用户名: 密码: 验证码:
环保型抗菌实木复合地板的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现多层实木复合地板的抗菌功能,降低其游离甲醛释放率,本文研究了无醛豆胶多层实木复合地板基材的制造工艺及性能,以及多层实木复合地板的抗菌处理工艺及性能。论文从胶黏剂胶接机理的分析、无醛豆胶杨木实木复合地板基材的制造工艺、抗菌实木复合地板的制造工艺及性能检测等方面进行了论述,其主要内容和结论如下:
     (1)在胶黏剂胶接机理分析中,采用差示扫描量热仪(DSC),傅立叶变换红外光谱仪(FTIR),以及热重分析仪(TG)等现代仪器对工厂生产的豆胶以及实验室制造的豆胶进行了检测和分析。通过FTIR分析结果表明,在160℃条件下,处理5min后,工厂豆胶中大豆蛋白的二级结构有明显的改变,α-螺旋全部转化成为β-折叠,说明其中发生了化学反应并导致小分子分解;而豆粉和尿素改性豆胶的结构变化不大,说明在160℃的条件下,豆粉仍具有较强的稳定性。通过DSC分析表明,工厂豆胶和豆粉的玻璃态转化温度大约在70℃左右,而高温情况下(200℃-250℃),尿素改性豆胶中的尿素会发生分解,其高温热稳定性比纯大豆蛋白和工厂豆胶差。通过TGA分析比较表明,在检测温度区间,尿素改性豆胶失重率最大,其次是工厂豆胶,豆粉失重率较小。
     (2)在无醛豆胶杨木实木复合地板基材的制造工艺研究中,通过多因素因子轮换法分析了施胶量、热压时间、热压压力(高压压力)、热压温度、热预压温度、热压压力等六个因素对无醛豆胶杨木实木复合地板基材的胶合强度影响,在综合分析的基础上,最终确定最优的工艺条件为:施胶量450g/m~2(双面),热压压力2.0MPa,热压时间70s/mm,预热压温度110℃,热压温度为160℃,热压压力为1.6MPa。在多层豆胶胶合板热压表芯层温度变化研究的基础上,建立了热压时间的数学模型;在多层实木复合地板表板增强研究中,通过单因素和正交试验,优化了杨木和杉木的压缩工艺,结果表明压缩温度为195℃,压缩时间1.5min/mm,压缩率45%时压缩效果最佳。
     (3)在抗菌实木复合地板的制造工艺研究中,通过单因素试验分析了不同类型的抗菌剂、分散剂对实木复合地板的抗菌效果影响,试验结果表明,HTB-032型载银羟基磷酸锆纳米抗菌剂的抗菌效果最佳,六偏磷酸钠为适合HTB-032型载银羟基磷酸锆钠米抗菌剂的最优分散剂。当在光敏涂料或三聚氰胺树脂中添加1%的抗菌剂处理实木复合地板时,其抗菌效果参照标准QB/T2591-2003《抗菌塑料--抗菌性能试验方法和抗菌效果》进行测试,抗菌率可达99%以上,可判定为强抗菌产品。参照中华人民共和国卫生部颁发的《消毒技术规范》(2008),采用抑菌环法测试抗菌试件的抗菌性能比较实验室制造的季铵盐改性蒙脱土、季铵盐和银离子复合改性蒙脱土复合型抗菌剂的抗菌效果表明:季铵盐银离子复合型抗菌剂的抗菌效果较好,经抑菌环抗菌效能测试,随着复合抗菌剂添加量的增加,其抗菌性能明显提高,当分别添加3%的复合抗菌剂至涂料和三聚氰胺树脂中,其抑菌环直径分别可达15mm和25mm。
     (4)通过分析抗菌型实木复合地板的游离甲醛和VOCs释放量等环保性能表明:本文研究的环保型抗菌实木复合地板游离甲醛释放量达到国家标准GB/T18103—2000实木复合地板A类板要求,分别用涂料和三聚氰胺树脂作为表面装饰后其游离甲醛释放量分别为7.2mg/100g和8.4mg/100g;有机挥发物(VOCs)释放量完全达到环境标准HJ571-2010《环境标志产品技术要求人造板及其制品》标准的要求,分别用涂料和三聚氰胺树脂作为表面装饰后其VOCs测量值为0.164和0.386mg/m~2h,具有优越的环保性能。根据材料毒性分析结果表明:环保型抗菌实木复合地板的使用安全性优于木材原料,细胞毒性评级为2级。
In order to achieve the antibacterial function of the multi-layer parquet and reduce the freeformaldehyde release rate, the non-formaldehyde bean gum engineered wood flooringmanufacturing process and properties of the substrate, as well as multi-layer parquetantimicrobial treatment process and performance are studied. Papers are discussed from theanalysis of the mechanism of adhesive bonding, aldehyde bean gum poplar wood flooringsubstrate manufacturing process, antimicrobial parquet manufacturing process and performancetesting, and its main contents and conclusions are as follows:
     In analysis of adhesive bonding mechanism, Industrialization bean gum and laboratorymanufacturing bean gum are detected and analyzed by Differential scanning calorimetryinstrument (DSC), Fourier transform infrared spectroscopy (FTIR), and thermal gravimetricanalysis (TG).Through FTIR analysis,the result showed that soy protein secondary structure offactory bean gum Under the conditions of160℃for5min exhibit a distinct change becauseof all alpha-helical transformed into beta-fold. It indicated that the chemical reaction lead to thedecomposition of small molecules and the same time structural of the soybean meal andurea-modified guar gum change hardly in the conditions of160℃for5min.It indicated thepure soy protein still has strong stability. Though DSC analysis,the result showed that glasstransition temperature of the factory bean gum and pure soy protein both are about70℃, but inthe case of high temperature (200℃-250℃),the urea-modified guar gum will decompose theurea. It showed high temperature thermal stability of that is poor than pure soy protein andIndustrialization bean gum. Though TGA analysis,the result showed that the weight loss rate ofurea-modified guar gum is bigger than The industrialized bean gum and pure soy protein indetection temperature range.
     In the study of aldehyde-free bean gum poplar parquet substrate manufacturing process,the effect of glue content, pressing time, pressing pressure (high pressure), pressing temperature,preheat pressure temperature and Hot pressing pressure for bonding strength of multilayerpoplar wood flooring substrate by non-formaldehyde bean gum are studier by multi-factorfactor rotation method. on the basis of comprehensive analysis, and ultimately to determine theoptimal process conditions: the glue content of450g/m~2(double-sided), hot pressing pressure of2.0MPa, pressing time of70s/mm, the preheating pressure temperature of110℃, the hottemperature of160℃and hot pressure of1.6MPa is the best. At the same time, a mathematicalmodel of the pressing time is established on the basis of surface layer and core layertemperature change about multi-layer bean gum plywood. In the research of enhancing surfaceboard of engineered wood flooring, poplar and fir compression process are optimized bymulti-factor factor rotation method. The result showed that the best compression temperature is195℃, compression time is1.5min/mm and compression rate is45%.
     In the study of antimicrobial parquet manufacturing process,the effect of different typesof antimicrobial agents and dispersants to antibacterial properties of the parquet by single factortest method.The result showed the antibacterial effect of HTB-032containing silver hydroxyzirconium phosphate nano-antibacterial agent is the best and at the same time best dispersantfor for HTB-032type containing silver hydroxy zirconium phosphate sodium antibacterialagent is hexametaphosphate. When adding1%of the antimicrobial agent in the photosensitive paint or the melamine resin in processing wood flooring, its antibacterial rate which are testedreference to the standard QB/T2591-2003about antibacterial Plastics-Test method forantibacterial properties is up to99%, and can be assessed as strong antibacterial products.Reference to "disinfection technical specifications "which is issued by the Ministry of Health ofthe People's Republic of China (2008), The antibacterial effect of quaternary ammoniummodified montmorillonite and quaternary ammonium and silver ions composite modifiedmontmorillonite composite antibacterial agent which are manufactured by the laboratory, arecompared by antibacterial Tour de France test. The result showed that antibacterial effect ofquaternary ammonium salt compound of silver ions antibacterial agent is better than others, andwith the increase of the added amount of the composite antibacterial agents, the antibacterialperformance has improved significantly. It indicated that When adding3%compositeantibacterial agent into the paint and melamine resin, the diameter of inhibition zone is up to15mm and25mm respectively.
     By analyzing free formaldehyde and VOCs emission in the environmental performance ofthe antibacterial parquet, the results showed that free formaldehyde emission of theenvironmentally friendly antibacterial parquet reached Class A lever of the national standardGB/T18103-2000about parquet, and the values of free formaldehyde emission by coatingsand melamine resins on surface are7.2mg/100g and8.4mg/100g; The results also showed thatvolatile organic compounds (VOCs) emission reached the requirements of environmentalstandards HJ571-2010about environmental labeling products technical requirements forwood-based panels and their products, and the values of VOCs emission by coatings andmelamine resins on surface are0.164mg/m~2h and0.386mg/m~2h, They indicated antibacterialwood flooring has superior environmental performance. According to the the material toxicityanalysis, the results show that the secure of environmentally-friendly antimicrobial parquet ofwhich the cytotoxic were rating2than wood raw material.
引文
[1]翁少斌.中国强化地板市场分析[J],人造板通讯,2002,(3):5-6;
    [2]周定国,梅长彤.面向21世纪的农作物秸秆工业[J].南京林业大学学报,2000(5):1-4;
    [3]钱小瑜.我国人造板行业发展现状、前景与挑战[J].木材工业,2010,24(1):15-18;
    [4]华毓坤.人造板工艺学[M].北京:中国林业出版社,2002;
    [5]王欣,周定国.我国人造板原材料的创新与可持续发展[J].林业科技开发,2009,23(1):5-9;
    [6]张忠涛.我国的杨树资源与开发利用[J].林业建设,2001,(5):21-24.
    [7]李学新.浅谈杨树的适应性[N].中国绿色时报,2004,08,05
    [8]黄淑芹.我国实木复合地板的优势及发展[J].林业机械与木工设备,2004,9(32):12-13;
    [9]贾翀,程秀才,曹轩等.杉木地板表面抗菌处理[J],林业科技开发,2011,25(6):83-85;
    [10]张勤丽.我国意杨加工利用概况[J],林产工业,2000,27(5):3~6;
    [11]刘盛全等.我国杨树人工林材性与加工利用研究现状及发展趋势[J],木材工业,1999,13(3):14~16;
    [12]赵永贵.浅谈西宁市杨树的产业化开发利用[J],青海林业科技,2004年增刊:61~63;
    [13]吴盛富.我国杨木资源与胶合板工业的发展[J],中国人造板,2008,(3):24-28;
    [14]杨霞,刘秋林,洪克成.人工林杨木单板旋切特性研究[J],人造板通讯,2003,11:6-8;
    [15]张亚慧,祝荣先,于文吉.改性豆基蛋白胶杨木刨花板的制造工艺[J],木材工业,2010,24(3):4-6;
    [16]周晓燕,成书生,何翠芳.杨木/棉秆复合无胶纤维板制备工艺初探[J],林业科技开发,2008,22(1):87-89
    [17]尤纪雪,叶汉林,童国林等.白腐菌预处理对杨木化学制浆性能的影响[J],中国造纸,2004,23(3):12-15;
    [18]张冬梅,杨亮庆.速生杨木改性研究进展[J].林业机械与加工设备,2012,40(3):16-20;
    [19]方桂珍,李淑君,刘健威.低分子量酚醛树脂改性大青杨木材的研究[J].木材工业,1999,13(5):17-19.;
    [20]吴玉章,松井宏昭,片冈厚.酚醛树脂对人工林杉木木材的浸注性及其改善的研究[J].林业科学,2003,39(6):136-140;
    [21]岳孔,章瑞,卢晓宁.速生杨木改性材力学及胶合性能的研究[J].中南林业科技大学学报,2009,29(6):93-97;
    [22]武国峰,姜亦飞,宋舒苹等.木材/改性UF预聚体复合材料制备及性能表征[J].光谱学与光谱分析,2011,31(4):1083-1086;
    [23]周永东.低分子量酚醛树脂强化毛白杨木材干燥特性及其机理研究[D].北京:中国林业科学院博士论文;
    [24]张杰,杨木单板压密化的研究[D],黑龙江,东北林业大学硕士论文;
    [25]陈瑞英,胡国楠.速生杨木密实化研究[J].福建农林大学学报,2005,34(3):324-328.;
    [26]冯德君,赵泾峰.热处理木材吸湿性及尺寸稳定性研究[C].中国林学会木材科学分会第十二次学术研讨会论文,2010:569-572;
    [27]徐信武,汤正捷,崔悦,等.杨木地板基材密实和炭化改性[J].南京林业大学学报,2011,35(2):65-69;
    [28]刘映良,谢双喜,丁贵杰.不同岩性11年生杉木土壤微生物区系研究[J].安徽农业科学,2010,38(4):2125-2126,2144;
    [29]章卫钢,鲍滨福,刘君良,等.我国人工林杉木密实化的研究进展[J].木材工业,2009,23(2):34-36;
    [30]鲍滨福,杜春贵,章卫钢,等.人工林杉木表面浸渍压缩密实化研究[J].林业科技,2009,34(6):46-49;
    [31]陈玉,陈永强.杉木阻燃浸渍处理工艺的研究[J].中国农学通报,2010,26(22):121-125;
    [32]徐咏兰,金菊婉.杉木小径材制造单板层积材技术的研究开发[J].林业科技开发,2001,15(2):27-29;
    [33]黄松军.强化杉木单板层积材工艺研究[D].北京:北京林业大学硕士论文;
    [34]陈雷,徐咏兰.人工林杉木单板层积材制造工艺的研究[J].木材工业,2000,14(6):3-5;
    [35]曾钦志,饶久平,吴纯初,等.杉木间伐材制造厚型轻质刨花板的研究[J].木材工业,2000,14(4):3-6
    [36]林巧佳,何修善,吴初纯,等.异氰酸酯胶无毒低密度杉木刨花板的制造[J].木材工业,2000,14(3):27-30;
    [37]胡育辉.南方人工速生杉木间伐材在定向结构刨花板中的应用[J].木材加工机械,1999,(4):18-19;
    [38]胡育辉.杉木间伐材定向结构刨花板及其在房屋建筑中的应用[J].林业科技通讯,2000,(4):4-5;
    [39]吴立农.杉木间伐材防火型定向结构刨花板的研制[J].建筑人造板,2000,(4):23-24;
    [40]杨小军,曹忠荣,曲岩春.杉木室外型中密度纤维板的制造工艺[J].木材工业,2002,16(3):6-8;
    [41]黄玉亭,王旭,江福昌.杉木超轻质中密度纤维板的试制[J].林产工业,2003,30(3):15-17;
    [42]郑亮.BCTMP杉木绒毛浆制浆废水处理[J].中国造纸,2004,23(2):40-43;
    [43]李建伟,于长海.我国实木复合地板产业发展中存在的问题[J].中国人造板,2006(9):1-4;
    [44]马红霞,江泽慧,刘红征,等.我国实木复合地板研究现状及发展趋势[J].世界林业研究,2009,29(4):63-68;
    [45]吴智慧.复合地板的生产工艺[J].林产工业,1997,24(2):41-43;
    [46]柏建伟.实木复合地板发展趋势浅析[J].林业经济,2009(12):78-79;
    [47]李伟建,于长海.我国实木复合地板产业发展中存在的问题[J].中国人造板,2006,9:1-4;
    [48]李建伟,陈建国,于长海.实木复合地板业的发展及产品创新趋向[J].人造板通讯,2005,(3):28-30;
    [49]曲敬阳,刘玉田,仲崇良.现代大豆蛋白食品生产技术[M].山东:山东科学技术出版社,1991;
    [50]顾继友.胶粘剂与涂料[M].北京:中国林业出版社,1999:241;
    [51]WeiNing Huang, XiuZhi Sun·Adhesive properties of soy proteins modified by sodium dodecyl sulfateand soudium dodecylbenzene sul-fonate[J]. JAOCS,2000,77(7):705-708;
    [52]玄夕娟,陈年.大豆蛋白胶黏剂的研究进展[J].高校理科研究,2009,(34):97;
    [53]Zhong Z K, Sun X S, Fang X H, et al. Adhesion properties of soy protein with fiber cardboard[J]. Journalof the American Oil Chemists' Society,2001,78(1):37-41;
    [54]Roland E K, Pert2Us J S, Richard W H. Residual Wood Conference Proceedings,1997,2:28-36;
    [55]叶楚平,李陵岚,王念贵.天然胶粘剂(M).北京:化学工业出版社,2004,1:346-406;
    [56]兰辉.化学改性对脱脂大豆粉作为木材胶粘剂的粘接性与抗水性的影响(D).郑州:郑州工程学院,2002;
    [57]Liu Y, Li K C. Modification of soy protein for wood adhesives using mussel protein as a model: Theinfluence of a mercap to croup[J]. Macromolecular Raipid Communications,2004,25(21):1835-1838;
    [58]张洋,周定国.豆胶制造速生杨木Ⅱ类胶合板的工艺研究[J].中国人造板,2007,14(5):729;
    [59]夏海民,孙斌,冯新星.无机抗菌剂的分类、应用及发展[J].纺织导报,2010(6):115-117;
    [60]葛伟青,苑少强,郝斌.无机抗菌材料的应用及其抗菌性能测试和评价[J].陶瓷,2007(7):53-55;
    [61]姚爱华,李殿超,杨殿范.无机抗菌材料及应用[J].世界地质,2001,20(2):171-174.
    [62]张长荣,金聪玲.阳离子活性杀菌剂的合成进展及其结构与杀菌力的关系[J].陕西化工,1997,(9):1-7;
    [63]Kourai, Synthesis and AntibacterialActivity of Unsaturated Quater-nary Ammo-nium. Bokin bobia.1995,(23):271;
    [64]Bodor,Kaminsk,i Selk SoftDrugs:LabileQuaternaryAmmonium Saltsas Soft Anti-microbials. JMedChem,1980,(23):469-474;
    [65]孙洪,夏英,陈莉等.国内外抗菌剂的研究现状及发展趋势[J].塑料工业,2006,34(9):1-4,17;
    [66]张葵花,谭绍早,赵惠明.有机-无机复合抗菌剂的制备及抗菌性能[J].硅酸盐通报,2007,26(2):349-352,385;
    [67]李晓英.抗菌剂及抗菌材料的应用[J].中国塑料,2001,15(2):68-70;
    [68]李毕忠.抗菌塑料的发展和应用[J].化工新型材料,2000,28(6):8-12;
    [69]高文清.抗菌剂及抗菌塑料概述[J].塑料制造,2008,(6):92-93;
    [70]孙振铃,刘俊龙.抗菌塑料的制备及应用研究进展[J].塑料科技,2007,35(10):102-107;
    [1]刘约权.现代仪器分析[M].高等教育出版社,2006.5,北京;
    [2]罗丽梅,张华,刘季红,等.红外光谱鉴定混合树脂的结构[J].塑料科技,2010,38(9):70-72;
    [3]王宇,何琴玲,林中祥.增粘树脂红外光谱的快速鉴别研究[J].涂料工业,2010,40(4):73-76,79;
    [4]郭宝春,贾德民,汪磊,等.双酚A二氰酸酯/环氧树脂固化共混物结构的红外光谱研究[J].合成树脂及塑料,2001,18(5):31-34;
    [5]周淑华,谭亮红,王进.红外光谱分析与热分析相结合鉴定并用胶成分[J].特种橡胶制品,2002,23(5):46-47,50;
    [6]童亚军,章祥林,苏肖.红外光谱与热重分析法研究腐植酸改性脲醛树脂[J].中国胶黏剂,2010,19(9):32-36;
    [7]李芝华,任东燕,丑纪能,等.聚氨酯改性环氧树脂的制备及红外光谱分析[J].热固性树脂,2006,21(1):8-11;
    [8]Shangjin He, Keyu Shi, Jie Bai, et al. Studies on the properties of epoxy resins modified with chainextended ureas[J]. Polymer,2001,(42):9641-9647;
    [9]孟季茹,梁国正,赵磊.傅立叶红外光谱法研究氰酸酯树脂及其改性体系的固化反应[J].高分子材料科学与工程,2003,19(2):180-183;
    [10]姚苗,王颖.三元树脂磁带粘合剂中乙烯醇红外定量分析研究[J].磁记录材料,1987,(10):14-17;
    [11]于志省,李扬,王玉荣,等.红外光谱法分析苯乙烯树脂组分含量[J].塑料科技,2009,37(4):88-91;
    [12]王文波,申书昌,张丽媛,等.红外光谱法测定柠檬酸壬基酚聚氧乙烯醚单酯二乙醇酰胺的含量[J].光谱学与光谱分析,2007,27(6):1121-1123;
    [13]Xu X F, Yang H D, Zhang H X. Effects of the polybutadiene poly(styrene-co-acrylonitrile) ratio in apolybutadiene g-poly(styrene-co-acrylonitrile) impact modifier on the morphology and mechanicalbehavior of acrylonitrile butadiene-styrene blends[J].Journal of Applied Polymer Science,2005,98:2165-2171;
    [14]张银生,尤瑜升,冀克俭,等.红外光谱法测定环氧树脂的环氧量[J].化学计量,1995,4(1):18-21;
    [15]GB/T6040-2002红外光谱分析方法通则
    [16]孟令芝,龚淑玲,何永柄.有机波谱分析[M].武汉:武汉大学出版社,2003:213-233;
    [17]张玉龙,齐桂亮.胶黏剂配方精选[M].北京:化学工业出版社,2009;
    [18]杨波,杨光,耿玮蔚.大豆蛋白改性胶理化性质的研究[J].食品与发酵工业,2010,36(12):85-88;
    [19]李永辉,方坤,盛奎川.DS改性大豆分离蛋白胶粘剂的性能研究[J].粮油加工,2007,(8):90-93;
    [20]Y Wang, X S Sun, D Wang. Performance of Soy Protein Adhesive Enhanced byEsterification[J]. ASABE,2006,49(3):713-719;
    [21]张忠慧,华欲飞.大豆7S与11S球蛋白尿素变性后的粘接性质研究[J].中国胶粘剂,2007,16(1):26-30;
    [22]Wang Y,Mo X,Sun XS.Soy protein adhesion enhanced by glutaraldehyde cross link[J].Journal of AppliedPolymer Science,2007,104(1),130-136;
    [23]陈奶荣,林巧佳,卞丽萍.改性豆胶胶合板热压工艺优化及固化机理分析[J].农业工程学报,2012,28(11):248-253;
    [24]张忠慧,华欲飞.大豆分离蛋白与低浓度尿素相互作用的红外光谱分析[J].大豆科学,2008,27(1):134-136,144;
    [25]KumarR, ChoudharyV, Mishra S, Varma IK, and Mattiason B.2002.Adhesives and plastics based on soyprotein products. Industrial Crop and Products,16:155-172;
    [26]王建华,卫亚丽,文宗河,何建川.蛋白质结构的FT-IR研究进展[J].化学通报,2004,(7):482-486;
    [27]于伯龄,姜胶东.实用热分析[M].北京:纺织工业出版社;
    [28]黄友如,华欲飞,王晓红.DSC在大豆蛋白功能性质研究中的应用[J].粮食与油脂,2003,(8):15-17;
    [29]柯红军,乔英杰,陈俊英,等.等温DSC法研究液态橡胶改性环氧树脂固化动力学[J].玻璃钢/复合材料,2012,(3):43-47;
    [30]张彦华,顾继友,谭海彦,等.封闭异氰酸酯改性脲醛树脂制备胶合板[J].林产工业,2009,36(6):17-19;
    [31]陈海燕.EVA热熔胶的固化研究[J].中国胶黏剂,2010,19(5):61;
    [32]陈少峰,谢建良,邓龙江.DSC法研究聚异氰酸酯/环氧树脂胶黏剂的固化反应动力学及固化工艺[J].四川化工,2006,9(2):1-4;
    [33]徐朝阳,李大纲.水性改性淀粉胶在包装用麻秆中密度纤维板中胶合机理的研究[J].包装工程,2006,27(3):3-5;
    [34]顾继友,程瑞香.采用DSC和FTIR对木材和API胶粘剂间反应的研究[J].中国胶黏剂,2005,14(4):10-13;
    [35]张洋,华毓坤.用DSC法研究麦秸人造板用胶的热反应特征[J].南京林业大学学报,2000,24(5):17-20;
    [36]刘振海,陆立明,唐远旺.热分析简明教程[M].北京:科学出版社,2012;
    [37]刘振海.热分析与量热仪及其应用(第2版)[M].北京:化学工业出版,2011;
    [38]黄友如,华欲飞,王晓虹.DSC在大豆蛋白功能性质研究中的应用[J].粮食与油脂,2003,(8):15-17
    [39]Scilingo A. A. et a1. Calorimetric study of soybean protein isolates: effect of calcium and therm altreatments[J]. J. Agric. Food Chem.,1996,44:3751-3756;
    [40]Lakemond C. M. M, et a. Heat denaturation of soy glycinin: influence of pH and ionic strength onmolecular structure[J]. J. Agric. Food Chem.,2000,48:199l一1995;
    [41]Zhong Z. K, et a1. Therm al behavior and nonfreezing water of soybean protein components[J]. CerealChem.,2000,77(4):495-500;
    [42]魏福祥.现代仪器分析技术及应用[M].北京:中国石化出版社,2011;
    [1]Zhang Xiaohuan,Chen Guihua,Han Jian. Study on synthesis of the low free formaldehydeurea-formaldehyde resin adhesive[J]. Wood Processing Machinery.2010,(2):20-22;
    [2]韩书广,黄润州,吴羽飞,等.改性脲醛树脂合成工艺因素与质量指标关系研究[J].西北林学院学报,2010,25(4):175-180;
    [3]Pan Mingzhu,Li Hao,Wan Yimin.Effects of Bio-nano Silicon Dioxide on Free Formaldehyde EmissionReduction of Urea-formaldehyde Resin[J]. China Forest Products Industry,2012,39(4):17-19;
    [4]祝荣先,于文吉.异氰酸酯制备无醛胶合板的研究——热压工艺参数的优化[J].东北林业大学学报,2010,38(10):58-60;
    [5]向仕龙,申明倩,政燕燕.水性异氰酸酯胶合板与细木工板的研究[J].林产工业,2004,31(2):14-17;
    [6]唐朝发,沈玉英.用水性高分子异氰酸酯生产无醛胶合板生产工艺的研究[J].吉林林业科技,2001,30(2):16-17;
    [7]Liu Jinghong,Lin Qiaojia, Yang Guidi.Application of Modified Starch Adhesive in PlywoodIndustry[J].Journal of Fujian College of Forestry.2004,24(2):144-147;
    [8]代永上,赵文元.复合淀粉胶黏剂研究进展[J].化学与黏合,2011.33(5):51-53;
    [9]高振忠,孙圣伟.木材用改性淀粉胶黏剂的制备[J].林业科学,2009,45(7):106-110;
    [10]张洋,安霞,周兆兵,等.速生杨木染色效果的色差分析[J].林业科技开发,2007,21(1):25-27;
    [11]张洋,周定国,杨波,等.豆胶制造速生杨木Ⅱ类胶合板的工艺研究[J].中国人造板,2007,(5):7-9;
    [12]刘艳萍,张洋,章昕,等.豆胶染色杨木胶合板的工艺及性能[J].林业科技开发,2009,23(4):95-97;
    [13]刘聪,张洋,杨雨微.微纳纤丝改性豆胶制造染色杨木胶合板[J].木材工业,2011,25(4):44-46;
    [14]陈奶荣,林巧佳,卞丽萍.改性豆胶胶合板热压工艺优化及固化机理分析[J].农业工程学报,2012,28(11):248-253;
    [15]Tabarsa T, Chut Y H. Effect of hot-pressing on properties of white spruce[J]. Forest Prod J,1997,47(5):71-76;
    [16]Panshin A J,De Zeeuw C.Text book of Wood Technology(4th ed)[M]. New York:NcG rawHill Inc,1980:365;
    [17]谢健夫,郭幼丹.胶合板热压时间的理论研究[J].福建林学院学报,1989,9(2):177-181;
    [18]朱政贤.木材干燥[M].北京:中国林业出版社,1979;
    [19]曹红奋,梅国梁.传热学——理论基础及工程应用[M].北京:人民交通出版社,2004;
    [20]赵孝萱.美国大力资助大豆工业利用研究[J].粮食与油脂,1997,(4):53;
    [21]Donghai Wang, Xiuzhi Sun. Low density particleboard from wheat straw and corn pith[J]. IndustrialCrops and Products,2002,15:43-50;
    [22]钱俊,叶良明,金永明,等.速生杉木表层改性研究—氨水涂布热压法[J].建筑人造板,2002,2(2):31-32;
    [23]钱俊,沈哲红,金永明,等.人工林杉木压缩整形过程中的定形工艺[J].木材工业,2005,19(4):25-27;
    [24]赵广杰,刘少华,曹金珍,等.杉木表层密化及其变形固定处理技术[J].木材工业,1999,13(1):19-22;
    [25]王洁瑛,赵广杰.热处理过程中杉木压缩木材的材色及红外光谱[J].北京林业大学学报,2001,23(1):59-64;
    [26]陈瑞英,刘景宏,魏萍.杉木间伐材压缩密化与回复变定的研究[J].福建林学院学报,2005,25(4):294-298;
    [27]陈瑞英,魏萍,刘景宏.压前含水率对杉木间材压缩木性能的影响[J].林产工业,2006,33(1):10-13;
    [28]吕文华,赵广杰.杉木木材/蒙脱土纳米复合材料的结构和表征[J].北京林业大学学报,2007,29(1):131-135;
    [29]陈泽君,范友华,胡伟.杉木改性复合木材的制备及性能研究[J].湖南林业科技,2008,35(2):12-14;
    [30]吴玉章.酚醛树脂对人工林杉木木材的浸注性及其改善的研究[J].林业科学,2003,39(6):136-140;
    [31]刘君良,王玉秋.酚醛树脂处理杨木、杉木尺寸稳定性分析[J].木材工业,2004,18(6):5-8;
    [32]钱俊,叶良明,余肖红,等.速生杉木改性的研究—UF树脂浸渍后热压法改性[J].木材工业,2001,15(2):14-16;
    [33]王传耀,杨文斌,陈刚.杉木间伐材ACQ防腐与综合强化复合改性研究[J].林业科学,2006,42(12):101-107;
    [1]王卫东,梁星宇,梅长彤,等.抗菌耐磨实木复合地板的研究开发[J].林业科技开发,2003,17(6):39-40;
    [2]李黎,李建章,夏松华.银离子抗菌三聚氰胺饰面人造板的研究[J].人造板通讯,2007,14(3):35-39;
    [3]余钢,江昌政,向中华.抗菌防霉强化木地板的研制[J].中国建材科技,2002,11(3):60-62;
    [4]章结兵,葛岭梅,周安宁.抗菌塑料研究进展[J].塑料科技,2004(02):58-61;
    [5]夏海民,孙斌,冯新星.无机抗菌剂的分类、应用及发展[J].纺织导报,2010(6):115-117;
    [6]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005:194-204.
    [7]徐峰.建筑涂料[M].合肥:安徽技术科学出版社,1993:326-330.
    [8]GRISTINA A G. Biomaterial-centered infection: microbial adhesion versus tissue integration[J].Science,1987,237:1588-1595;
    [9] LINDSTEDT M, ALLENMARK S, THOMPSON R A, et al. Antimicrobial activity of betaine esters,quaternary ammonium amphiphiles which spontaneously hydrolyze into nontoxic components [J].Antimicrobial Agent Chemotherpy,1990,34:1949-1954;
    [10]RICHARD A V, RACHEL K T, EMMANUEL P G. Interlayer structure and molecular environment ofalkylammonium layered silicates[J]. Chem Mater,1994,6(7):1017-1022;
    [11]广獭健二,抗菌、消臭剂,日本特开平3-7201(日本专利):199;
    [12]Brusilovsky D, Eyal M, Reisfekd R. Absorption spectra, energy dis pensive analysis of X-ray andtransmission electron microscopy of silver particles in sol-gel glass films[J].Chem Phys Lett1988(9):9-203;
    [13]Tanahashi I, Yoshida M, Manabe Y, Tohda T. effects of heat treatment on Ag-particle growth and opticalproperties in Ag/Si02glass composite thin films[J]. Matures,1995(10):5-362;
    [14]株式会社伊奈斯:公告号1149039,审定公告号1044467;
    [15]王云斌,杨晋涛,费正东,等.吡啶硫酮锌/蒙脱土的制备及其抗菌性能研究[J].无机材料学报,2010,25(5):512-516;
    [16]汪炜燕,周宁琳,王晓丹,等.硫脲壳聚糖/蒙脱土纳米中间体的合成及其对大肠杆菌抑菌性能的研究[J].功能材料,2010,iv(41):101-104;
    [17]杨建华,路新卫,韦莉萍,等.甲硝唑/蒙脱土抗菌复合物的制备及体外缓释特征[J].世界华人消化杂志,2009,17(9):914-917;
    [18]王吉会,王志伟,张子洋,等.银氨蒙脱土/聚丙烯酸钠-丙烯酰胺复合材料的制备与调湿抗菌性能[J].天津大学学报,2009,42(6):507-512;
    [19]路新卫,杨建华,韦莉萍,等.硫酸阿米卡星-有机蒙脱土抗菌复合物的制备及性能[J].时珍国医国药,2009,(5);
    [20]谭绍早,张葵花,刘应亮.季鏻盐-铜/蒙脱土复合材料的制备及性能[J].复合材料学报,2006,23(3):82-86;
    [21]Oya A, Banse F, Ohashi F, et al. An antimicrobial and anti-fungal agent derived from montmorillontie [J].Appl Clay Sci,1991,6(2):135-142;
    [22]谭绍早,马文石,刘应亮.新型改性蒙脱土复合抗菌剂的制备及抗菌性能[J].华南理工大学学报(自然科学版),2006,34(8):94-99;
    [23]叶瑛,周玉航,夏枚生,等.新型无机抗菌材料:载铜蒙脱石及其抗菌机理探讨[J].无机材料学报,2003,18(3):570-574;
    [24]梦娜,周宁琳,陈亚红,等.醋酸洗必泰改性蒙脱土抗菌复合物的制备及抗菌性能[J].功能材料,2007,38(7):1190-1193;
    [25]Alexis A O, Mountainside N J. Surface active quaternary higher dialkyl phosphonium salt biocides andintermediates:US, A01N009136,4188380[P].1982-02-12;
    [26]张葵花,谭绍早,刘应亮.季铵盐改性蒙脱土的抗菌活性及抗菌机理[J].硅酸盐学报,2006,34(1):87-92;
    [1]张健.人造板产品中的甲醛对室内环境的影响[J].木材加工机械,2003(6):9-11;
    [2]匙伟杰.甲醛清除剂的研制[J].河北省科学院学报,2003(4):243-244;
    [3] Brown S K, Sim M R, Abramson M J, et al. Concent ratio ns of volatile organic compounds in indoorair--a review [J]. Indoor Air,1994,4(2):123-134;
    [4] Wolkoff P. Volatile organic compounds: sources, measurements, emissions, and the impact on indoor airquality[J]. Indoor Air,1995,5(Supplement3):1-73;
    [5] Molhave L, Liu Z, Jorgensen A H, et al. Sensory and physiological effects on humans of combinedexposures to air temperatures and volatile organic compounds [J]. Indoor Air,1993,3(3):155-169;
    [6]De Bellie L, Hag hig hat F, Zhang Y. Review of the effect of environmental parameters on materialemissions[C]. Proceedings of the2nd International Conference on Indoor Air Quality, Ventilation, andEnergy Conservation in Buildings. Montreal,1995:111-119;
    [7] Tichenor B, Spar ks L, White J, et al. Evaluating sources of indoor air pollution [C].81st Annual Meetingo f the Air Pollution Control Association. Dallas,1988;
    [8] Nielsen P. Potential pollutant s-their importance to the sick building syndrome-and their releasemechanism [C]. Proceedings of Indoor Air.87;1987:598-602
    [9]GB/T17657-1999《人造板及饰面人造板理化性能测试方法》[S];
    [10]邵明坤.胶合板甲醛释放机理及降低措施[J].淮阴工学院学报,2003,12(1):80-82;
    [11]刘晓红.板式家具甲醛释放机理及其控制[J].中国林产工业,2004,(10):24-27;
    [12]顾继友,朱丽滨,高振华,等.低甲醛释放脲醛树脂固化反应机理研究[J].科学技术与工程,2003,3(5):513-514;
    [13] HJ571-2010《环境标志产品技术要求人造板及其制品》[S];
    [14]徐钢梅,张彩霞,宁丽等.MTT法评价镓合金的细胞毒性[J].中国口腔医学杂志,2001,36(3):189-192;
    [15] ISO10993.5-2009医疗器械生物学评价[S].
    [16]邹兆伟,史福军,黄宗海等.纳米载银磷酸锆抗菌聚氨酯的细胞毒性检测[J].2011,15(38):7149-7152。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700