用户名: 密码: 验证码:
基于摩擦学的机车牵引齿轮力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机车牵引齿轮作为机车传动装置的核心部分,其力学行为和工作性能对机车运行状况都有重要影响。随着铁路向着高速、重载方向发展,对机车牵引齿轮的承载能力和传动速度提出了更高的要求,而载荷和速度又是影响机车牵引齿轮材料摩擦学性能的主要因素,因此考虑摩擦学影响因素进行机车牵引齿轮力学性能研究对我国机车车辆的发展具有非常重要的现实意义。在相当多有关齿轮摩擦学性能的研究中,齿轮啮合过程中轮齿表面的摩擦学性能通常被近似处理为稳定不变,或是套用经验公式求得。然而机车牵引齿轮传动是相当复杂的动力学过程,啮合表面间载荷、速度均随时间而变化,因而齿面的摩擦学性能也是实时变化的。
     本文在详细分析国内外关于齿轮摩擦学相关研究的基础上,以某机车牵引齿轮为研究对象,考虑载荷和速度等因素对材料摩擦学性能的影响,对机车牵引齿轮力学性能进行系统深入的研究。本文主要研究内容及研究成果有:
     (1)以某机车牵引齿轮为研究对象,针对其所用材料42CrMo和17CrNiMo6,在摩擦磨损试验机上模拟实际工况进行销盘往复摩擦磨损试验,获得不同载荷、速度下的摩擦系数。对试验数据进行多元非线性回归分析和显著性检验,考虑摩擦面间载荷和速度等因素影响,获得机车牵引齿轮材料摩擦系数公式。并通过多组随机试验验证公式的正确性。
     (2)基于所得的机车牵引齿轮材料摩擦系数公式,考虑载荷、速度的影响,对试验摩擦副接触应力进行理论和有限元仿真计算,所得结果相符;考虑载荷、速度的影响,对试验摩擦副进行温度场仿真分析,仿真值和试验值相符。结果表明:复杂非线性的摩擦磨损问题可以利用有限元仿真方法进行模拟,从而为材料摩擦学性能研究提供一种实用而且有效的方法。
     (3)考虑机车牵引齿轮啮合过程中齿面接触压力、相对速度不断变化所导致的接触点摩擦学性能的时变性,在机车启动和持续运行两种工况条件下对机车牵引齿轮进行应力场仿真分析,得到接触应力、摩擦应力的变化规律。对比考虑摩擦和不考虑摩擦两种情况下齿轮齿根弯曲应力,结果表明齿面摩擦力对齿轮力学性能影响显著,有必要从摩擦学角度对机车牵引齿轮进行研究。
     (4)对机车牵引齿轮进行稳态温度场仿真分析,研究啮合齿面摩擦热流量的分布规律以及齿面稳态温度值的分布规律;考虑啮合过程中载荷、速度不断变化所导致的摩擦热流量的变化,在不同啮合位置上定义瞬态的移动摩擦热源,研究各啮合节点瞬时温度分布及变化规律。为齿轮表面温度计算提供一种更加准确的方法。
As a core of the locomotive transmission, the mechanical behavior and working performance of the locomotive traction gears have an important influence on the running state of the locomotive. Since the development of railway transportation is towards the heavy duty and highspeed, people have higher demands for the load-carrying capacity and transmission velocity of the locomotive traction gears. The load and velocity are the important factors which affect the tribological properties of materials for the locomotive traction gears. Therefore study on the mechanical properties of the locomotive traction gears based on tribology has an important realistic meaning on the development of the locomotives and rolling stocks in China. In many researches of the tribological properties for gears, the tribological behavior of gear materials in the meshing process is treated to be stable or is obtained by empirical formulas. Howerve, the locomotive traction gear transmission is a quite complicate dynamics process; the velocity and load of tooth surface are changed with time. Therefore the tribological properties of the meshing surface of gears are real-time.
     Based on the detailed analysis of the domestic and foreign studies on the gear tribology, considering the influences of load and velocity on the tribological properties of materials, the mechanical properties of the locomotive traction gears are researched systematically and deeply. The main researches and achievements are as follows:
     (1) Taken a certain locomotive traction gear as the research object, aimed at the materials42CrMo and17CrNiMo6, the pin-on-disk reciprocating friction and wear test which simulates the factual condition is done on the tribometer test machine. The friction coefficients under different loads and velocities are obtained. The test data are conducted by using multivariate nonlinear regression and significance test. Considering the influence of the load and relative velocity between the friction surfaces, the friction coefficient expression of the locomotive traction gear materials is obtained. The correctness of the friction coefficient expression is proved by groups of random tests.
     (2) Based on the obtained friction coefficient expression of locomotive traction gear materials, considering the effect of the load and velocity, the theoretical and simulation calculations of the contact stress for the test friction pair are conduct. The simulation results agree with the theoretical results. Considering the effect of the load and velocity, the temperature field of test friction pair is analyzed. The simulation results agree with the test results. It is found that complex and nonlinear friction and wear problem can be simulated by the finite element method, which provides a practical and effective way for the research of material tribological properties.
     (3) Considering the time variation of the tribological properties for the meshing point which is caused by the change of the contact force and relative velocity in the meshing process, the stress field of the locomotive traction gears under the starting and continuous running condition of the locomotive is analyzed and the variation laws of the contact stress and the friction stress are obtained. Through comparing the bending stresses on teeth root of the gear with friction and without friction, it is found that the influence of friction force between teeth on the mechanical properites of the gears is significant and it is necessary to research the locomotive traction gears from the tribological viewpoint.
     (4) The steady temperature field of the locomotive traction gears is analyzed. The distribution laws of the friction heat flux and the stable-state temperature on the meshing tooth surface are researched. Considering the change of the friction heat flux which is caused by the variation of the load and velocity in the meshing process of the gears, the transient and movable friction heat sources of different meshing position are set. The transient temperature distribution and variation law of every meshing node are researched, which provides a more accurate method for the calculation of the gear surface temperature.
引文
[1]温诗铸,黄平.摩擦学原理.北京:清华大学出版社,2002:288-299
    [2]李力行,王秀琦,何卫东等.韶山8型准高速机车牵引齿轮优化设计.大连铁道学院学报.1995,16(4):1-7
    [3]朱剑林.东风10F型准高速客运机车非接触型动密封齿轮箱设计.内燃机车.1998,(9):36-38
    [4]唐宜胜,万朝燕,魏延刚等.高速机车牵引齿轮磨前滚刀齿形优化设计.大连铁道学院学报.1999,20(2):83-86
    [5]Shigeura J, Kubo A, Nonaka T, etal. Optimum designing method of heavily loaded involute spur gear tooth against scuffing failure. Transactions of the Japan Society of Mechanical Engineers.1995,61:354-361
    [6]万朝燕,兆文忠,谢素明等.机车牵引齿轮静动态分析及在东风4D客运机车中的应用.大连铁道学院学报.2002,23(1):23-26
    [7]魏静,孙清朝,孙伟等.高速机车牵引齿轮传动系统动态特性及非线性因素影响研究.振动与冲击.2012,31(17):38-43
    [8]戴雅康,任瑞铭,李国柱.准高速机车牵引齿轮材料接触疲劳性能的对比试验.大连铁道学院学报.1995,16(4):58-62
    [9]华公平.渗碳后直接淬火工艺在机车牵引齿轮上的应用.机车车辆工艺.2005,(5):1-4
    [10]石振华,王越,朱芳16Cr2Ni2A高速重载机车牵引齿轮钢磨损、疲劳性能的研究.金属热处理.1999,(1):14-15
    [11]Kucherkov A S, Panteleev A I, Rozin L Sh, etal. Equipment and technology for quenching the locomotive gears. Tyazheloe Mashinostroenie.1997,(10):49-50
    [12]Gladyrevskaya S A, Dontsova L I, Salina A D, etal. Use of steel 55pp for diesel locomotive drive gears. Metal Science and Heat Treatment.1977,19:42-45
    [13]邵建敏,刘建秀,宁向可.机车牵引齿轮接触应力及疲劳失效微观分析.现代制造工程.2012,(7):36-39
    [14]贾兵,何卫东,鲍君华.高速机车牵引齿轮参数化模型的有限元分析.中国科技信息.2009,(19):139-140
    [15]孟宏,封全保.高速电力机车传动齿轮的设计.电力机车技术.1996,(4):14-16
    [16]曾昭翔,宋登轩.从摩擦学角度改进机车牵引齿轮几何参数的设计.北方交通大学学报.1986,(4):29-34
    [17]李秀莲.齿间摩擦力作用下的圆锥齿轮齿根弯曲疲劳强度的计算.液压与传动.2004,(1):101-103
    [18]高创宽,周谋,亓秀梅.齿面摩擦力对齿轮接触应力的影响.机械强度.2003,25(6):642-645
    [19]李有堂,刘忠艳.摩擦系数对齿轮裂纹应力场强的影响.兰州理工大学校报.2009,35(6):158-162
    [20]徐辅仁,沈伟.齿间摩擦对机床增速齿轮传动中惰轮齿根弯曲疲劳强度的影响.机床与液压.2001,(2):85-87
    [21]Ueda A, Sato K, Moriwaki. The frictional coefficient and the simulation of plastic gears using basic experimental data. VDI Verlag GMBH.2005,1904:1367-1383
    [22]Bhattacharyya S, Bock F C, Howes M A H, etc. Chemical effects of Lubrication in contact fatigue, part Ⅱ:the statistical analysis, summary, and conclusions. Trans. ASME. Journal of Lubrication Technology.1976,98(2):299-307
    [23]Johnson K L, Spence D I. Determination of gear tooth friction by disc machine. Tribology International.1991,24(5):269-275
    [24]Mao K, Li W, Hooke C J. Friction and wear behavior of acetal and nylon gears. Wear.2009,267:639-645
    [25]曲庆文,钟振远.考虑磨损的齿轮摩擦学设计.润滑与密封.2006,(6):157-159
    [26]邓小雷,周兆忠,汪建平等.工程塑料齿轮疲劳寿命有限元分析.轻工机械.2008,26(6):44-47
    [27]潘尔顺,王殊轶,杨文通等.渐开线圆柱齿轮啮合过程中磨损的计算机仿真.上海交通大学学报.2000,34(3):415-418
    [28]李宝良,江亲瑜.渐开线齿轮轮齿表面磨损规律的理论与实验研究.润滑与密封.2006,(6):26-28
    [29]董立春.凹坑型仿生形态汽车齿轮耐磨性能试验研究与数值模拟.吉林:吉林大学,2010:19-20
    [30]陈殿华,张仲伟,王艳颖.WN齿轮传动弹流润滑及接触摩擦效率研究.润滑与密封.2012,37(4):34-38
    [31]李超,王优强.直齿圆柱齿轮表面微凸起磨损的时变热效应弹流润滑分析.润滑与密封.2012,37(4):39-42
    [32]李超,王优强,王美术.表面微点蚀对渐开线直齿圆柱齿轮弹流润滑的影响.润滑与密封.2011,36(6):55-59
    [33]畅通,王优强.考虑粗糙度的直齿圆柱齿轮热混合润滑分析.润滑与密封.2009,34(4):35-39
    [34]Haizuka S, Naruse Ch. Study of influence of lubricating oil and tooth height on friction characteristics of helical gears. Tribology Transactions.1999,42(3):633-639
    [35]Kiyotaka, Kazuteru N, Koki T. Surface failure of spur gears lubricated with biodegradable oil. Transactions of the Japan Society of Mechanical Engineers.2010,76:3785-3793
    [36]Podra P, Andersson S. Finite element analysis wear simulation of a conical spinning contact considering surface topography. Wear.1999,224(1):13-21
    [37]Peterseim J, Elsing R, Deuerler F. Simulation of sliding wear of hard-phase-containing metallic compound materials. Metall(Germany).1998,52:643-651
    [38]Brown G J. Erosion prediction in slurry pipeline tee-junction. Applied mathematical modeling.2002,26(2):155-170
    [39]Molincari J F, Ortiz M, Radovitzky R, etal. Finite-element modeling of dry sliding wear in metals. Engineering Computations.2001,18(3-4):592-609
    [40]Flasker J, Fajdiga G, Glodez S, etal. Numerical simulation of surface pitting due to contact loading. International Journal of Fatigue (UK).2001,23(7):599-605
    [41]周炜,唐进元Stribeck摩擦条件下齿轮二维冲击接触有限元求解.中国机械工程.2011,22(15):1858-1861
    [42]Nicholls J R, Stephenson D J. Monte carlo modeling of erosion processes. Wear.1995,186-187:64-77
    [43]吴国清,张晓峰,方亮等.两体磨料磨损的三维动态模拟.摩擦学学报.2000,20(5):360-364
    [44]吴国清,方亮,邢建东等.磨料尺寸对磨料磨损过程影响的随机模拟.西安交通大学学报.2001,35(5):527-531
    [45]Cuastavsson M. Fluid dynamic mechanisms of particle flow causing ductile and brittle erosion. Wear.2002,252(11-12):845-858
    [46]Jacobson S, Wallen P, Hogmark S. Fundamental aspects of abrasive wear studied by a new numerical simulation model. Wear.1988,123(2):207-223
    [47]Ingrid Serre, Marc, Bonnet. Modelling an abrasive wear experiment by the boundary element method. C.R.Acad.Sci.Paris.t.b.2001,329,serie Ⅱ:803-808
    [48]樊宁,艾兴,邓建新.利用蒙特卡洛方法计算陶瓷刀具磨损可靠性.摩擦学学报.2001,21(6):460-464
    [49]韩俊华,吴其胜.人工神经网络在摩擦材料制备中的应用.材料科学与工程学报.2011,29(5):786-789
    [50]于思荣,刘耀辉,于金江等Al2O3f+Cf/ZL109干摩擦磨损行为及其人工神经网络分析.摩擦学学报.1999,19(3):198-202
    [51]Sasaki, Kazuaki, Seki, etal. Molecular dynamics simulation of adhesive wear (Influence of periodic boundary condition and deformation speed). JSME International Journal, Series A:Mechanics and Material Engineering.2000,43(1):26-32
    [52]刘芳,熊锐,唐智.纳米润滑油添加剂抗磨减摩分子动力学模拟研究.润滑与密封.2010,35(4):94-96
    [53]孙青云.齿轮摩擦学的研究现状与展望.机械传动.2003,27(3):9-11
    [54]张良均,曹晶,蒋世忠.神经网络实用教程.北京:机械工业出版社,2008:1-9
    [55]吴耀庆,曾鸣,范力仁.基于BP神经网络的汽车摩擦材料性能预测与配方优化.材料导报.2010,24(5):74-78
    [56]伍朝阳,刘伯威,刘咏等.基于神经网络的树脂基摩擦材料摩擦因数的预测模型.粉末冶金材料科学与工程.2006,11(5):272-276
    [57]马云海,闫久林,佟金.硅灰石纤维填充超高分子量聚乙烯基复合材料干滑动摩擦磨损的BP神经网络分析.农业工程学报.2005,21(7):90-93
    [58]徐建生,赵源.BP神经网络计算丝杠螺母副摩擦系数的方法.机械设计与制造工程.2000,29(4):12-14
    [59]吴进,邱春林,齐克敏等.热轧精轧轧辊摩擦和磨损研究.钢铁研究.2006,34(6):31-34
    [60]莫易敏,史玉升,邹岚等.BP神经网络理论对磨损自补偿过程的预测.润滑与密封.1998,(6):6-9
    [61]杨建刚.人工神经网络实用教程.浙江:浙江大学出版社,2001:148-157
    [62]王松年,苏诒福,江亲瑜.摩擦学原理.北京:中国铁道出版社,1990:65-81,227-259
    [63]Adachi K, Hutchings I M. Wear-mode mapping for the micro-scale abrasion test. Wear.2003,255(1-6):23-29
    [64]Myshkin N K, Petrokovets M L, Chizhik S A. Simulation of real contact in tribology. Tribology International.1998,31(1-3):79-86
    [65]Priit P, Soren A. Simulation sliding wear with finite element method. Tribology International.1999,32:71-81
    [66]徐秉业,罗学富译.Johnson K L.接触力学.北京:高等教育出版社,1992:12-51
    [67]Hartnett J P. Deland E C. The influence of prandtl number on the heat transfer from totating non-isothermal disks and cones. Journal of heat transfer. Transactions of the ASME. C83.1961:95-96
    [68]Oliver, Boyd Ltd. translated. Dorfman L A. Hydrodynamic resistance and the heat loss of rotating solids. U.S.S.R:Cand.Acad.Sci,1963:150-230
    [69]Handschuh R F, Kicher T P. Method for thermal analysis of spiral bevel gears. Journal of Mechanical Design, Transactions of the ASME.1996,118(4):580-585
    [70]Gecim B, Winer W O. Steady temperature in a rotating cylinder subject to surface heating and convective cooling. ASME Journal of Tribology.1984,106(1):120-127
    [71]Blau P J. Friction Science and Technology:From Concepts to Applications. CRC PressINC, 2009:120-180
    [72]彭旭东,董光能,谢友柏.静止销和旋转圆盘间的稳态温度新算法.润滑与密封.1999,(2):66-68
    [73]彭旭东,曾群锋.聚醚醚酮基复合材料的热性质和物理性质预测及其摩擦销三维温度场的数值模拟.摩擦学学报.2005,25(4):353-357
    [74]马红玉,张红,彭旭东.聚合物运动摩擦件二维温度场的有限元分析.润滑与密封.2003,(3):50-53
    [75]王淑仁,闫玉涛,殷伟俐等.齿轮啮合摩擦疲劳磨损的计算模型.东北大学学报.2008,28(8):1164-1167
    [76]陈火红,于军泉.MSC.Marc/Mentat2003基础与应用实例.北京:科学出版社,2004:201-311
    [77]江亲瑜,王松年.机车牵引齿轮抗胶合承载能力折算公式及试验研究.内燃机车.1996,272(10):10-15
    [78]李茹贞,赵清慧译.齿轮强度设计资料.北京:机械工业出版社,1979:28-35
    [79]杨世铭,陶文铨.传热学.北京:高等教育出版社.2006:197-227
    [80]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用.北京:机械工业出版社.2004:1-20
    [81]魏延刚,李力行,秦光里.准高速机车牵引齿轮齿根弯曲应力有限元分析.大连铁道学院学报.1995,16(1):96-97
    [82]陈赛克,王毅.考虑摩擦时直齿齿轮应力有限元分析.农业机械学报.2006,37(10):142-144
    [83]张权勇.机车牵引齿轮磨削烧伤、裂纹分析.机车车辆工艺.2010,(4):46-48
    [84]吴刚,陈宗瑞.机车牵引齿轮寿命预测方法探讨.机车车辆工艺.2008,(6):7-8
    [85]佟维,吴昌华.SS7型电力机车牵引齿轮系统的有限元三维接触分析.机车电传动.1999, (6):11-13
    [86]戴雅康,任瑞铭,李国柱.准高速机车牵引齿轮弯曲疲劳强度的试验研究.大连铁道学院学报.1995,16(4):50-57
    [87]王秀琦,孙源,李力行.韶山8型机车牵引齿轮齿面剥落强度分析.大连铁道学院学报.1995,16(4):46-49
    [88]李旗号,赵卫东.刀具磨损的人工神经网络估计.天津大学学报.2000,33(4):447-450
    [89]王勖成.有限单元法.北京:清华大学出版社,2003:26-46
    [90]Rao K P, Prasad Y. Neural network approach to flow stress evaluation in hot deformation. Journal of Materials Processing Technology.1995,53(3-4):552-566
    [91]Ren Z, Glodez S. Flasker J. Simulation of surface pitting due to contact loading. International Journal for Numerical Methods in Engineering (UK).1998,43(1):33-50
    [92]Fang L, Xing J, Liu W, etal. Computer simulation of two-body abrasion processes. Wear.2001,250-251:1356-1360
    [93]Hassan, Ali R. Contact stress analysis of spur gear teeth pair. Proceedings of World Academy of Science, Engineering and Technology.2009,58:611-616
    [94]GAO Chen-hui, LIN Xie-zhao. Transient temperature field analysis of brake in nonaxisymmetric three-dimensional model. Journal of Materials Processing Technology.2002,129(1-3):513-517
    [95]Martins R C, Moura P S, Seabra J O. MoS2/Ti low-friction coating for gears. Tribology international.2006,39(12):1686-1697
    [96]Pandey R K. Failure analysis of coal pulveriser gear box. Engineering Failure Analysis.2007,14(4):541-547
    [97]Zagrodzki P, Lam K B, Barber J R, etal. Nonlinear transient behavior of a sliding system with frictionally excited thermoelastie instability. Journal of Tribology.2001,123(4):699-708
    [98]Olofsson U, Andersson S, Bjorklund S. Simulation of mild wear in boundary lubricated spherical roller thrust bearings. Wear.2000,241(2):180-185
    [99]Flodin A, Andersson S. Simulation of mild wear in spur gears. Wear.1997,207(1-2):16-23
    [100]Flodin A, Andersson S. Simulation of wear in helical gears. Wear.2000,241 (2):123-128
    [101]Wrightl N A, Kukureka S N. Wear testing and measurement techniques for polymer composite gears. Wear.2001,250-251:1567-1578
    [102]Kar, Malay K, Bahadur, etal. Heat transfer analysis for a pin-and-disc sliding system. Wear.1981,67(1):71-84
    [103]Elalem K, LiDY. Dynamical simulation of an abrasive wear process. Journal of Computer-Aided Materials Design (Netherlands).1999,6(2):185-193
    [104]Franklin F J, Wdiyarta I, Kapoor A. Computer simulation of wear and rolling contact fatigue. Wear.2001,250-251:49-55
    [105]Flasker J, Fajdiga G, Glodez S, etal. Numerical simulation of surface pitting due to contact loading. International Journal of Fatigue(UK).2001,23(7):599-605
    [106]Izciler M, Tabur M. Abrasive wear behavior of different case depth gas carburices AISI 8620 gear steel. Wear.2006,260:90-98
    [107]Kimura Y, Sekizawa M, Nitanai A. Wear and fatigue in rolling contact.Wear.2002,253(1-2):9-16
    [108]Alfredsson B, Olsson M. Initiation and growth of standing contact facture cracks. Eng.Fract.Meeh. 2000,65:89-106
    [109]Sadeghipour K, Baran G, Fu Z, etal. Finite element modeling of frack propagation inelastic plastic media. Part Ⅰ Vertical surface breaking cracks. J.Mater.Sci..1996,31(12):3167-3172
    [110]Faruk M, Hilal C, Mustaka K K. Fatigue properties of polyprophylene involute rack gear reinforced with metallic springs. Mateials and Design.2006,27:427-433
    [111]Kapoor. Wear by plastic ratcheting. Wear.1997,212(1):119-130
    [112]Ringsberg J W, Loo-Morrey M. Prediction of fatigue crack initiation for rolling contact fatigue. International Journal of Fatigue.2000,22(3):205-215
    [113]Rech J. Influence of cutting edge preparation on the. wear resistance in high speed dry gear hobbing. Wear.2006,261(5-6):505-512
    [114]Chaari F. Fakhfakh T, Haddar M. Analytical modeling of spur gear tooth crack and influence on gearmesh stiffness. European Journal of Mechanics A/Solids.2009,28(3):461-468
    [115]Li C J, Limmer J D. Model-based condition index for tracking gear wear and fatigue damage. Wear.2000,241(1):26-32
    [116]Gwidon P, Gwidon W, Pawel P. Automated classification of wear particles based on their surface texure and shape features. Tribology International.2008,41(1):34-43
    [117]Park D, Kahraman A. A surface wear model for hypoid gear pairs. Wear.2009,267(9-10):1595-1604
    [118]Sharif K J, Evans H P, Snidle R W. Prediction of the wear pattern in worm gears. Wear.2006,261(5-6):666-673
    [119]Yevtushenko A, Ukhanska O, Chapovska R. Friction heat distribution between a stationary pin and a rotating disc. Wear.1996,196(1-2):219-225
    [120]龚宪生,王欢欢,张干清等.行星齿轮轮齿本体温度场与闪温研究.农业机械学报.2011,42(10):209-216
    [121]徐流杰,魏世忠,王强等.基于BP神经网络的V92Cr42Mo3高速钢冷轧辊磨损模型.摩擦学学报.2006,26(6):541-545
    [122]汪选国,严新平等.磨损数值仿真技术的研究进展.摩擦学学报.2004,24(2):88-92
    [123]许中明,黄平.摩擦磨损的接触界面势垒理论研究.摩擦学学报.2007,27(1):54-59
    [124]王淑仁,丁津原.用于磨损仿真的空间啮合曲面离散化方法.东北大学学报.2002,23(3):277-280
    [125]潘金坤.基于MSC.Marc的渐开线直齿圆柱齿轮齿根应力的有限元分析.煤炭技术.2010,29(11):17-18
    [126]苏程.单级齿轮传动系统非线性动力学特性分析.兰州理工大学学报.2012,38(1):32-36
    [127]陈国定,李剑新,刘志全.斜齿轮非定常温度场的计算.西北工业大学学报.2000,18(1):11-14
    [128]杨凡,孙首群,于建华等.齿轮啮合过程中接触应力的精确分析.机械传动.2010,34(7):56-59
    [129]武丽.有限元分析法及其软件在齿轮接触强度分析中的应用.机械管理开发.2007,(2):74-75
    [130]陈赛克,王毅.基于ANSYS精确模型的齿轮接触疲劳寿命有限元分析.机械传动.2006,31(2):281-284
    [131]王哲,胡迎锋.齿轮建模与接触应力分析.湖北工业大学学报.2006,21(3):56-59
    [132]雷镭,武宝林,谢新兵.基于ANSYS有限元软件的直齿轮接触应力分析.机械传动.2006,30(2):50-53
    [133]温诗铸.润滑理论研究的进展与思考.摩擦学学报.2007,27(6):498-504
    [134]周长江,唐进元,钟志华等.齿轮传动齿面摩擦因数计算方法的研究.润滑与密封.2006,(10):185-191
    [135]陈海真.基于摩擦学的齿轮传动设计.农机化研究.2005,9(5):147-149
    [136]顾敏,陈国民.我国齿轮制造中的热处理技术.金属热处理.2005,(30):30-37
    [137]张熹,崔京玉,章军.浅析齿轮刚及热处理工艺对汽车用齿轮性能的影响.钢铁研究学报.2009,21(10):38-42
    [138]彭俊,周述积,楼芬丽.汽车渗碳齿轮用刚及热处理工艺的现状和发展趋势.2007,28(1):3-6
    [139]乐美豪.中国齿轮制造业的发展预测.制造技术与机床.2003,(3):11-13
    [140]曾攀.有限元分析及应用.北京:北京清华大学出版社,2004:10-20
    [141]沈世德.机械原理.北京:机械工业出版社,2001:]26-197
    [142]龙慧,张光辉,罗文军.旋转齿轮瞬时接触应力和温度的分析模拟.机械工程学报.2004,(8):24-29
    [143]宁少慧.有限元法分析齿轮齿面摩擦力对齿根弯曲应力的影响.机械管理开发.2008,24(2):24-26
    [144]靳广虎,朱如鹏,朱自冰等.面齿轮传动齿面瞬时接触温度的分析.机械科学与技术.2009,28(3):301-305
    [145]李润方,王建军.齿轮系统动力学—振动,冲击,噪声.北京:科学出版社,1997:11-69
    [146]张秀华,李光喜,王婉.基于Ansys的渐开线直齿圆柱齿轮接触应力分析.煤矿机械.2012,33(2):104-105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700