synthesis of Molybdenum Cluster Compounds [J]. Z. Anorg. Allg. Chem.,2011:961-964.
    [14]Yu P., Zu Y., Fu Y., et al. Catalytic Synthesis of a-Oxoketene S,S-Acetals in a Wet Ionic Liquid [Bmim]Cl/H2O Homogeneous System [J]. Molecules,2011(16):4500-4510.
    [15]Shiflett M. B., Niehaus A. M. S., Yokozeki A. Separation of N2O and CO2 Using Room-Temperature Ionic Liquid [bmim][BF4] [J]. J. Phys. Chem. B,2011,115: 3478-3487.
    [16]Jindaratsamee P., Shimoyama Y., Morizaki H., et al. Effects of temperature and anion species on CO2 permeability and CO2/N2 separation coefficient through ionic liquid membranes [J]. J. Chem. Thermodynamics,2011,43:311-314.
    [17]Stepinski D. C., Vandegrift G. F., Shkrob I. A. Extraction of Tetra-Oxo Anions into a Hydrophobic, Ionic Liquid-Based Solvent without Concomitant Ion Exchange [J]. Ind. Eng. Chem. Res.,2010,49:5863-5868.
    [18]Der U. S., Wadhawan J. D., Compton R. G., et al. Water-induced accelerated ion dilusion:voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids [J]. New J. Chem.,2000,24:1009-1015.
    [19]王均凤,张锁江,陈慧萍等.离子液体的性质及其在催化反应中的应用[J].过程工程学报,2003,3(2):177-185.
    [20]John A. D. Lange's Handbook of Chemistry (the 15th edition). [M]. New York:McGraw Hill,1999.
    [21]Mateus N. M., Branco L. C., Afonso C. A. Synthesis and properties of tetra-alkyl-dimethylguanidinium salts as a potential new generation of ionic liquids [J]. Green Chem.,2003,5(3):347-352.
    [22]Mateus N. M. M., Branco L. C. An ionic liquid based on a cyclic guanidinium cation is an effecient medium for the selective oxidation of benzyl alcohols [J]. Tetrahedron Lett.,2004,29(12):1430-1431.
    [23]Matsumoto H., Matsuda, Miyazaki. Room temperature molten salts based on trialkylsulfonium cations and bis(trifluoromethylsulfonyl)imide [J]. Chem. Lett.,2000, 45(9):1430-1431.
    [24]Stegemann H. Rohde, Reiche A, Schnittke A. Room-temperature molten polyiodides [J]. Electrochim. Acta,1992,37(3):379-383.
    [25]Pujol-Fortin M. L., Galin J. Poly(ammonium alkoxydicyanoethenolates) as new hydrophobic and highly dipolar poly(zwitterions) 1. Synthesis [J]. Macromolecules, 1991,24(16):4523-4530.
    [26]张锁江,吕兴梅等.离子液体-从基础研究到工业应用[M].北京:科技出版社,2006.
    [27]Seddon K. R., Stark A., Torres M. J. [M]. Washington:American Chemical Society, 2002.
    [28]Camper D., Scovazzo P., Koval C, et al. Gas solubilities in room-temperature ionic liquids [J]. Ind. Eng. Chem. Res.,2004,43:3049-3054.
    [29]Yu G., Zhang S., Zhou G., et al. Structure, interaction and property of amino-functionalized imidazolium ILs by molecular dynamics simulation and ab initio calculation [J]. AIChE J.,2007,53:3210-3221.
    [30]Hanioka S., Maruyama T., Sotani T., et al. CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane [J]. J. Membr. Sci.,2008,314:1-4.
    [31]Anderson J. L., Dixon J. K., Brennecke J. F. Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-hexyl-3-methylpyridinium bis (trifluoromethylsulfonyl)imide:comparison to other ionic liquids [J]. Ace. Chem. Res.,2007,40:1208-1216.
    [32]Urukova I., Vorholz J., Maurer G. Solubility of CO2, CO, and H2 in the Ionic Liquid [Bmim][PF6] from Monte Carlo Simulations [J]. J. Phys. Chem. B,2005,109(24): 2154-12159.
    [33]Shariati A., Gutkowski K., Peters C. J. Comparison of the phase behavior of some selected binary systems with ionic liquids [J]. AIChE,51(1):1532-1540.
    [34]Shariati A., Peters C. J. The Journal of Supercritical Fluids [J]. High-pressure phase equilibria of systems with ionic liquids,2005,34(2):171-176.
    [35]Aki S. N. V. K, Mellein B. R., Saurer E. M., et al. High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids [J]. J. Phys. Chem. B, 2004,108(52):20355-20365.
    [36]Cadena C., Anthony J. L., Shah J. K., et al. Why Is CO2 So Soluble in Imidazolium-Based Ionic Liquids? [J]. J. Am. Chem. Soc.,2004,126:5300-5308.
    [37]Kurnia K. A., Harris F., Wilfred C. D., et al. Thermodynamic properties of CO2 absorption in hydroxyl ammonium ionic liquids at pressures of (100-1600) kPa [J]. J. Chem. Thermodynamics,2009,41:1069-1073.
    [38]Zhang L., Wang J., Xiang Y., et al. Absorption of Carbon Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor:Mass Transfer Study [J]. Ind. Eng. Chem. Res.,2011, 50:6957-6964.
    [39]刘丙艳,刘培元,王国平,等.[Bmim]BF4-H2O-Na2CO3离子液体双水相体系液液相平衡数据的测定与关联[J].化工学报,2007,58(8):1885-1890.
    [40]Kumelan J., Kamps A. L. P. R., Tuma D., et al. Solubility of CO2 in the ionic liquid [hmim][Tf2N] [J]. J. Chem. Thermodynamics,2006,38:1396-1401.
    [41]Raeissi S., Peters C. J. Carbon Dioxide Solubility in the Homologous 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Family [J]. J. Chem. Eng. Data,2009,54:382-386.
    [42]Swatloski P. R., Spear S. K., Holbrey J. D., Rogers R. D. et al. Journal of the American Chemical Society [J],2002,124:4974-4975.
    [43]Zhou Y., Schattka J. H., Antonietti M. Room-Temperature Ionic Liquids as Template to Monolithic Mesoporous Silica with Wormlike Pores via a Sol-Gel Nanocasting Technique [J]. Nano Letters,2004,4(3):477-481.
    [44]Zhou Y., Antonietti M. Preparation of Highly Ordered Monolithic Super-Microporous Lamellar Silica with a Room-Temperature Ionic Liquid as Template via the Nanocasting Technique [J]. Advanced Materials,2003,15(17):1452-1455.
    [45]Zhou Y., Antonietti M. A Series of Highly Ordered, Super-Microporous, Lamellar Silicas Prepared by Nanocasting with Ionic Liquids [J]. Chem. Mater.,2004,16(3): 544-550.
    [46]Zhou Y., Antonietti M. Synthesis of Very Small TiO2 Nanocrystals in a Room-Temperature Ionic Liquid and Their Self-Assembly toward Mesoporous Spherical Aggregates [J]. J. Am. Chem. Soc.,2003,125(49):14960-14961.
    [47]Nakashima T., Kimizuka N. Interfacial synthesis of hollow TiO2 microspheres in ionic liquids [J]. J. Am. Chem. Soc.,2003,125(49):6386.
    [48]Dupont J., Fonseca G. S., Umpierre A. P., et al. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids:Recycable Catalysts for Biphasic Hydrogenation Reactions [J]. J. Am. Chem. Soc.,2002,124(16):4228-4229.
    [49]Fonseca G. S., Umpierre A. P., Fichtner P. F. P., et al. The Use of Imidazolium Ionic Liquids for the Formation and Stabilization of Ir0 and Rh0 Nanoparticles:Efficient Catalysts for the Hydrogenation of Arenes [J]. Chem. Eur. J.,2003,9:3263-3269.
    [50]Silveira E. T., Ierre A. P. U., Ssi L. M. R., et al. The Partial Hydrogenation of Benzene to Cyclohexene by Nanoscale Ruthenium Catalysts in Imidazolium Ionic Liquids [J]. Chem. Eur. J.,2004,10:3734-3740.
    [51]Scheeren C. W., Machado G., Dupont J., et al. Nanoscale Pt(O) Particles Prepared in Imidazolium Room Temperature Ionic Liquids:Synthesis from an Organometallic Precursor, Characterization, and Catalytic Properties in Hydrogenation Reactions [J]. Inorg. Chem.,2003,42(15):4738-4742.
    [52]Itoh H., Naka K., Chujo Y. Synthesis of Gold Nanoparticles Modified with Ionic Liquid Based on the Imidazolium Cation [J]. J. Am. Chem. Soc.,2004,126:3026-3027.
    [53]Wei G,, Yang Z., Lee C., et al. Aqueous-Organic Phase Transfer of Gold Nanoparticles and Gold Nanorods Using an Ionic Liquid [J]. J. Am. Chem. Soc.,2004,126: 5036-5037.
    [54]Zhu Y., Wang W., Qi R., et al. Microwave-Assisted Synthesis of Single-Crystalline Tellurium Nanorods and Nanowires in Ionic Liquids [J]. Angew. Chem. Int. Ed.,2004, 43:1410-1414.
    [55]Jiang Y., Zhu Y.. Microwave-Assisted Synthesis of Sulfide M2S3 (M) Bi, Sb) Nanorods Using an IonicLiquid [J]. J. Phys. Chem. B,2005,109:4361-4364.
    [56]Li Z., Liu Z., Zhang J., et al. Synthesis of Single-Crystal Gold Nanosheets of Large Size in Ionic Liquids [J].2005,109:14445-14448.
    [57]Dupont J. On the solid, liquid and solution structural organization of imidazolium ionic liquids [J]. J. Braz. Chem. Soc,2004,15(3):341.
    [58]Chen C., Li Q., Nie M., et al. An efficient room-temperature route to uniform ZnO nanorods with an ionic liquid [J]. Materials Research Bulletin,2011,46:888-893.
    [59]Qin Y., Song Y., Huanga T., et al. Ionic liquid-assisted synthesis of thorned gold plates comprising three-branched nanotip arraysw [J]. Chem. Commun.,2011,47:2985-2987.
    [60]Taubert A. CuCl Nanoplatelets from an Ionic Liquid-Crystal Precursor [J]. Angew. Chem.,2004,116:5494-5496.
    [61]Xia J., Yin S., Li H., et al. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid [J]. Dalton Trans.,2011,40:5249-5258.
    [62]Cho S. D., Park H. Ionic liquid-assisted direct synthesis of PdO nanoparticles immobilized on boehmite nanoparticles [J]. Journal of Colloid and Interface Science, 2011,357:46-49.
    [63]Zhang D., Yan T., Li H., et al. Ionic liquid-assisted synthesis and photoluminescence property of mesoporous EuF3 nanospheres [J]. Microporous and Mesoporous Materials, 2011,141:110-118.
    [64]Ward A. J., Pujari A. A., Costanzo L., et al. Ionic liquid-templated preparation of mesoporous silica embedded with nanocrystalline sulfated zirconia [J]. Nanoscale Research Letters,2011,6:192.
    [65]Zhang Q., Liu F., Li L., et al. Magnetic ionic liquid-assisted synthesis of polyaniline/AgCl nanocomposites by interface polymerization [J]. J Nanopart Res,2011, 13:415-421.
    [66]Hu J., Gao F., Shang Y., et al. One-step synthesis of micro/mesoporous material templated by CTAB and imidazole ionic liquid in aqueous solution [J]. Microporous and Mesoporous Materials,2011,142:268-275.
    [67]Xia J., Yin S., Li H., et al. Self-Assembly and Enhanced Photocatalytic Properties of BiOI Hollow Microspheres via a Reactable Ionic Liquid [J]. Langmuir, 2011,27(3):1200-1206.
    [68]Sakamoto T., Oichi A., Oaki Y., et al. Three-Dimensional Relief Structures of CaCO3 Crystal Assemblies Formed by Spontaneous Two-Step Crystal Growth on a Polymer Thin Film [J]. Crystal Growth & Design,2009,9(1):622-624.
    [69]Yu J., Guo H., Cheng B. Shape evolution of SiCO3 particles in the presence of poly-(styrene-alt-maleic acid) [J]. Journal of Solid State Chemistry,2006,179:800-803.
    [70]刘兵.碳酸锶工业化生产发展步入高速成长期[J].中国石油与化工,2006(8):33-34
    [71]Du J., Liu Z., Li Z., et al. Synthesis of mesoporous SrCO3 spheres and hollow CaCO3 spheres in room-temperature ionic liquid [J]. Microporous and Mesoporous Materials, 2005,83:145-149.
    [72]Tagaya A., Ohkita H., Mukoh M., et al. Compensation of the Birefringence of a Polymer by a Birefringent Crystal [J]. Science,2003(301):812-814.
    [73]Li L., Lin R., Tong Z., et al. Facile synthesis of SrCO3 nanostructures in methanol/water solution without additives [J]. Nanoscale Research Letters,2012,7:305.
    [74]Cao M., Wu X., He X., et al. Microemulsion-Mediated Solvothermal Synthesis of SrCO3 Nanostructures [J]. Langmuir,2005,21:6093-6096.
    [75]汪家铭.碳酸锶生产应用及市场前景[J].中国化工,1996(11):54.
    [76]汪家铭.碳酸锶生产应用及市场前景[J].精细与专用化学品,1997(4):16-17.
    [77]刘牡丹,李光辉,董海刚,等.中国碳酸锶工业生产现状与进展[J].无机盐工业,2006(1):9-12.
    [78]Zhang Q., Saito F. Mechanochemical processing of Celestine [J]. Chemical Engineering Journal,1997,66(1):79-82.
    [79]陈英军,韩海霞,王爱广.复分解法制备高纯碳酸锶的研究[J].无机盐工业,2005(3):29-31.
    [80]Li-Min Q., Kai X., Ji-Ming M. Facile synthesis of SiCO3 particles with unusual morphologies [J]. Acta Chim. Sinica.,2003,61(1):126-128.
    [81]Huang Q., Gao L., Cai Y. Synthesis and characterization of strontium carbonate nanowires with a axis orientation and dendritic nanocrystals [J]. Chem. Lett.,2004, 33(3):290-291.
    [82]雷永林,霍冀川,张明轩.软模板调控碳酸锶结晶特性的研究[J].人工晶体学报,2007,36(1):205-209.
    [83]Owusu G., Litz J. E. Water leaching of SrS and precipitation of SrCO3 using carbon dioxide as the precipitating agent [J]. hydrometallurgy,2000,57:23-29.
    [84]Guo G. S., Gu. F. B., Wang Z. H., et al. Low-temperature Growth of Single-crystal SrCO3 Nanoneedles [J]. Chinese Chemical Letters,2005,16(8):1101-1104.
    [85]Rautaray D, Sainkar S R, Sastry M. SrCO3 Crystals of Ribbonlike Morphology Grown within Thermally Evaporated Sodium Bis-2-ethylhexylsulfosuccinate Thin Films [J]. Langmuir,2003,19:888-892.
    [86]毛样武,金卓仁.低温固相反应合成碳酸锶纳米粉体[J].无机盐工业,2002(5):13-14.
    [87]Kother J., Bartz M., Seshadri R., et al. Crystallization of SrCO3 on a self-assembled monolayer substrate:an in-situ synchrotron X-ray study [J]. J. Mater. Chem.,2001,11: 503-506.
    [88]贾上远,刘相果,彭晓东,等.用超声波技术制备高纯SrCO3[J].重庆大学学报,2004,27(11).
    [89]刘骥,向阳,郑冲,等.旋转填充床内液2液法制备碳酸锶纳米粉体[J].化工科技,1999,7(4):11-14.
    [90]李绍国,谭荣喜,周继承.高纯碳酸锶纳米粉体制备的新工艺研究[J].衡阳师范学院学报(自然科学),2004,25(3):57-59.
    [91]温传庚,王开明,周英彦,等.用特殊液相沉淀法制备纳米碳酸锶[J].化工进展,2005,24(5):549-951.
    [92]Rautaray D., Sanyal A., Adyanthaya S. D., et al. Biological Synthesis of Strontium Carbonate Crystals Using the Fungus Fusarium oxysporum [J]. Langmuir,2004,20: 6827-6833.
    [93]Sondi I., Matijevic E. Homogeneous Precipitation by Enzyme-Catalyzed Reactions.2. Strontium and Barium Carbonates [J]. Chem. Mater.,2003,15:1322-1326.
    [94]Wang L., Zhu Y. Effects of Nanostructure on Catalytic Degradation of Ethanol on SrCO3 Catalysts [J]. J. Phys. Chem. B,2005,109:5118-5123.
    [95]Wang L., Zhu Y. An Easy Method to PrePared Nanowire [J]. Chem. Lett.,2003,32(7): 594-595.
    [96]刘恒,周大利,李大成,等.电子陶瓷用高纯碳酸锶制备方法[J].电子元件与材料,1998(6):20-21.
    [97]Shi L., Du F. Solvothermal synthesis of SrCO3 hexahedral ellipsoids [J]. Materials Letters,2007,61:3262-3264.
    [98]Yoshimura M., Suehanek W. L., ByraPPa K. Theme Article-Soft Solution Processing:A strategy for one-step processing of Advance Inorganics material [J]. MRs Bull.,2000, 25(9):12-16.
    [99]Yoshimura M., Suchanek W. In situ fabrication of morphology-controlled advanced ceramic materials by Soft Solution Processing [J]. Solid State Ionics,1997,98(3-4): 197-208.
    [100]胡国兵,余萍,王欢,等.软溶液技术制备钼酸钙薄膜[J].四川大学学报(自然科学版),2005:454-456.
    [101]高道江,肖定全,张文,等.软溶液工艺(SSP)在先进无机材料领域的应用及进展[J].功能材料,2002(3):250-252.
    [102]Yu S., Yoshimura M., Moreno J. M. C., et al. In Situ Fabrication and Optical Properties of a Novel Polystyrene/Semiconductor Nanocomposite Embedded with CdS Nanowires by a Soft Solution Processing Route [J]. Langmuir,2001,17(5):1700-1707.
    [103]Yu S., Yoshimura M. Direct Fabrication of Ferrite MFe2O4 (M= Zn, Mg)/Fe Composite Thin Films by Soft Solution Processing [J]. Chem. Mater.,2000,12(12): 3805-3810.
    [104]郑燕青,施尔畏,李纹军,等.晶体生长理论研究现状与发展[J].无机材料学报,1999,14(3):321-332.
    [105]Gabrielli C., Maurin G., Poindessous G., Rosset. Nucleation and growth of calcium carbonate by an electrochemical scaling process [J]. Journal of Crystal Growth,1999, 200:236-250.
    [106]姚连增.晶体生长基础[M].合肥:中国科学技术大学出版社,1995.
    [107]Sangwal K. Kinetic effects of impurities on the growth of single crystals from solutions [J].1999,203:197-212.
    [108]Wang W., Hu W.R. Concentration distribution in the growth of single crystals from solutions [J]. Journal of Crystal Growth,1999,203:227-233.
    [109]张克从.近代晶体学基础(下册)[M].北京:科学出版社,1998.
    [110]Bennema P. Theory of growth and morphology applied to organic crystals:possible applications to protein crystals [J]. Journal Of Crystal Growth,1992,122:110-119.
    [111]曹富荣,雷方,崔建中,等.超塑变形晶粒长大模型的修正与实验验证[J].金属学报,1999,35(7):770-772.
    [112]Hass C., Drenth J. The interaction energy between two protein molecules related to physical properties of their solution and their crystals and implications for crystal growth [J]. Journal Of Crystal Growth,1995,154:126-135.
    [113]Li M. R., Nadarajah A. Modeling the growth rates of tetragonal lysozyme crystals [J]. Journal Of Crystal Growth,1995,156:121-129.
    [114]Demattei R. C., Feigelson R. S. Controlling nucleation in protein solutions [J]. Journal Of Crystal Growth,1992,122:21-30.
    [115]Ginde R. M., Myerson A. S. Cluster size estimation in binary in binary supersatureated solution [J]. Journal Of Crystal Growth,1992,116:41-47.
    [116]Kozsek Z., Demo P., Sato K. Nucleation of active sites:evolution of size distribution [J]. Journal Of Crystal Growth,2000,209:198-202.
    [117]Polak W.,Sangwal K. Theoretical estimation of solvation parameters and interfacial tension of clusters of potassium hildes in aqueous solutions [J]. Journal Of Crystal Growth,1996,160:154-161.
    [118]Naumann R. J. Analytical estimates of radial segregation in Bridgman growth from low-level steady and periodic accelerations [J]. Journal Of Crystal Growth,1992,121: 751-768.
    [119]Izmailov, F. A, Myerson A. S. Concentration gradient formation in supersatureated vertical columns I. Fokker-Planck approximation [J]. Journal Of Crystal Growth,1992, 121:723-732.
    [120]Ostrogorsky A. G., Muller, G. A model of effective segregation coefficient, accounting for convention in the solution layer at the growth interface [J]. Journal Of Crystal Growth,1992,121:587-598.
    [121]Christoffersen J., Christoffersen M. R. A revised theory for the growth of crystals by surface nucleation [J]. Journal Of Crystal Growth,1992,121:608-616.
    [122]Tomino H., Kusaka I., Nishioka K. Interfacial tension for small nuclei in binary nucleation [J]. Journal Of Crystal Growth,1991,113:633-636.
    [123]Christoffersen J., Rostrup E., Christoffersen M. R. Relation between interfacial surface tension of electrolyte crystals in aqueous and their solubillity:a simpl derivation based on surface nucleation [J]. Journal Of Crystal Growth,1991,113:599-605.
    [124]Liu X Y. A new kinetic model for three-dimensional heterogeneous nucleation [J]. Journal of Chemical Physics,1999,111(4):1628-1635.
    [125]Chernov A. A. Modern Crystallography Ⅲ [M]. Brelin:Springer,1984.
    [126]Mutafchiev B. Handbook on Crystal Growth [M]. Amsterdam:North-Holland,1993.
    [127]Pusey M L. Continuing adventures in lysozyme crystal growth [J]. Journal of Crystal Growth,1992,122(1-2):1-7.
    [128]Liu X. Y., Tsukamoto K., Sorai M. New Kinetics of CaCO3 Nucleation and Microgravity Effect [J]. Langmuir,2000,16:5499-5502.
    [129]Taguchi K., Garside J., Tavare N. S. Nucleation and growth kinetics of barium sulphate in batch precipitation [J]. Journal of Crystal Growth,1996,163(3):318-328.
    [130]Gutjahr A., Dabringhaus H., Lacmann R. Studies of the growth and dissolution kinetics of the CaCO3 polymorphs calcite and aragonite Ⅱ. The influence of divalent cation additives on the growth and dissolution rates [J]. Journal of Crystal Growth,1996,158 (3):310-315.
    [131]Prywer J. Three-dimensional model of any shape face disappearance in crystal habit [J]. Journal of Crystal Growth,1996,158(4):568-575.
    [132]Clydesdale G., Roberts K. J., Docherty R. Modelling the morphology of molecular crystals in the presence of disruptive tailor-made additives [J]. Journal of Crystal Growth, 1994,135 (1-2):331-340.
    [133]Takasaki S., Parsiegla K. I., Katz J. L. Calcite growth and the inhibiting effect of iron(Ⅲ) [J]. Journal of Crystal Growth,1994,143(3-4):261-268.
    [134]Kralj D., Brecevic L. Vaterite growth and dissolution in aqueous solution I. Kinetics of crystal growth [J]. Journal of Crystal Growth,1993,104(4):793-800.
    [135]李广申,李克庆.铅基复合钙钛矿型驰豫铁电体介电理论研究进展[J].中国陶瓷工业,2004(3):34-37.
    [136]王成福,应美芳,岳多峰.纤维增强铅基复合材料单轴拉伸试验的动态观察[J].复合材料学报,1987,11(3):78-83.
    [137]应美芳.碳纤维增强铅和铅基复合材料[J].机械工程材料,1986(5):19-22.
    [138]王成福,应美芳,岳多峰.碳纤维增强铅基复合材料的断裂分析[J].合肥工业大学学报,1985,7(4):1-8.
    [139]梁歆桉,金蔚青,潘志雷.磁场在晶体生长中的应用研究进展[J].无机材料学报,1999,14(6):833-839.
    [140]Liu X. Y., Bennema P. Prediction of the growth morphology of crystals [J]. Journal of Crystal Growth,1996,166(1-4):117-123.
    [141]Kaneko N., Horie T., Ueno S., et al. Impurity effects on crystallization rates of n-hexadecane in oil-in-water emulsions [J]. Journal of Crystal Growth,1999,197: 263-270.
    [142]Mohan R., Boateng K. A., Myerson A. S. Estimation of crystal growth kinetics using differential scanning calorimetry [J]. Journal of Crystal Growth,2000,212(3-4): 489-499.
    [143]Ovrutsky A. M. Numerical analysis of faceted shape stability during growth from stagnant solutions [J]. Journal of Crystal Growth,1992,116(1-2):158-168.
    [144]Land T. A., Yoreo J. J. The evolution of growth modes and activity of growth sources on canavalin investigated by in situ atomic force microscopy [J]. Journal of Crystal Growth,2000,208(1-4):623-637.
    [145]Mauri A., Moret M. Growth of potassium sulfate crystals in the presence of organic dyes:in situ characterization by atomic force microscopy [J]. Journal of Crystal Growth, 2000,208(1-4).
    [146]Kiryanova E. V., Glikin A. E. The laws of fluorite and calcite habit formation in terms of the morphogenetic structural-chemical concept [J]. Volumes 198-199, Part 1, March 1999, Pages 697-703,1999,198-199(1).
    [1]王莉,赵斌,袁忠勇等.离子液体中氧化铜纳米结构的合成[J].中国科学(B辑,化学),2006,36(5):386-392.
    [2]Jiang Y., Zhu Y. J. Microwave-Assisted Synthesis of Sulfide M2S3 (M= Bi, Sb) Nanorods Using an Ionic Liquid [J]. J. Phys. Chem. B,2005,109:4361-4364
    [3]Mallet J., Molinari M., Martineauet F. al. Growth of Silicon Nanowires of Controlled Diameters by Electrodeposition in Ionic Liquid at Room Temperature [J]. Nano Lett., 2008,8:3468-3474
    [4]张明轩,霍冀川,郝桂军等.CTAB软模板法碳酸锶纳米棒制备[J].粉体纳米技术,2008,14(2):14-17.
    [5]张明轩,霍冀川,雷永林等.电子陶瓷用碳酸锶粉体制备与机理研究[J].中国粉体技术,2007(4):29-31.
    [6]刘洪江,彭超才,李明星.水热法合成碳酸锶聚集体结构[J].上海大学学报(自然科学版),2010,16(1):81-85.
    [7]温传庚,王开明,周英彦等.用特殊液相沉淀法制备纳米碳酸锶[J].化工进展,2005,24(5):945,55,155.
    [8]林荣毅,张培新,王孝英.沉淀法超细碳酸钙的研究现状与发展趋势[J].材料导报,1998,12(5):50-53.
    [9]林荣毅,张培新,张家芸.合成超细CaCO3的非稳态碳化反应特征和颗粒形态[J].中国有色金属学报,2000,10(3):444-447.
    [10]袁晓亮,张延强,兰玲等.离子液体固定C02及其转化利用的研究进展[J].过程工程学报,2008,8(2):409-416.
    [11]Ingo K., John M. Slattery, Corinne Daguenetet al. Why Are Ionic Liquids Liquid? A Simple Explanation Based on Lattice and Solvation Energies [J]. J. Am. Chem. Soc., 2006,128:13427-13434
    [12]Masafumi Y., Tomohiro M., Kiyoshi K.. Layered Ionic Liquids:Anisotropic Ion Conduction in New Self-Organized Liquid-Crystalline Materials [J]. Adv. Mater.,2002, 14:351-354.
    [13]Swatloski R. P., Visser A. E., Reichertet W. M. al. On the solubilization of water with ethanol in hydrophobic hexafluorophosphate ionic liquids [J]. Green Chemistry,2002,4: 81-87
    [14]Jin H. B., Kenneth S. S. Applications of Ultrasound to the Synthesis of Nanostructured Materials [J]. Advanced Materials,2010,22(10):1039-1059
    [15]Kenneth S. S. Applications of Ultrasound to Materials Chemistry [J]. Annual Review of Materials Science,1999,29:295-326
    [16]Aharon G. Using sonochemistry for the fabrication of nanomaterials [J]. Ultrasonics Sonochemistry,2004,11:47-55
    [17]Kenneth S. S., David J. Flannigan. Inside a Collapsing Bubble:Sonoluminescence and the Conditions During Cavitation [J]. Annu. Rev. Phys. Chem.,2008,59:659-683
    [18]Murali S., Ashavani K. Chinmay D. et al. Crystallization of SrCO3 within thermally evaporated fatty acid films:unusual morphology of crystal aggregates [J]. CrystEngComm,2001,21:1-3
    [1]Zhang S. J., Li X., Chen H. P. et al. Determination of Physical Properties for the Binary System of 1-Ethyl-3-methylimidazolium Tetrafluoroborate+H2O [J]. J. Chem. Eng. Data,2004,49:760-764
    [2]Liu C. F., Sun R.C., Zhang A. P. et al. Preparation and Characterization of Phthalated Cellulose Derivatives in Room-Temperature Ionic Liquid without Catalysts [J]. J. Agric. Food Chem.,2007,55:2399-2406
    [3]Endres F., Zein S., Abedinw E. Air and water stable ionic liquids in physical chemistry [J]. Physical Chemistry Chemical Physics,2006,8:2101-2116
    [4]Balz M., Therese H. A., Kappl M. et al. Morphosynthesis of Strontianite Nanowires Using Polyacrylate Templates Tethered onto Self-Assembled Monolayers [J]. Langmuir, 2005,21:3981-3986
    [5]Wang L., Zhu Y. F. Effects of Nanostructure on Catalytic Degradation of Ethanol on SrCO3 Catalysts [J]. J. Phys. Chem. B,2005,109:5118-5123
    [6]Chen L., Chen G. P., Wang X. X. et al. Synthesis of strontium carbonate rods and hierarchical branches in the presence of two organic additives [J]. Cryst. Res. Technol., 2010,45(3):254-258
    [7]Hasib-ur-Rahman M., Siaj M., Larachi F. Ionic liquids for CO2 capture-Development and progress [J]. Chemical Engineering and Processing,2010,49:313-322
    [8]Galan Sanchez L. M., Meindersma G. W., Haan A. B. Kinetics of absorption of CO2 in amino-functionalized ionic liquids. Chemical Engineering Journal [J],2011,166: 1104-1115
    [9]Zhang L. L., Wang J. X., Xiang Y. et al. Absorption of Carbon Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor:Mass Transfer Study [J]. Ind. Eng. Chem. Res.,2011,50:6957-6964
    [10]Cadena C., Jennifer L. A., Jindal K. S. et al. Why Is CO2 So Soluble in Imidazolium-Based Ionic Liquids [J]? J. Am. Chem. Soc.,2004,126:5300-5308
    [11]Jindaratsamee P., Shimoyama Y., Morizaki H. et al. Effects of temperature and anion species on CO2 permeability and CO2/N2 separation coefficient through ionic liquid membranes [J]. J. Chem. Thermodynamics,2011,43:311-314
    [12]Wang X., Zhuang J., Peng Q. et al. A general strategy for nanocrystal synthesis [J]. Nature,2005,437:121-124
    [13]Zhao P. T., Huang K. X. Preparation and Characterization of Netted Sphere-like CdS Nanostructures [J]. Crystal Growth & Design,2008,8(2):717-722
    [14]Zhu Y. J., Wang W. W., Qi R. J. et al. Microwave-Assisted Synthesis of Single-Crystalline Tellurium Nanorods and Nanowires in Ionic Liquids [J]. Angew. Chem. Int. Ed.,2004,43:1410-1414
    [15]Andez-Castro B. F., Endez-Morales T. M., Carrete J. et al. Surfactant Self-Assembly Nanostructures in Protic Ionic Liquids [J]. J. Phys. Chem. B,2011,115:8145-8154
    [16]Wang H. Y., Wang J. J., Zhang S. B. et al. Structural Effects of Anions and Cations on the Aggregation Behavior of Ionic Liquids in Aqueous Solutions [J]. J. Phys. Chem. B, 2008,112:16682-16689
    [17]Fox D., Labes M. M., Weissberger A. et al. Physics and Chemistry of Organic Solid State[M]. New York:Interscience publishers,1965
    [18]Landau D., Family F. Kinetics of Aggregation and Gelation [M]. Amsterdam: North-Holland,1984
    [1]Zhang M. X., Huo J. C., Yu Y. S. et al. Morphology Control of SrCO3 Crystals using complexons as modifiers in the ethanol-water mixtures [J]. Chinese J. Struct. Chem., 2008,27:1223-1229
    [2]Lou X. W., Wang Y., Yuan C. L. et al. Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity [J]. Adv. Mater.,2006,18: 2325-2329
    [3]Speakman J. R., Visser G. H., Ward S. et al. The isotope dilution method for the evaluation of body composition [M]. Cambridge:Cambridge University Press,2001
    [4]Manoli F., Dalas E. Spontaneous precipitation of calcium carbonate in the presence of ethanol, isopropanol and diethylene glycol [J]. Journal of Crystal Growth,2000, 218(2-4):359-364
    [5]Li Q., Ding Y., Li F. Q. et al. Solvothermal growth of vaterite in the presence of ethylene glycol,1,2-propanediol and glycerin [J]. Journal of Crystal Growth,2002,236(1-3)
    [6]Miller F. A., Carlson G. L., Bentley F. F. et al. Infrared spectra of inorganic ions in the cesium bromide region [J]. Spectrochimica Acta,1960,16(1-2):135-235
    [7]Chen L., Shen Y. H., Xie A. J. et al. Nanosized barium carbonate particles stabilized by cetyltrimethylammonium bromide at the water/hexamethylene interface [J]. Crystal Research and Technology,2007,42(9):886-889
    [8]Clayden J., Greeves N., Warren S. et al. Organic Chemistry [M]. Oxford, UK:Oxford University Press,2007
    [9]Wu S. S., Yin S. F., Cao H. Q. et al. Glucosan controlled biomineralization of SrCO3 complex nanostructures with superhydrophobicity and adsorption properties [J]. J. Mater. Chem.,2011,21:8734
    [10]Hou Y. W., Kong A. G., Zhao X. H. et al. Synthesis of high surface area mesoporous carbonates in novel ionic liquid [J]. Materials Letters,2009,63:1061-1064
    [11]Zhu W. C., Zhang G. L., Li J. et al. Hierarchical mesoporous SrCO3 submicron spheres derived from reactionlimited aggregation induced "rod-to-dumbbell-to-sphere" self-assembly [J]. CrystEngComm,2010,12:1795-1802
    [12]Bavykin D. V., Parmon V. N., Lapkina A. A. et al. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes [J]. J. Mater. Chem.,2004,14: 3370-3377
    [13]Zarur A. J., Hwu H. H., Ying J. Y.. Reverse Microemulsion-Mediated Synthesis and Structural Evolution of Barium Hexaaluminate Nanoparticles [J]. Langmuir,2000,16(7): 3042-3049
    [1]Liu X. D., Guo G., Bao K. Y. et al. Hydrothermal synthesis of CdSe hierarchical microspheres [J]. Cryst. Res. Technol.,2011,46:205-208
    [2]Xia J. X., Yin S., Li H. M. et al. Improved visible light photocatalytic activity of phere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid [J]. Dalton Trans.,2011,40:5249-5258
    [3]Xu J. S., Xue D. F. Chemical synthesis of BaCO3 with a hexagonal pencil-like morphology [J]. Journal of Physics and Chemistry of Solids,2006,67:1427-1431
    [4]Bavykin D. V., Parmon V. N., Lapkina A. A. et al. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes [J]. J. Mater. Chem.,2004,14: 3370-3377
    [5]Zhu H. G., Huang J. F., Pan Z. W. et al. Ionothermal Synthesis of Hierarchical ZnO Nanostructures from Ionic-Liquid Precursors [J]. Chem. Mater,2006,18:4473-4477
    [6]Chaturvedi D.. Recent Developments on Task Specific Ionic Liquids [J]. Current Organic Chemistry,2011,15:1236-1248
    [7]Tesfai A., El-Zahab B., Bwambok D. K. et al. Controllable Formation of Ionic Liquid Micro-and Nanoparticles via a Melt-Emulsion-Quench Approach Micro-and Nanoparticles via a Melt-Emulsion-Quench Approach [J]. Nano Letters,2008,8(3): 897-901
    [8]Scheel H. J., Fukuda T. Crystal Growth Technology [M]. The Atrium, Southern Gate, Chichester:John Wiley & Sons Ltd,2003
    [9]Soriano A. N., Agapito A. M., Lagumbay L. J. et al. Diffusion coefficients of aqueous ionic liquid solutions at infinite dilution determined from electrolytic conductivity measurements [J]. Journal of the Taiwan Institute of Chemical Engineers, 2011(42):258-264
    [10]Ma H., Dai L. L. Particle Self-Assembly in Ionic Liquid-in-Water Pickering Emulsions [J]. Langmuir,2011,27(2):508-512
    [11]Lin C. K., Kong D. Y., Liu X. M. et al. Monodisperse and Core-Shell-Structured SiO2@YBO3:Eu3+ Spherical Particles:Synthesis and Characterization [J]. Inorg. Chem., 2007,46(7):2674-2681
    [1]Noguera C., Fritz B., Clement A C., et al. Nucleation, growth and ageing scenarios in closed systems Ⅱ:Dynamics of a new phase formation [J]. Journal of Crystal Growth, 2006,297.187-198.
    [2]Li X., Song X., Liu G., et al. Size-dependent nucleation and growth kinetics model for potassium chloride-Application in Qarhan salt lake [J]. Journal of Crystal Growth, 2009,311:3167-3173.
    [3]Becker R., DOring W. Kinetische Behandlung der Keimbildung in bersttigten D3/4m pfen [J]. Ann Physik,1935,24:719-752.
    [4]Bykov T. V., Zeng X. C. Heterogeneous nucleation on mesoscopic wettable particles:A hybrid thermodynamic/densityfunctional theory [J]. Journal of Chemical Physics,2002, 117(4):1851-1861
    [5]Vekilov P. G. Two-step mechanism for the nucleation of crystals from solution [J]. Journal of Crystal Growth,2005,275:65-76.
    [6]Kashchiev D. Two-dimensional nucleation in crystal growth:thermodynamically consistent description of the nucleation work [J]. Journal of Crystal Growth,2004,267: 685-702.
    [7]Turnbull D. Kinetics of Heterogeneous Nucleation [J]. Journal of Chemical Physics, 1950,18(2):198-204.
    [8]Fletcher N. H. Size Effect in Heterogeneous Nucleation [J]. J. Chem. Phys.,1958,29(3): 572-577
    [9]Scodinu A., Farrer R. A., Fourkas J. T. Direct Observation of Different Mechanisms for the Inhibition of Molecular Reorientation at a Solid/Liquid Interface [J]. J. Phys. Chem. B,2002,106:12863-12865
    [10]Kuo Y. C. Effects of particulate curvature and sizes of charged species on the adsorption of a biocolloid bearing nonuniformly distributed fixed charges [J]. J. Chem. Phys.,2003, 118(17):8023-8032
    [11]Mukherjee D., Sonwane C. G., Zachariah M. R. Kinetic Monte Carlo simulation of the effect of coalescence energy release on the size and shape evolution of nanoparticles grown as an aerosol [J]. J. Chem. Phys.,2003,119(6):3391-3404
    [12]Koutsopoulos S., Dalas E. Hydroxyapatite crystallization on sodium cholate [J]. Journal of Crystal Growth,2001,222(1-2)
    [13]Lin R.Y., Zhang J. Y., Bai Y. Q. Mass transfer of reactive crystallization in synthesizing calcite nanocrystal [J]. Chemical Engineering Science,2006,61(21):7019-7028
    [14]Zhang M. X., Huo J. C., Yu Y. S. et al. Morphology Control of SrCO3 Crystals using complexons as modifiers in the ethanol-water mixtures [J]. Chinese J. Struct. Chem., 2008,27:1223-1229
    [15]Cahn R. W., Hassen P., Cremer E. J.. Material Science and Technology:Phase Transformations in materials [M]. Weiheim:WCH press,1991
    [16]Takasaki S., Parsiegla K. I., Katz J. L. Calcite growth and the inhibiting effect of iron(Ⅲ)[J]. Journal of Crystal Growth,1994,143(3-4):261-268.
    [17]Kralj D., Brecevic L. Vaterite growth and dissolution in aqueous solution I. Kinetics of crystal growth[J]. Journal of Crystal Growth,1993,104(4):793-800.
    [18]Giannimaras E. K., Koutsoukos P. G. Precipitation of Calcium Carbonate in Aqueous Solutions in the Presence of Oxalate Anions [J]. Langmuir,1988,4(4):55-861
    [19]Kotaki Y., Tsuge H. Reactive crystallization of calcium carbonate in a batch crystallizer [J]. Journal of Crystal Growth,1990,99:1-4
    [20]Birdi K. S. Handbook of surface and colloid chemistry [M]. New York:CRC press,1997
    [21]Mullin J. W. Crystallization [M]. Third Edition, Butterworth-Heinemann:Oxford,1997
    [22]Liu X. Y., Tsukamoto K., Sorai M. New Kinetics of CaCO3 Nucleation and Microgravity Effect [J]. Langmuir,2000,16:5499-5502
    [23]Zhao Y., Gao S., Wang J, et al. Aggregation of Ionic Liquids [Cnmim]Br (n=4,6,8,10, 12) in D2O:A NMR Study[J]. J. Phys. Chem. B,2008,112:2031-2039.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700