用户名: 密码: 验证码:
空蚀发生过程中表面形貌作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空蚀是一种微观、瞬时、随机、多相的复杂现象,也是造成水力机械损伤破坏的主要原因之一,因此研究空蚀现象的发生机理和抑制空蚀的技术方法不仅具有深远的理论意义,而且具有重大的现实价值。本文以初生期的空蚀现象为研究对象,通过实验分析和理论计算方法,深入分析了空蚀发生过程中的表面形貌作用机理。
     实验发现,试件的表面形貌和流场中的微颗粒对空蚀初生有显著的影响。试件表面的空蚀程度与表面形貌的尺寸、形状和分布相关,“粗糙”形貌并不总是加剧表面的空蚀,适当的形貌能减轻或抑制空蚀。另一方面,流场中的微颗粒是促使空蚀发生的关键因素之一,微颗粒的粒径直接影响了试件表面的空蚀程度:去离子水中分别添加0.1~4μm粒径的微颗粒时,1μm左右的微颗粒引起试件表面空蚀破坏的程度最高。
     通过数值计算,系统地研究了表面形貌对空泡形成、运动、生长和溃灭过程的影响。多相流模拟结果显示流场中的空泡难以接近固壁和粗糙单元,而微颗粒(约1μm)能较稳定地在边界层内运动,微颗粒与空泡的吸附是促使大量空泡在近壁区运动的重要原因。对近壁空泡溃灭过程的模拟结果则表明,空泡溃灭将产生足以在表面形成破坏的高速微射流,但微射流在流场中衰减很快,表面形貌引起的局部高压将加速空泡的溃灭并增大微射流冲击的强度。此外,高度在1mm以上的表面形貌在15m/s的流速下还将引起空化,增加流场中空泡的数量。
     根据上述结果,初步提出了空蚀初生期的发生机理:微颗粒是诱发空蚀的必要条件之一,微颗粒与空泡的联合体在近壁区运动,经过形貌时由于压力变化发生溃灭,造成表面的空蚀。通过合理的表面形貌构型,可以促使空泡和微颗粒远离壁面,从而避免空蚀的发生。根据该原理,初步提出了减蚀形貌构型准则,设计了具有小迎流面角的沟槽形貌构型。实验证明该构型可以在一定程度上抑制空蚀的发生。
The researches on the initiation mechanism and control methods of cavitation erosion is of great importance in both theoretical aspects and practical application as it is a complicated phenomenon, which is microcosmic, instantaneous, random and multiphase, and it is also one of the key damage forms of hydraulic machinery. This thesis focuses on the cavitation erosion in the incubation period. Experiments are performed and computational fluid dynamic methods are conducted to investigate the mechanism of surface topography effect on the generation of cavitation erosion.
     Experimental results show that surface topography and micro-particles have remarkable influences on the incubation of cavitation erosion. The dimension, shape and distribution of the topography affect the erosion degree greatly. The“rough”topographies do not always enhance the cavitation erosion and certain topography structures can mitigate the erosion. Micro-particles also act an important role in the initiation of cavitation erosion. The size of the micro-particles has significant effects on cavitation erosion. Among the particles 0.1~4μm in diameter, when that about 1μm in scale are added into the de-ionized water, the surfaces are eroded most seriously.
     By means of computational fluid dynamics, the pressure and velocity distributions of the near-wall flow considering the effect of surface topography are analyzed and their influences on the formation, transportation, growth and collapse of the cavities are investigated. Because of the presence of the solid surface and its topography, the motion of the cavities and micro-particles in the near-wall region are difference from that in the free stream. Numerical methods for multiphase flow simulation is adopted to track their moving trajectories and results shows that cavities and large micro-particles will move away from the surface and only the small micro-particles (about 1μm) can keep moving in the boundary layer. The cavities can be absorbed by the micro-particles and this could increase the chance that the cavities keep moving in the vicinity of the solid surface. The pressure rise caused by the topography is the key factor to induce the collapse of cavities in near-wall region. High speed micro-jet will generate while the cavity collapse and if it is close enough to the solid surface, the surface will be eroded. The velocity of the micro-jet drops down quickly in the medium, but the local pressure rise induced by the surface topography could enhance the velocity of the micro-jet and its impact intensity. Cavitation, formation process of the cavities, is affected by the surface topography. Numerical results indicate that the surface topography in millimeter scale or even larger will enhance the possibility of cavitation which will increase the amount of cavities.
     According to the experimental and numerical results it is reasonable to conclude that the mechanism of cavitation erosion in the incubation period is: the cavities are absorbed by the micro-particles and move into or keep transporting next to the solid surface; the pressure rise caused by the surface topography acts on the cavities and drives them to collapse, and finally induce the cavitation erosion. By analyzing the integrated effect of the topography structure, regular distributed grooves with small trailing angle are designed to prevent the cavitation erosion, and this is supported by the experimental results.
引文
[1]林伯强.中国能源发展报告.北京:中国剂量出版社, 2006.
    [2]郑源,鞠小明,程云山.水轮机.北京:中国水利水电出版社, 2007.
    [3]邹逸桥.关于我国电力工业发展水平及其结构的分析[EB/OL]. (2008-04-01) [2008-08-03]. http://www.serc.gov.cn/jgyj/ztbg/200804/t20080401_8796.htm.
    [4]彭程. 21世纪中国水电工程.北京:中国水利水电出版社, 2006.
    [5]薛伟,陈昭运.水轮机空蚀和磨蚀理论研究.大电机技术, 1999, (6):44-48.
    [6]金泰来.空化与空蚀研究的现状与动向.水力发电. 1982, 1:38-44.
    [7]张建胜.杨凌水电站水轮机空蚀危害及防抗措施.水电站机电技术, 2006, 29(6):25-29, 68.
    [8]段生孝.我国水轮机空蚀磨损破坏状况与对策.大电机技术, 2001, (6):56-64.
    [9]聂荣升.水轮机中的空化与空蚀.北京:水利电力出版社, 1985.
    [10]柯乃普,戴利,哈密脱著,水利水电科学研究院译.空化与空蚀.北京:水利出版社, 1981.
    [11]黄继汤.空化与空蚀的原理及应用.北京:清华大学出版社, 1991.
    [12] Preece C R. Treatise on materials science and technology, volume16: Erosion. New York: Academic Press, 1979.
    [13] Hammitt F G. Cavitation and multiphase flow phenomena. USA: McGraw-Hill Inc, 1980.
    [14]贺照明.机械瓣空化及空泡溃灭研究[博士学位论文].北京:清华大学. 2000.
    [15]计志也.空蚀研究现状.力学进展, 1992, 22(1):58-63.
    [16]黄景泉,韩成才.气核尺度对空化现象的影响.应用数学和力学, 1992, 13(4):341-348.
    [17]张林夫,夏维洪.空化与空蚀.江苏:河海大学出版社, 1989.
    [18]张雪花,胡钧.固液界面纳米气泡的研究进展.化学进展, 2004, 16(5):673-681.
    [19]颜开.气核对空化的影响——法国的研究进展.船舶力学, 1998, 2(2):70-75.
    [20] Bremond N, Arora M, Ohl C D, Lohse D. Controlled multibubble surface cavitation. Physical Review Letters, 2006, 96: 224501(1-4).
    [21] Bremond N, Arora M, Dammer S, et al. Interaction of cavitation bubbles on a wall. Physics of Fluids, 2006, 18:121505(1-10).
    [22] Brennen C E. Fundamentals of multiphase flow. New York: Cambridge University Press.2005.
    [23] Plesset M S, Chapman R B. Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary. Journal of Fluid Mechanics, 1971, 47:283-290.
    [24] Mitchell T M, Hammitt F G. Asymmetric cavitation bubble collapse. Journal of Fluids Engineering, 1973, 95:29-37.
    [25] Blake J R, Gibson D C. Growth and collapse of a vapour cavity near a free surface. Journal of Fluid Mechanics, 1981, 111:123-140.
    [26] Blake J R, Gibson D C. Cavitation bubbles near boundaries. Annual Reviews of Fluid Mechanics, 1987, 19:99-123.
    [27] Blake J R. Transient inviscid bubble dynamics. Proceedings of the Second International Symposium on Cavitation. Tokyo, Japan. 1994:9218.
    [28] Blake J R, Taib B B, Doherty G. Transient cavities near boundary- Part 1: rigid surface. Journal of Fluid Mechanics, 1986, 170:479-497.
    [29] Best J P, Kucera A. A numerical investigation of non-spherical rebounding bubbles. Journal of Fluid Mechanics, 1992, 245:137-154.
    [30] Blake J R, Robinson P. B., Shima A., et al. Interaction of two cavitation bubbles with a rigid boundary. Journal of Fluid Mechanics, 1993, 255:707-721.
    [31] Best J P. The formation of toroidal bubbles upon the collapse of transient cavities. Journal of Fluid Mechanics, 1993, 251:79-107.
    [32]王起棣,张慧生.表面张力对固壁近旁空化气泡溃灭特性的影响.复旦学报, 2003, 42(2):201-207.
    [33] Zhang S, Duncan J H, Chahine G L. The final stage of the collapse of a cavitation bubble near a rigid wall. Journal of Fluid Mechanics, 1993, 257:147-181.
    [34]刘儒勋,舒其望.计算流体力学的若干新方法.北京:科学出版社. 2003.
    [35]胡影影.空泡溃灭和空化流的数值研究[博士学位论文].北京:清华大学. 2001.
    [36] Blake J R, Taib B B, Doherty G. Transient cavities near boundary- Part 2: free surface. Journal of Fluid Mechanics, 1987, 181:197-212.
    [37]黄建波,倪汉根.可压缩液体中游移空泡群的溃灭压力.水动力学研究与进展, 1987, 2(3):1-11.
    [38]梁柱,戴勇峰,程良骏.多相流中双空泡的动力学过程.水动力学研究与进展, 1998, 13(1):28-34.
    [39]张振宇,王起棣,张慧生.表面张力对近固壁二空化泡影响的数值研究.力学学报, 2005, 37(1):100-104.
    [40]蔡悦斌,鲁传敬,何友声.瞬态空化泡的成长与溃灭.水动力学研究与进展, 1995, Ser.A, 10(6):654-660.
    [41] Robinson P B, Blake J R, Kodama T, et al. Interaction of cavitation bubbles with a free surface. Journal of Applied Physics, 2001, 89(1):8225-8237.
    [42] Kling C L, Hammitt F G. A photograph study of spark induced cavitation bubble collapse. Journal of Basic Engineering, 1972, 94(4): 825-833.
    [43] Lauterborn W, Bolle H. Experimental investigations of cavitation bubble collapse in the neighbourhood of a solid boundary. Journal of Fluid Mechanics, 1975, 72(2):391-399.
    [44] Gompf B, Pecha R. Mie scattering from a sonoluminescing bubble with high spatial and temporal resolution. Physical Review E. 2000, 61(5):5253-5356.
    [45]裴拉也夫,艾捷利著,华中工学院水力机械教研室译水轮机汽蚀.北京:机械工业出版社, 1981.
    [46]柳伟.耐多相流损伤的金属材料及作用机制研究[博士学位论文].北京:中国科学院金属研究所, 2001.
    [47]姜胜利,郑玉贵,骆素珍,姚治铭.空蚀孕育期前后316L不锈钢的腐蚀行为.腐蚀与防护, 2004, 25(4):139-145.
    [48]古特曼.金属力学化学腐蚀.北京:北京科技出版社, 1989.
    [49] Dezhkunov N V. The second international symposium on cavitation, April, Tokyo, Japan, 1994.
    [50]孙冬柏,张秀丽.空蚀过程中电化学点位变化规律研究.中国腐蚀与防护学报, 2000, 20(5):308-311.
    [51] Wu C C, Roberts P H. Shock-wave propagation in a Sonoluminescence gas bubble. Phys. Rev. Lett., 1993, 70(22):3424-3427.
    [52]应崇福,安宁.声空化气泡内部的高温和高压分布.中国科学, 2002, 32(4):305-313.
    [53] Gregorcic P, Petkovsek R, Mozina J. Investigation of a cavitation bubble between a rigid boundary and a free surface. Journal of Applied Physices, 2007, 102:094904(1-8).
    [54] Shima A. Temperature Effects on Single Bubble Collapse and Induced Impulsive Pressure. ASME Journal of Fluids Engineering, 1988: 110.
    [55]张法星,许唯临,朱雅琴等.空蚀冲击波模式下气泡尺寸在掺气减蚀中的作用.水利水电技术, 2005, (10):5-7.
    [56] Matsumoto Y. Influence of homogeneous condensation inside a small gas bubble on its pressure response. Journal of fluids engineering, 1985, 107(2):281-286.
    [57] Philipp A, Lauterborn W. Cavitation erosion by single laser-produced bubbles. Journal of Fluid Mechanics, 1998, 361:75-116.
    [58]胡影影,朱克勤,席葆树.固壁空蚀数值研究.应用力学学报, 2004, 21(1): 22-25.
    [59]胡影影.泡内气体热力学性质对空泡溃灭的影响.力学学报, 2005, 37(4):393-398.
    [60] Brujan E A, Ikeda T, Matsumoto Y. On the pressure of cavitation bubbles. ExperimentalThermal and Fluid Science, 2008, 32:1188-1191.
    [61]李根生,沈晓明,施立德等.空化和空蚀机理及其影响因素.石油大学学报(自然科学版). 1997, 21(1): 97-102.
    [62] Buravova S N. Surface damage as a result of cavitation erosion. Technical Physices, 1998, 43(9):1107-1110.
    [63]黄建波.掺气对流场压强的影响.水利学报, 1987, (5):43-46.
    [64]黄建波,李士豪,倪汉根.掺气对空泡溃灭压力的影响.水利学报, 1985, (4):10-17.
    [65]董志勇,居文杰,吕阳泉等.减免空蚀掺气浓度的试验研究.水力发电学报, 2006, 25(3):106-115.
    [66] Takashi N, Masato I, Masatoshi F. Cavitation damage reduction by microbubble injection. Nuclear Instruments and Methods in Physics Research A, 2008, 586:382-386.
    [67]帅青红,梁川,吴持公等.临界免蚀掺气浓度的计算公式.成都科技大学学报, 1996, 93(5):1-5.
    [68] Lu T, Samulyak R, Glimm J. Direct Numerical Simulation of Bubbly Flows and Application to Cavitation Mitigation. Journal of Fluids Engineering, 2007, 129:595-604.
    [69]陈先朴,西汝泽,邵东超等.掺气减蚀研究的新方向.水利水电技术, 2001, 32(10):13-16.
    [70]戴会超,槐文信,吴玉林等.水利水电工程水流精细模拟理论与应用.北京:科学出版社, 2006:391-392.
    [71]王再友,龙霓东,朱金华.抗空蚀材料研究应用进展.材料开发与应用, 2001, 16(6):34-38.
    [72]柳伟,郑玉贵,姚治铭,柯伟.金属材料的空蚀研究进展.中国腐蚀与防护学报, 2001, 21(4):250-255.
    [73]温诗铸,黄平.摩擦学原理.北京:清华大学出版社, 2002:256-263.
    [74] Arndt R E A, Ippen A T. Cavitation near surface of distributed roughness. USA: Massachusatts Institute of Technology, 1967.
    [75]梁川,倪汉根.三角形突体初生空化与空蚀的试验研究.成都科技大学学报, 1996, (2):32-40.
    [76]周胜,孙晓霞,高霈生.管道中圆化突体的压力分布和初生空化数.水利学报, 1984, (6):36-45.
    [77]张有敬等.空泡机理研究进展.高压水射流, 1984, (2):9~13.
    [78] Thiruvengadam A, Preiser H. Recent investigation of cavitation and cavitation damage. Journal of Ship Research, 1964, (8):39-42.
    [79] Zhou Y K, Hammitt F G. Vibratory cavitation erosion in aqueous solutions. Wear, 1983,80:299-313.
    [80] Ahmed S M, Hokkirigawa K, Ito Y, et al. Scanning electron microscopy observation on the incubation period of vibratory. Wear, 1991, 142:303-314.
    [81] Karimi A, Martin J L. Cavitation erosion of metals. International Metals Reviews, 1986, 31(1):1-26.
    [82] Nie M X. Cavitation prevention with roughened surface. Journal of Hyaralic Engineering, 2001, (10):878-880.
    [83]聂孟喜.粗糙壁面减蚀效应的研究.清华大学学报, 1998, 38(8):79-82.
    [84]陈懋章.粘性流体动力学基础.北京:高等教育出版社, 2002.
    [85] Nikuradse K, Stromungsgesetze in Rauhen Rohren. [English Trans. NACA Tech. Memo No. (1292).
    [86] Perry A E, Schofield W h, Joubert P N. Rough wall turbulent boundary layers. Journal of Fluid Mechanics, 1969, 37:383-413.
    [87] Tani J. Turbulent boundary layer development over rough surfaces. In: Perspectives in Turbulence Studies. Springer, 1987.
    [88] Liou T M, Hwang J J, Chen S H. Simulation and measurement of enhances turbulent heat transfer in a channel with periodic ribs on one principal wall. Int. J. Heat Mass Transfer, 1993, 36:507-517.
    [89] Liou T M, Wu Y Y, Chang Y. LDV measurements of periodic fully developed main and secondary flows in channel with rib-distributed walls. J. Fluids Eng, 1993, 115:109-114.
    [90] Okamoto S, Seo S, Nakaso K, Kawai I. Turbulent shear flow and heat transfer over the repeated two-dimensional square ribs on ground plane. J. Fluids Eng, 1993, 115:631-637.
    [91] Djenidi L, Elavarasan R, Antonia RA. The turbulent boundary layer over transverse square cavities. J. Fluid Mech, 1999, 395:271-294.
    [92] Sirovich L, Karlsson S. Turbulent drag reduction by passive mechanisms. Nature, 1997, 388(8):753-755.
    [93] Robinson S K. Coherent Motions in the Turbulent Boundary Layer. Annu. Rew. Fluid Mech., 1991, 23:601-639.
    [94] Bredberg J, Davidson L. 1000. Prediction of flow and heat transfer in a stationary two-dimensional rib roughened passage using low-Re turbulent model. Third European Conference on Turbo-machinery, IMech C557/074/99:963-972.
    [95] Cui J, Patel V C, Lin C L. Large-eddy simulation of turbulent flow in a channel with rib roughness. Heat and Fluid Flow, 2003, 24:372-388.
    [96] Pierre S. Large Eddy Simulation for Incompressible Flows. Springer, 2002.
    [97] Miyake Y, Tsujimoto K, Nakaji M. Direct numerical simulation of rough-wall heat transfer in a turbulent channel flow. Int. J. Heat Fluid Flow, 2001, 22:237-244.
    [98] Ashrfian A , Andersson H. DNS of turbulent flow in a rod-roughened channel. In: Third International Symposium on Turbulence and Shear Flow Phenomena. Sendai, Japan, 2003, 1:117-122.
    [99] Leonardi S, Orlandi P, Djenidi L and Antonia R. Structure of turbulent channel flow with square bars on one wall, In: Third International Symposium on Turbulence and Shear Flow Phenomena, Sendai, Japan, 2003, 1:123-128.
    [100] Bhaganagar K, Kim J, Coleman G. Effect of Roughness on Wall-Bounded Turbulence. Flow, Turbulence and Combustion, 2004, 72:463-492.
    [101] Brocchini M, Peregrine D H. The dynamics of strong turbulence at free surfaces. Part 2. Free-surface boundary conditions. J. Fluid Mech., 2001, 449:255-290.
    [102] Floryan J M. Stability of wall-bounded shear layers in the presence of simulated distributed surface roughness. J. Fluid Mech., 1997, 335:29-55.
    [103] Kadim C, Gudret K. The roughness effects on friction and heat transfer in the fully developed turbulent flow in pipes. Applied Thermal Engineering, 2003, 23:557-570.
    [104] Aberle J, Smart G M. The influence of roughness structure on flow resistance on steep slopes. Journal of Hydraulic Research, 2003, 41:259-269.
    [105] Djenidi L, Elavarasan R. Antonia R A, The turbulent boundary layer over transverse square cavities. J. Fluid Mech., 1999, 395:271-294.
    [106] Pretota S, Zeghmatib B, Caminat. Influence of surface roughness on natural convection above a horizontal plate. Advances in Engineering Software, 2001, 31:793-801.
    [107] Lakehal D. Computation of turbulent shear flows over rough-walled circular cylinders. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 80:47–68.
    [108] Breugem W P, Boersma B J. The turbulent flow over a permeable wall. Center for Turbulence Research Proceedings of the Summer Program 2002.
    [109] Coleman S L, Scott V D, McEnaney B, et al. Comparison of tunnel and jet methods for cavitation erosion testing. Wear, 1995, 184:73-81.
    [110] Karimi A, Avennan F. Comparison of erosion mechanisms in different types of cavitation. Wear, 1986, 113: 305-322.
    [111]左敦稳.现代加工技术.北京:北京航空航天大学出版社. 2005.
    [112]白集成,郭永丰,刘晋春.特种加工技术.哈尔滨:哈尔滨工业大学出版社. 2006.
    [113] Reboud J L, Fortes-Patella R, Archer A. Analysis of damage surfaces: Part I: Cavitation mark measurements by 3D laser profilometry. Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference. San Francisco, California, 1999.
    [114] Lohrberg H, Hofmann M, Ludwig G. Stoffel B. Analysis of damage surfaces: Part II: Pit counting by 2D optical techniques. Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference. San Francisco, California, 1999.
    [115] Soyama H, Futakava M, Homma K. Estimation of pitting damage induced by cavitation impacts. Journal of Nuclear Materials, 2005, 343:116-122.
    [116]李万平.计算流体力学.湖北:华中科技大学出版社, 2004.
    [117]陶文铨.数值传热学.西安:西安交通大学出版社, 2001.
    [118] Patankar S V著.张政译.传热与流体流动的数值计算.北京:科学出版社. 1984.
    [119]江帆,黄鹏. Fluent高级应用与实例分析.北京:清华大学出版社, 2008.
    [120]王福军.计算流体动力学分析.北京:清华大学出版社, 2004.
    [121]车得福,李会雄.多相流及其应用.西安:西安交通大学出版社, 2007.
    [122]秦力.空蚀发生机理的实验研究[硕士学位论文].北京:清华大学, 2005.
    [123]徐臻.循环水槽中机加工表面的空蚀实验研究[硕士学位论文].北京:清华大学, 2008.
    [124]王金照.汽泡成核的分子动力学研究及纳米颗粒对成核的影响[博士学位论文].北京:清华大学, 2005.
    [125] Morch K A. Cavitation nuclei and bubble formation– a dynamic liquid-solid interface problem. Journal of Fluids Engineering, 2000, 122:494-498.
    [126]高秋生.对液体空化机理的进一步探讨.河海大学学报, 1999, 27(5):63-67.
    [127] Marschall H B, Morch K A, Keller A P, et al. Cavitation inception by almost spherical solid particles in water. Physics of Fluids, 2003, 15(2):545-553.
    [128]黄景泉.空泡溃灭时的流场.应用数学和力学, 1989, 10(3): 247-251.
    [129]倪汉根,何子干.空泡溃灭冲击波对流场携带颗粒的作用.大连理工大学学报, 1994, 34(6):727-731.
    [130]何子干,倪汉根.考虑液体压缩性影响下空泡溃灭冲击波对固体颗粒的作用.水动力学研究与进展, 1994, A(5):581-587.
    [131]陆力.液流中边壁附近的空泡溃灭研究.水力学报, 1992, (3):65-74.
    [132]颜开.空泡水筒中溶解气体的控制技术.舰船科学技术, 1999, (4):19-28.
    [133]颜开.空泡水筒中播核的原理及方法–法国的研究综述.船舶力学, 1999, (3):78-83.
    [134]倪汉根,黄建波.空泡在非均匀流场中的运动特性.力学学报, 1986, 18(3):276-280.
    [135] Momma T, Lichtarowicz A. A study of pressures and erosion preoduced by collapsing cavitation. Wear, 1995, 186-187:425-436.
    [136] Bourne N K, Field J E. A high-speed photographic study of cavitation damage. J. Appl. Phys., 78(7):4423-4427.
    [137] Luo J, Li J, Dong G. Two-Dimensional simulation of the collapse of vapor bubbles near a wall. Journal of Fluids Engineering, 2008, 130:091301(1-4).
    [138]唐学林,余欣,任松长,何丽.固-液两相流体动力学及其在水力机械中的应用.河南:黄河水利出版社, 2006.
    [139]郭烈锦.两相与多想流动力学.西安:西安交通大学出版社, 2002.
    [140]林宗虎,王栋,王树众,林益.近期多相流基础理论研究综述.西安交通大学学报, 2001, 35(9): 881-885.
    [141]张政,谢灼利.流体-固体两相流的数值模拟.化工学报, 2001, 52(1):1-12.
    [142] Michaelides E E. Review– the transient equation of motion for particles, bubbles, and droplets. Journal of Fluids Engineering, 1997, 119:233-247.
    [143]李清平,卢文强,薛敦松.流体机械转轮内气泡运动轨迹的数值分析.中国海上油气(工程), 2000, 12(2):48-54.
    [144]何国庚,梁柱,黄素逸,等.平壁对空泡运动的影响研究.水动力学研究与进展, 1998, A13(4):447-453.
    [145]许卫新.单气泡在自由流场和边界层流场中运动的水动力计算及其空化行为.水动力学研究与进展, 1987, 2(3):19-32.
    [146]许卫新.单气泡在压力脉动场中运动的数值计算.水动力学研究与进展, 1990, 5(1): 118-121.
    [147]储训,牛权.拟序结构下空泡近壁区运动规律研究.水科学进展, 2004, 15(3):291-295.
    [148]储训,牛权.近壁空泡基于非拟序结构与拟序结构的运动规律.扬州大学学报, 2004, 7(1):65-70.
    [149] Liu X B, Cheng L J. Boundary layer effects on solid particle motion and erosive wear. Journal of Hydrodynamics, 1996, B(4):9-17.
    [150] Liu X B. Studies of solid-liquid two-phase turbulent flows and wear in hydraulic tubromachinery. Journal of Hydrodyniamics, 1996, B(2):72-76.
    [151]刘小兵,曾庆川,程良骏.用Lagrange方法分析颗粒在湍流场中的运动.华中理工大学学报, 1994, 33(10):45-50.
    [152]刘小兵,程良骏.固液两相流和颗粒磨损的数值模拟.水利学报, 1996, (11):22-27.
    [153]林建忠.流-固两相拟序涡流及稳定性.北京:清华大学出版社, 2003.
    [154]陈泉源,张泾生,王淀佐.气泡与颗粒作用研究新进展.国外金属矿选矿, 2001, (2):17-24.
    [155]周凌锋,张强.气泡尺寸变化对微细粒浮选效果的研究.有色金属, 2005, (3):21-23.
    [156]王国玉,曹树良,井小利明.剪切层区域漩涡空化的发生机理.清华大学学报, 2001, 41(10):62-64,89.
    [157]潘文全.工程流体力学.北京:清华大学出版社, 1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700