用户名: 密码: 验证码:
快速检测致病性微生物的免疫生物传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食源性疾病不仅严重地损害人类的健康,也给经济造成重大影响,已成为国际上最突出的公共卫生问题之一。致病性微生物污染是影响食品安全的罪魁祸首。传统的微生物培养检测方法虽然灵敏可靠,但费时、操作繁琐、检测结果滞后。PCR、ELISA等快速检测方法昂贵、只能由专业人员操作,体积较大,携带不太方便,不适合于现场或野外使用,而生物传感器在微生物检测的实际应用中潜力巨大。
     免疫生物传感器具有快速、便携、特异性强、制作简单、识别灵敏等特点,因此成为微生物检测领域的研究热点。本论文以代表性食源性致病菌大肠杆菌O157:H7和典型性禽流感病毒H5N1为检测对象,结合纳米技术与电化学阻抗谱技术,分别研究了压电和电化学免疫生物传感器用于致病性微生物的检测方法。
     本文的主要内容和研究结果如下:
     (1)研究了基于MPA自组装膜技术制作的流动式压电免疫传感器对大肠杆菌O157:H7进行检测。结果显示:菌液浓度在2.2×105-2.2×108CFU/mL范围时,直接法压电免疫传感器的频率变化与菌液浓度的对数值存在线性关系,回归方程:y=-6.7 LogN+22.8,决定系数R2为0.9171。最低检测限为2.2×105CFU/mL。为有效地固定抗体,用循环伏安研究了MPA不同的修饰时间。结果表明:12个小时足够使电极表面铺满MPA。石英晶体微天平(QCM)和循环伏安两种方法很好地表征了传感器的制作和检测过程。
     (2)探索了检测大肠杆菌O157:147的基于纳米金线的压电免疫传感器的建立。纳米金线通过1,6-己二硫醇作为中间试剂共价结合到电极金表面;采用蛋白A吸附将抗体固定到纳米金线上。结果显示:在流动池中固定纳米金线的方法是不可行的;在气相中浸泡的方式可以将大量的纳米金线修饰到电极表面;纳米金线溶液中的十六烷基三甲基溴化铵使蛋白A和纳米金线的吸附受阻,直接影响到抗体的固定效果;且该表面活性剂无法清洗干净;SEM证明了该试剂对目标检测信号造成严重干扰。
     (3)建立了基于纳米金颗粒(30 nm)制作的压电免疫传感器检测大肠杆菌O157:H7。采用双硫醇在金电极表面修饰纳米金颗粒,抗体通过自组装MHDA膜固定。结果表明:超级Piranha (?)式剂清洗QCM金电极对固定纳米金颗粒非常有效;该免疫传感器对目标菌的响应在低浓度时优势更明显;未经离心的大肠杆菌O157:H7溶液中的杂质能够引起该免疫传感器很明显的非特异性信号;与控制组对比,该免疫传感器的检测限降低了一个数量级,且已经达到理论计算上的最低检出浓度。SEM验证了纳米金颗粒在QCM金电极表面的固定和该免疫传感器对大肠杆菌O157:H7的捕捉以及检测。
     (4)研究了一种基于纳米磁珠(30 nm)信号放大的QCM免疫传感器对禽流感病毒H5N1进行检测。多克隆抗-H5抗体通过MHDA自组装膜固定到QCM金电极表面。采用生物素-链霉亲和素体系在纳米磁珠表面修饰抗-H5抗体。研究显示:D-biotin和BSA联用对纳米磁珠表面进行封闭时,纳米磁珠的非特异性响应最小;纳米磁珠对信号的放大作用在低滴定度时更有效;且使检测限降低了两个数量级。在0.128~12.8 HA单位范围内,频率的变化和禽流感病毒H5N1滴定度的对数值呈良好的相关关系,回归方程:△f=-37.67LogN-44.295,决定系数R2=0.99;最低检测限为0.0128 HA单位。在用于咽拭子样品检测中,检测下限为0.128 HA单位;在0.128~12.8 HA单位范围内,频率响应和病毒滴定度的对数值之间存在线性关系,回归方程是△f=-15.835 Logy-23.969,决定系数R2=0.87。该免疫传感器对H5N1检测的特异性强、重复性好,能够从其他亚型(H3N2、H2N2、H4N8)中检测出H5N1。QCM传感器的实时响应图和ESEM可以很好的表征该免疫传感器的制作过程、目标捕获以及纳米磁珠对目标信号的放大。
     (5)论证了石英晶体金电极作为工作电极、利用法拉第阻抗谱技术快速检测大肠杆菌O157:H7的无标记型电化学免疫传感器的可行性。提出了一个由电解液的欧姆电阻(Rs)、双层电容(Cdl)、电子转移电阻(Ret)和Warburg阻抗构成的等效电路模拟免疫传感器的性能。结果显示:当目标菌吸附到电极表面时,Ret变化最大。在1.6×103~1.6×106CFU/mL范围内,阻抗变化值和浓度的对数值成线性关系:y=244.31 LogN-739.96,决定系数R2为0.9808。该免疫传感器的检测限是103CFU/mL。电化学阻抗谱和循环伏安曲线可以很好地表征电极表面的修饰及免疫反应的进行。
     (6)建立了基于石英晶体金电极的无标记型电容式免疫传感器用于对大肠杆菌O157:H7的检测。MPA自组装膜作为媒介将抗体固定到电极表面。试验结果显示:双层电容的变化和大肠杆菌O157:H7的浓度相关:在102~105 CFU/mL范围时,双层电容在1 Hz的变化值和浓度的对数值呈线性关系,回归方程:y=-41.65 LogN+56.75,决定系数R2为0.98;等效电路中,双层电容(Cdl)由Cins、Crec、CGC串联构成;该电容式免疫传感器在一个小时内可以完成对大肠杆菌0157:H7的检测,检测限为102CFU/mL。牛奶、牛肉糜和菠菜三种食品样品的检测限分别为103、103和104CFU/mL。循环伏安和电化学阻抗谱能够对该免疫传感器的逐步制作以及检测过程进行很好的表征。
Foodborne disease not only undermined the health of human being heavily, but also made the huge economic loss. It has been one of the most critical international public health problems. Contamination caused by pathogenic microorganism poses the most severe threat to foodsafety. The conventional culturing and plating method is typically time-consuming and labor-intensive though able to test microorganisms in complicated food sample with low detection limit. Other detection methods, such as PCR and ELISA, are less time-consuming, however, they involve costly equipment and complicated sample pretreatment. Biosensor technologies play an increasingly important role in the detection of pathogenic microorganism because of their great potential to satisfy the practical need for rapid, portable, low-cost, and on-line or in-field detection of foodborne microorganism.
     Among biosensors, immunosensors are broadly investigated for microorganism detection due to their specific advantages, such as specific affinity reaction, simple fabrication, and sensitive recognition. This work focused on methods for detection of the typical foodborne pathogenic bacteria Escherichia coli O157:H7 and avian influenza virus (AIV) H5N1 using piezoelectric immunosensor and electrochemical immunosensor in combination with nano technology and electrochemical impedance spectroscopy (EIS).
     The main contents and results are summarized as follows.
     (1) Piezoelectric immunosensor based on 3-mercaptopropionic acid (MPA) self-assembled monolayers (SAMs) was developed for E. coli O157:H7 detection combining flow injection analysis. A linear relationship between the frequency shift and logarithm value of E. coli O157:H7 concentrations was found in the range of 2.2×105~2.2×108 CFU/mL. The regression equation was y=-6.7 LogN+22.8 with correlation coefficient of 0.9171. The low detection limit was 2.2×105 CFU/mL. Different MPA modification times were compared using cyclic voltammetry (CV). The experimental results indicated that 12 h was sufficient to coat the electrode surface with MPA completely. Quartz crystal microbalance (QCM) and CV were also employed to characterize the stepwise assembly of the immunosensor and the detection procedure.
     (2) A piezoelectric immunosensor based on gold nanowire was studied for E. coli O157:H7 detection. Gold nanowires were immobilized onto a monolayer of 1.6-hexanedithiol self-assembled on the electrode surface. Antibody immobilization was completed through protein A adsorption onto the gold nanowires. It was found that gold nanowires could be immobilized onto the electrode surface well through immersion method in gas phase other than injection method in flow cell. Hexadecyl trimethyl ammonium bromide in gold nanowire solution inhibited the adsorption of protein A onto the gold nanowire layer, which resulted in the low amount of immobilized antibodies. The tests showed that the hexadecyl trimethyl ammonium bromide could not be washed away from the immunosensor. SEM image demonstrated that the signal of hexadecyl trimethyl ammonium bromide was large enough to cover the target signal.
     (3) A piezoelectric immunosensor based on gold nanoparticles was developed for E. coli O157:H7 detection. It was based on antibodies immobilization onto 16-mercaptohexadecanoic acid (MHDA) SAMs on the gold nanoparticles layer which was modified onto the electrode surface through a self-assembled monolayer of 1,6-hexanedithiol. The results indicated that cleaning the QCM electrode with super Piranha improved the gold nanoparticles immobilization. The immunosensor responded the target bacteria better in lower concentrations than high concentrations. E. coli O157:H7 solution without centrifugation could cause obvious non-specific signal due to the substance in the culture. Compared with the control tests, the immunosensor improved the detection limit for one log, and it has achieved the lowest detection limit in theoretical calculation. The immobilization of gold nanoparticles and the capture of E. coli O157:H7 onto the QCM electrode surface were demonstrated through SEM.
     (4) Magnetic nanobeads amplification based QCM immunosensor was developed as a new application for detection of avian influenza (AI) H5N1 virus. Polyclonal antibodies against Al H5N1 virus surface antigen HA (Hemagglutinin) were oriented on the surface of the QCM gold electrode through self-assembled monolayer of MHDA. Magnetic nanobeads (30 nm) coated with anti-H5 antibodies through biotin-streptavidin binding were used for further amplification of the binding reaction between the antibody-antigen(virus). Experimental results indicated that the nonspecific signal was negligible using D-biotin and BSA together to block the nanobeads surface. The magnetic nanobeads amplified the target signal much better in lower titers than high titers of the virus. And the amplification signal improved two logs of the detection limit. The response of the antibody-antigen (virus) interaction was shown to be virus titer-dependent. A linear relationship between the logarithmic value of H5N1 virus titers and frequency shift was found ranging from 0.128 to 12.8 HA unit. The corresponding equation wasΔf=-37.67 log N-44.295 (R2=0.99). The detection limit of 0.0128 HA was obtained in 2 hours of detection time. The immunosensor was evaluated with tracheal swab samples. A linear relationship between the frequency shift and logarithmic value of AI H5N1 virus titers was found in a range of 0.128-12.8 HA unit. The regression equation wasΔf=-15.835 logN-23.969 with correlation coefficient of 0.87. The detection limit for the swab samples was 0.128 HA unit. No significant interference was observed from non-target subtypes such as AI subtypes H3N2, H2N2, and H4N8. Both bindings of target H5N1 viruses and magnetic nanobeads onto the QCM electrode surface were further confirmed by environmental scanning electron microscope (ESEM).
     (5) The feasibility of a label-free electrochemical immunosensor employing a quartz crystal Au electrode as working electrode was demonstrated for E. coli O157:H7 detection using Faradaic impedance spectroscopy. A proper equivalent circuit, including ohmic resistance of the electrolyte (Rs), double-layer capacitance (Cdl), electron-transfer resistance (Ret), and Warburg impedance, was introduced for modeling the performance of immunosensor. Among these impedance components, the greatest change was found in electron-transfer resistance due to the binding of E. coli cells. A linear relationship betweenΔimpedance (Zcells—Zatubody) and the logarithmic value of E. coli O157:H7 concentrations was found, y=244.31 LogN—739.96, with a correlation coefficient of 0.98. The detection limit of the immunosensor was 103 CFU/mL. Both EIS and CV were employed to characterize modifications of the electrode and the immunoreaction.
     (6) A label-free capacitive immunosensor based on quartz crystal Au electrode was developed for detection of E. coli O157:H7. Antibodies were immobilized onto SAMs of MPA on the sensor surface. The experimental results indicated that the capacitance change was correlated with the concentration of E. coli O157:H7. A linear relationship between the capacitance shift and logarithm value of E. coli O157:H7 concentrations was found in the range of102~105 CFU/mL:y=-41.65 LogN+56.75 (R2=0.98). The detection limit was 102 CFU/mL. An equivalent circuit was introduced to simulate the immunosensor, and the double layer capacitance (Cdl) consisted of Cins、Crec、CGC in series. Milk, ground beef, and spinach were selected as food samples to evaluate the capacitive immunosensor with detection limit of 103, 103. and 104 CFU/mL respectively. CV and EIS were employed to characterize the stepwise assembly of the immunosensor.
引文
[1]Mead P.S., Slutsker L., Dietz V.,et al., Food-related illness and death in the United States [J]. Emerg. Infect. Dis.,1999,5:607-625.
    [2]Buzby J., Roberts T., Lin C., et al., Bacterial foodborne disease:medical costs and productivity losses. In Agricultural Economics Report No.741:100. USDA Economic Research Service, Washington. DC. USA.1996.
    [3]Kohnen A., Kennedy J., School of Government, Harvard University. Responding to the threat of agroterrorism:specific recommendations for the USDA. BCSIA Discussion Paper 2000-29, ESDP Discussion Paper ESDP-2000-04.
    [4]Centers for Disease Control and Prevention (CDC).2005. Disease Information-E. coli O157:H7. Available at:www.cdc.gov. Accessed December 2005.
    [5]权太淑,徐建国,范天锐.首次从出血性肠炎病人中分离到O157:H7大肠杆菌[J].中华流行病学杂志,1988,9:24-27.
    [6]李少彤,蒋卓勤,曾德荣,96起细菌性食物中毒病原菌分布特征分析[J].华南预防医学,2005,5:46-49.
    [7]王运香.何剑钰.梅州城区2002-2004年食物中毒资料分析[J].职业与健康.2005,4:544-545.
    [8]唐振桂,陈兴乐.黄林.黄兆勇.方志峰.扬娟.李秀桂.2000年~2003年广西细菌性食物中毒流行病学分析[J].中国食品卫生杂志,2005,3:224-227.
    [9]张艺飓,朱凤才.顾玲.郭喜玲,庄菱,江苏省肠出血性大肠杆菌O157:H7监测资料分析[J].江苏预防医学,2004,2:3-5.
    [10]胡礼军,汤后林.芜湖地区肠出血性大肠杆菌O157:H7流行病学调查,安徽预防医学杂志[J].2004.4:193-194.
    [11]方胜宇,徐进.一起水型肠侵袭性大肠杆菌爆发疫情的调查[J].上海预防医学杂志.2007,1:7-9.
    [12]姚齐龙.陈玲,一起肠侵袭性大肠杆菌引起食物中毒的调查[J].现代预防医学,2005,9:1164.
    [13]Kamps B., Hoffmann C., Preiser W.. Influenza Report. Paris:Flying Publisher,2006.
    [14]http://en.wikipedia.org/wiki/H5N1_genetic_structure.
    [15]陈执中.抗禽流感病毒天然药物的筛选[J].中国民族民间医药杂志,2006.1:1-3.
    [16]Claas, E. C. J., Osterhaus,A. D. M. E., et al., Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus [J]. Lancet,1998,351 (9101):472-477.
    [17]Subbarao, K., Klimov.A., et al., Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness [J].Science,1998,279(5349):393-396.
    [18]Yuen, K. Y., Chan.P. K. S., et al.,Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus [J].Lancet,1998,351 (9101):467-471.
    [19]Sims, L. D., Domenech, J., et al., Origin and evolution of highly pathogenic H5N1 avian influenza in Asia.Veterinary Record,2005,157(6):159.
    [20]http://news.163.com/10/0604/19/68C18464000146BE.html.
    [21]WHO, Cumulative Number of Confirmed Human Cases of Avian Influenza A/(H5N1) Reported to WHO, http://www.who.int/csr/disease/avian influenza/country/cases table 2010 08 31/en/index.html.
    [22]Zhou X., Jiao X., Polymerase chain reaction detection of Listeria monocytogenes using oligonucleotide primers targeting actA gene [J]. Food Contr.,2004,16:125-130.
    [23]Hoshino T., Kawaguchi M., Shimizu N., et al., PCR detection and identification of oral streptococci in saliva samples using gtf genes [J].Diagn Microbiol Infect Dis,2004.48:105-199.
    [24]Dubosson C.R.,Conzelmann C., Miserez R., et al., Development of two real-time PCR assays for the detection of Mycoplasma hyopneumoniae in clinical samples [J].Vet Microbiol,2004,02:55-65.
    [25]Rodriquez-Lazaro D., Hernandez M., Esteve T., et al., A rapid and direct real time PCR-based method for identification of Salmonella spp [J]. Microbiol. Methods,2003,54:381-390.
    [26]Kong R.Y., Lee S.K., Law T.W., et al., Rapid detection of six types of bacterial pathogens in marine waters by multiplex PCR [J]. Water Res,2002,36:2802-2812.
    [27]Chapman, P.A., Ellin, M., Ashton, R., and Shafique, W., Comparison of culture,PCR and immunoassays for detecting of Escherichia coli O157 following enrichment culture and immunomagnetic separation performed on naturally contaminated raw meat products [J]. Int. J. Food. Micro.,2001.68(1/2):11-20.
    [28]Hochberg, A.M., Gerhardt, P.N.M., et al. Sensitivity and specificity of the test kit BAX Registered for screening E. coli O157:H7 in ground beef:Independent laboratory study [J]. J.AOAC.Inter., 2001.83(6):1349-1356.
    [29]Andresen L., Klausen J., Barfod K., et al.. Detection of antibodies to Actinobacillus pleuropneumoniae serotype 12 in pig serum using a blocking enzyme-linked immunosorbent assay [J].Vet Microbiol,2002,89:61-67.
    [30]Prior J.L., Titball R.W., Monoclonal antibodies against Yersinia pestis lipopoly- saccharide detect bacteria cultured at 28 degree C or 37 degrees C [J]. Mol.Cell.Probes,2002,16:251-256.
    [31]Liu, Y.. Ye, J., and Li.Y., A membrane separator/bioreactor coupled with absorbance measurement for detection of E. coli O157:H7 [J]. J. Rapid Meth. Auto. Micro.,2001,9:85-96.
    [32]Evrendilek. G.A., Richter.E.R., et al., Concurrent detection of Escherichia coli O157:H7 and Salmonella from a single enrichment in 24 h [J]. J.Food Safety.,2001.21(2):75-86.
    [33]Morales. M.D., Serra. B., de Prada. A.G.V., Reviejo, A.J., and Pingarron. J.M., An electrochemical method for simultaneous detection and identification of Escherichia coli. Staphylococcus aureus and Salmonella choleraesuis using a glucose oxidase- peroxidase composite biosensor [J].Analyst,2007, 132(6):572-578.
    [34]Varshney, M., and Li,Y.B., Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples [J]. Biosens. Bioelectron.,2007,22(11):2408-2414.
    [35]Maalouf, R., Fournier-Wirth. C., Coste. J., Chebib. H., Saikali,Y., Vittori,O., Errachid. A., Cloarec, J.P., Martelet,C., and Jaffrezic-Renault, N., Label-free detection of bacteria by electrochemical impedance spectroscopy:Comparison to surface plasmon resonance [J].Anal. Chem.,2007. 79(13):4879-4886.
    [36]Yang, L.J., and Li. Y.B., Detection of viable Salmonella using microelectrode -based capacitance measurement coupled with immunomagnetic separation. Journal of Microbiological Methods [J]. 2006.64(1):9-16.
    [37]Yang,L.J., Li.Y.B., and Gisela F. Erf., Interdigitated Array Microelectrode-Based Electrochemical Impedance Immunosensor for Detection of Escherichia coli O157:H7 [J]. Anal. Chem.,2004. 76:1107-1113.
    [38]Yang.L.J., Ruan.C.M., Li.Y.B., Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance [J]. Biosens Bioelectron.,2003. 19:495-502.
    [39]Susmel, S., Guilbault, G.G., O'Sullivan, C.K., Demonstration of labeless detetion of food pathogens using electrochemical redox probe and screen printed gold electrodes [J].Biosens. Bioelectron.,2003. 18:881-889.
    [40]Ruan, C.,Yang, L., and Y. Li., Immunobiosensor Chips for Detection of Escherichia coliO157:H7 Using Electrochemical Impedance Spectroscopy [J]. Anal. Chem.,2002,74:4814-4820.
    [41]Stender,H., Broomeer, A.J., et al. Rapid detection, identification, and enumeration of Escherichia coliO157:H7 cells in municipal water by chemiluminescent in situ hybridization method[J]. Appl. Environ.. Microbio.2001.67(1):142-147.
    [42]Liu,Y.C., Che,Y.H., Li,y.B., Rapid detection of Salmonella typhimurium using immunomagnetic separation and immuno-optical sensing method [J]. Sens. Actuators B.,2001,72:214-218.
    [43]Shu, I.T., Patterson, D., Uknalis, J., et al., Detection of Escherichia coli O157:H7 using immunomagnetic capture and luciferin-luciferase ATP measurement [J]. Food research inter.,2001. 33(5):375-380.
    [44]Subramanian, A., Irudayaraj, J., Ryan, T., A mixed self-assembled monolayer- based surface plasmon immunosensor for detection of E. coli O157:H7 [J].2006. Biosens. Bioelectron.,1996. 21(7):998-1006.
    [45]Leonard, P., Hearty. S., Quinn, J., O'Kennedy. Richard., A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance [J].Biosens. Bioelectron.,2004.19:1331-1335.
    [46]Dudak, F.C., and Boyaci, I.H., Development of an immunosensor based on surface plasmon resonance for enumeration of Escherichia coli in water samples. Food Research International [J]. 2007.40(7):803-807.
    [47]Waswa. J., Irudayaraj, J., and DebRoy, C., Direct detection of E-Coli O157:H7 in selected food systems by a surface plasmon resonance biosensor [J]. Lwt-Food Science and Technology,2007, 40(2):187-192.
    [48]Rijal, K.,Leung, A., Shankar. P. M., et al., Detection of pathogen Escherichia coli O157:117 using antibody-immobilized biconical tapered fiber sensors [J]. Biosens. Bioelectron.,2005.21:871-880.
    [49]Tao, G., Mark T. M., and Arun K. B., Detection of Low Levels of Listeria monocytogenes Cells by Using a Fiber-Optic Immunosensor [J]. APPL ENVIRON MICROB,2004,70:6138-6146.
    [50]Ferreira,A.P., Werneck, M.M., Ribeiro., R.M., Development of an evanescent- field fibre optic sensor for Escherichia coli O157:H7 [J]. Biosens. Bioelectron.,2001.16:399-408.
    [51]Leung, A., Shankar, P.M., and Mutharasan, R., A review of fiber-optic biosensors [J].Sensors and Actuators B-Chemical.2007,125(2):688-703.
    [52]Geng, T., Uknalis, J., Tu, S.I., and Bhunia, A.K., Fiber-optic biosensor employing Alexa-Fluor conjugated antibody for detection of Escherichia coli O157:H7 from ground beef in four hours [J].Sensors,2006,6(8):796-807.
    [53]Storch, G.A., Essentials of Diagnostic Virology. Churchill Livingstone. New York,2000.
    [54]Spackman, E., Senne. D. A., et al.,Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes [J]. Journal of Clinical Microbiology,2002.40(9):3256-3260.
    [55]Payungporn, S., Chutinimitkul,S., et al.,Single step multiplex real-time RT-PCR for H5N1 influenza A virus detection [J]. J Virol Methods,2006,131(2):143-147.
    [56]Payungporn, S., Phakdeewirot, P., et al., Single-step multiplex reverse transcription-polymerase chain reaction (RT-PCR) for influenza A virus subtype H5N1 detection [J].Viral Immunol.,2004, 17(4):588-593.
    [57]Di Trani, L., Bedini, B., et al. A sensitive one-step real-time PCR for detection of avian influenza viruses using a MGB probe and an internal positive control [J].Bmc Infectious Diseases,2006,6.
    [58]Brown, I. H., Advances in molecular diagnostics for avian influenza [J]. Dev Biol (Basel),2006. 124:93-7.
    [59]Lee. C. W.. and Suarez, D. L., Application of real-time RT-PCR for the quantitation and competitive replication study of H5 and H7 subtype avian influenza virus [J]. Journal of Virological Methods, 2004,119(2):151-158.
    [60]He. Q. G., Velumani. S..et al.,Detection of H5 avian influenza viruses by antigen-capture enzyme-linked immunosorbent assay using H5-specific monoclonal antibody [J].Clinical and Vaccine Immunology,2007,14(5):617-623.
    [61]Woolcock, P. R., and Cardona.C. J.,Commercial immunoassay kits for the detection of influenza virus type A:evaluation of their use with poultry [J]. Avian Dis.,2005,49(4):477-481.
    [62]Dawson, E. D., Moore, C.L., et al., MChip:a tool for influenza surveillance [J]. Anal. Chem.,2006, 78(22):7610-7615.
    [63]Liu, R. H.,Lodes. M. J., et al., Validation of a fully integrated microfluidic array device for influenza A subtype identification and sequencing [J]. Anal.Chem.,2006,78(12):4184-4193.
    [64]Lodes, M. J., Suciu. D., et al., Use of semiconductor-based oligonucleotide microarrays for influenza A virus subtype identification and sequencing [J]. Journal of Clinical Microbiology.2006. 44(4):1209-1218.
    [65]Townsend, M. B.. Dawson,E. D., et al., Experimental evaluation of the FluChip diagnostic microarray for influenza virus surveillance [J].J Clin Microbiol,2006,44(8):2863-71.
    [66]Deng. J. L., Sheng, Z. H., et al.,Construction of Effective Receptor for Recognition of Avian Influenza H5N1 Protein HA1 by Assembly of Monohead Glycolipids on Polydiacetylene Vesicle Surface [J].Bioconjugate Chemistry.2009,20(3):533-537.
    [67]Ho, H. T., Qian. H. L.. et al. Rapid Detection of H5N1 Subtype Influenza Viruses by Antigen Capture Enzyme-Linked Immunosorbent Assay Using H5-and N1-Specific Monoclonal Antibodies [J]. Clinical and Vaccine Immunology,2009,16(5):726-732.
    [68]Kukol. A., Li, P., et al.. Label-free electrical detection of DNA hybridization for the example of influenza virus gene sequences [J]. Analytical Biochemistry,2008,374(1):143-153.
    [69]Pavlovic, E., Lai. R. Y.. et al. Microfluidic device architecture for electrochemical patterning and detection of multiple DNA sequences [J].Langmuir.2008,24(3):1102-1107.
    [70]Tam, P. D., Tuan, M. A., et al., Impact parameters on hybridization process in detecting influenza virus (type A) using conductimetric-based DNA sensor [J]. Physica E-Low-Dimensional Systems Nanostructures.2009,41 (8):1567-1571.
    [71]Ting, B. P., Zhang,J., et al., A DNA biosensor based on the detection of doxorubicin-conjugated Ag nanoparticle labels using solid-state voltammetry [J].Biosen. Bioelectron..2009,25(2):282-287.
    [72]Wang, R.H., Wang, Y.. et al., Interdigitated array microelectrode based impedance immunosensor for detection of avian influenza virus H5N1 [J]. Talanta,2009.79(2):159-164.
    [73]Nayak. M., Kotian, A., et al., Detection of microorganisms using biosensors-a smarter way towards detection techniques [J]. Biosens. Bioelectron.,2009,25(4):661-7.
    [74]Rasooly, A., and Herold K. E., Biosensors for the analysis of food- and waterborne pathogens and their toxins [J]. Journal of Aoac International,2006,89(3):873-883.
    [75]Rocha-Gaso, M. I., March-Iborra, C., et al. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens:A Review [J]. Sensors,2009,9(7):5740-5769.
    [76]Yang, L. and R. Bashir.,Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria [J]. Biotechnology Advances.,2008,26(2):135-150.
    [77]Abu-Rabeah, K., Ashkenazi, A., et al.,Highly sensitive amperometric immune- sensor for the detection of Escherichia coli [J]. Biosens. Bioelectron.,2009,24(12):3461-3466.
    [78]Hirst, E. R., Yuan, Y. J., et al.,Bond-rupture immunosensors-A review [J]. Biosens. Bioelectron., 2008.23(12):1759-1768.
    [79]Mujika, M., Arana.S., et al., Magnetoresistive immunosensor for the detection of Escherichia coli O157:H7 including a microfluidic network. International Workshop on GPCRs-From Deorphanisation to Lead Structure Identification. Berlin, GERMANY, Elsevier Advanced Technology,2006.
    [80]Salam. F., and Tothill. I. E., Detection of Salmonella typhimurium using an electrochemical immunosensor [J]. Biosens. Bioelectron,2009,24(8):2630-2636.
    [81]Sun. J. Z., Bian. C., et al. Immobilizing Antibody with Electropolymerized Staphylococcal Protein A in Micro Amperometric Immunosensor for Detecting Salmonella Typhimurium [J]. Chinese Journal of Analytical Chemistry,2009,37(4):484-488.
    [82]Tully, E., Higson. S. P., et al., The development of a 'labeless' immunosensor for the detection of Listeria monocytogenes cell surface protein, Internalin B [J]. Biosens. Bioelectron.,2008, 23(6):906-912.
    [83]Kim, N. and Park, I.-S., Application of a flow-type antibody sensor to the detection of Escherichia coli in various foods [J]. Biosens. Bioelectron.,2003.18(9):1101-1107.
    [84]Lin. H.-C. and W.-C. Tsai. Piezoelectric crystal immunosensor for the detection of staphylococcal enterotoxin B [J]. Biosens. Bioelectron.,2003.18(12):1479-1483.
    [85]Park. I.S., et al., Operational characteristics of an antibody-immobilized QCM system detecting Salmonella spp [J]. Biosens. Bioelectron.,2000,15(3-4):167-172.
    [86]Fung. Y.S., et al., Self-assembled monolayers as the coating in a quartz piezoelectric crystal immunosensor to detect Salmonella in aqueous solution [J].Anal. Chem.,2001. 73(21):5302-5309.
    [87]Susmel, S., et al., Human cytomegalovirus detection by a quartz crystal microbalance immunosensor [J]. Enzyme Microb Technol,2000,27:639-645.
    [88]Vaughan, R. D., O'Sullivan C. K., Guilbault G. G., Development of a quartz crystal microbalance(QCM) immunosensor for the detection of Listeria monocyto- genes [J].Enzyme Microb Tech.,2001,29:635-638.
    [89]Su, X., Li, Y., A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7 [J]. Biosens. Bioelectron.,2004,19:563-574.
    [90]Su, X., Li Y.,A QCM immunosensor for Salmonella detection with simultaneous measurements of resonant frequency and motional resistance [J]. Biosens. Bioelectron.,2005,21:840-848.
    [91]符婷,王桦,沈国励,俞汝勤,基于酶催化沉积质量放大的压电免疫传感器的研究[J].高等学校化学学报,2006,27:1032-1035.
    [92]邓婷,王桦,雷存喜,沈国励.俞汝勤,基于电聚合膜和纳米金自组装的生物分子固定化新方法的研究[J].分析测试学报,2004,23(4):1-4.
    [93]王存嫦,王桦,吴朝阳,沈国励,俞汝勤,纳米金自组装膜的IgM压电免疫传感器的研究[J].化学学报,2003,61(4):608-613.
    [94]龙姝,李继山,王桦,沈国励,俞汝勤,基于邻苯二胺电聚合膜和PSS自组装的补体C3压电免疫传感器[J].湖南大学学报(自然科学版),2003,36(6):26-30.
    [95]陈慧,吴朝阳,王桦,沈国励.俞汝勤,一种基于巯基化聚丙烯胺自组装膜的免疫传感器固定方法[J].分析化学,2003,31(8):897-900.
    [96]王丽江,吴春生,王平,大肠杆菌0157:H7压电免疫传感器研究及表征[J].微纳电子技术,2007,358-359.
    [97]张波,府伟灵,毛琼国.陈庆海,张雪,陈鸣,俞凡,压电免疫传感器两种抗体固定方法的比较研究[J].中华医院感染学杂志,2004,14(1):11-14.
    [98]张波,府伟灵,毛琼国,张雪,陈鸣,蒋天伦.俞凡.压电石英晶体免疫传感器在前列腺特异抗原检测的实验研究[J].中华检验医学杂志,2003,26(7):420-423.
    [99]周亚民.王永东,王桦,吴朝阳.沈国励,基于Nation膜修饰的血吸虫抗体压电免疫传感器研究[J].分析化学,2006,(S1)36:195-198.
    [100]Escamilla-Gomez, V., Campuzano.S., et al., Gold screen-printed-based impedimetric immunobiosensors for direct and sensitive Escherichia coli quantization [J]. Biosens. Bioelectron.. 2009.24(11):3365-3371.
    [101]Gamella, M., Campuzano,S., et al. Microorganisms recognition and quantification by lectin adsorptive affinity impedance [J]. Talanta,2009,78(4-5):1303-1309.
    [102]Geng, P., Zhang, X.N., et al. Self-assembled monolayers-based immunosensor for detection of Escherichia coli using electrochemical impedance spectroscopy [J]. Electrochimica Acta.2008. 53(14):4663-4668.
    [103]Radke, S. M., and Alocilja. E. C., Design and fabrication of a microimpedance biosensor for bacterial detection [J]. leee Sensors Journal,2004,4(4):434-440.
    [104]Radke, S. A., and Alocilja, E. C, A high density microelectrode array biosensor for detection of E-coli O157:H7 [J]. Biosens. Bioelectron.,2005.20(8):1662-1667.
    [105]Radke. S. M. and Alocilja, E. C., A microfabricated biosensor for detecting foodborne bioterrorism agents [J]. leee Sensors Journal.2005.5(4):744-750.
    [106]Varshney, M., and Li,Y. B., Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells [J]. Biosens. Bioelectron.,2009,24(10):2951-2960.
    [107]Yang, L. J., and Li,Y. B., AFM and impedance spectroscopy characterization of the immobilization of antibodies on indium-tin oxide electrode through self-assembled monolayer of epoxysilane and their capture of Escherichia coli O157:H7 [J]. Biosens. Bioelectron..2005.20(7):1407-1416.
    [108]Yu, J. J., Liu. Z. B., et al., A polyethylene glycol (PEG) microfluidic chip with nanostructures for bacteria rapid patterning and detection [J]. Sens. Actuators a-Phys.,2009,154(2):288-294.
    [109]Yang, L.,Li. Y., Griffis, C., et al., Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium [J]. Biosens. Bioelectron.,2004,19:1139-1147.
    [110]Ruan. C.,Yang, L.,Li, Y., Rapid detection of viable Salmonella typhimurium in a selective medium by monitoring oxygen consumption with electrochemical cyclic voltammetry [J]. J. Electroanal. Chem.,2002.519:33-38.
    [111]Zhao. J., Zhu. W., He. F.. Rapidly determining E. coli and P. aeruginosa by an eight channels bulk acoustic wave impedance physical biosensor [J].Sens. Actuators B,2005.107:271-276.
    [112]Ercole. C., Del Gallo. M., Mosiello. L., et al., Escherichia coli detection in vegetable food by a potentiometric biosensor [J].Sens. Actuators B.2003,91:163-168.
    [113]Varshney, M., Li. Y.. Srinivasan. B., Tung. S., A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples [J].Sens. Actuators B:Chemical,2007. 128(1):99-107.
    [114]Varshney, M.,Li, Y.. Double interdigitated array microelectrode-based impedance biosensor for detection of viable Escherichia coli O157:H7 in growth medium [J]. Talanta,2008,74(4):518-525.
    [115]Laczka, O., Baldrich, E., Munoz. F.X., del Campo, F.J., Detection of Escherichia coli and Salmonella typhimurium using interdigitated microelectrode capacitive immunosensors:The importance of transducer geometry [J]. Analytical Chemistry 2008.80(19):7239-7247.
    [116]Lin, Y-H., Chen. S-H., Chuang, Y-C., Lu. Y-C., Shen. T.Y.. Chang. C.A., et al., Disposable amperometric immunosensing strips fabricated by Au nanoparticies- modified screen-printed carbon electrodes for the detection of foodborne pathogen Escherichia coli O157:H7 [J]. Biosens. Bioelectron.,2008,23(12):1832-1837.
    [117]KoubovaA, V., Brynda, E., KarasovaA, L., et al., Detection of foodborne pathogens using surface plasmon resonance biosensors [J]. Sens. Actuators B.2001,74:100-105.
    [118]Liu.Y.C., Che.Y.H., Li, Y.B., Rapid detection of Salmonella typhimurium using immunomagnetic separation and immuno-optical sensing method [J]. Sensors and Actuators B.2001.72:214-218.
    [119]Liu. Y., Li. Y., Detection of Escherichia coli O157:H7 using immunomagnetic separation and absorbance measurement [J]. J Microbiol Methods,2002,51:369-377.
    [120]Su, X.L., Li. Y.B., Quantum Dot Biolabeling Coupled with Immunomagnetic Separation for Detection of Escherichia coli O157:H7 [J]. Anal. Chem.,2004,76:4806-4810.
    [121]Zourob. M., Mohr. S., Brown. B., et al., Bacteria detection using disposable optical leaky waveguide sensors [J]. Biosens. Bioelectron.,2005.21:293-302.
    [122]殷涌光.葛晶.于庆宇.王凯.利用胶体金复合抗体提高SPR生物传感器的微生物检测精度[J].吉林大学学报(工学版).2005,35(4):446-450.
    [123]葛晶.殷涌光,王凯,使用SPR生物传感器快速检测大肠杆菌E. Coli O157:117 [J]吉林大学学报(工学版).2005,33(2):214-218.
    [124]Poitras. C. and Tufenkji. N., A QCM-D-based biosensor for E. coli O157:H7 highlighting the relevance of the dissipation slope as a transduction signal [J]. Biosens. Bioelectron.,2009. 24(7):2137-2142.
    [125]Han, H. C., Chang,Y. R., et al., Application of parylene-coated quartz crystal microbalance for on-line real-time detection of microbial populations [J]. Biosens. Bioelectron.,2009. 24(6):1543-1549.
    [126]Wang, L. J., Wu, C. S., et al., Sensing Escherichia coli 0157:H7 via frequency shift through a self-assembled monolayer based QCM immunosensor [J]. Journal of Zhejiang University-Science B. 2008,9(2):121-131.
    [127]Wang, L. J., Wei, Q. S., et al., The Escherichia coli 0157:H7 DNA detection on a gold nanoparticle-enhanced piezoelectric biosensor [J]. Chinese Science Bulletin,2008,53(8):1175-1184.
    [128]Serra, B., Gamella. M., et al., Lectin-modified piezoelectric biosensors for bacteria recognition and quantification [J]. Analytical and Bioanalytical Chemistry,2008,391(5):1853-1860.
    [129]Pohanka, M., Skladal, P.. et al., Label-free piezoelectric immunosensor for rapid assay of Escherichia coli [J].Journal of Immunoassay & Immunochemistry,2008.29(1):70-79.
    [130]Chen. S. H., Wu.V. C. H., et al., Using oligonucleotide-functionalized Au nanoparticles to rapidly detect foodborne pathogens on a piezoelectric biosensor [J]. Journal of Microbiological Methods, 2008,73(1):7-17.
    [131]Mao. X. L.. Yang, L. J.. et al., A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli 0157:H7 [J]. Biosens. Bioelectron.,2006,21(7):1178-1185.
    [132]Adanyi, N., Varadi. M., et al., Development of new immunosensors for determination of contaminants in food. Elsevier Science Bv,2006.
    [133]Spangler, B. D., and Tyler, B. J., Capture agents for a quartz crystal microbalance-continuous flow biosensor:functionalized self-assembled monolayers on gold. Elsevier Science Bv,1999.
    [134]Su, X. L., and Li, Y., Surface plasmon resonance and quartz crystal microbalance immunosensors for detection of Escherichia coli O157:H7 [J]. Trans. Asae,2005,48(1):405-413.
    [135]Wong, Y.Y., Ng, S.P., Ng. M.H., Si, S.H., Yao, S.Z., Fung, Y.S., Immunosensor for the differentiation and detection of Salmonella species based on a quartz crystal microbalance [J]. Biosens. Bioelectron., 2002.17(8):676-684.
    [136]Fung. Y.S., Wong. Y.Y.. Self-assembled monolayers as the coating in a quartz piezoelectric crystal immunosensor to detect salmonella in aqueous solution [D]. Anal.I Chem.,2001.73(21):5302-5309.
    [137]Owen. T. W., Al-Kaysi. R. O., et al., Microgravimetric immunosensor for direct detection of aerosolized influenza A virus particles [J]. Sens. Actuators B-Chem.,2007,126(2):691-699.
    [138]Hewa, T. M. P.. Tannock. G. A., et al., The detection of influenza A and B viruses in clinical specimens using a quartz crystal microbalance [J]. Journal of Virological Methods,2009.162(1-2): 14-21.
    [139]Wu, T. Z., Su. C. C., et al., Piezoelectric immunochip for the detection of dengue fever in viremia phase [J]. Biosens. Bioelectron.,2005.21(5):689-695.
    [140]Chen, S. H., Chuang,Y. C., et al., A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus [J]. Nanotechnology. 2009,20(21):-.
    [141]Lee, J., Jang, J., et al., Real-time detection of airborne viruses on a mass-sensitive device [J]. Appl. Phys. Lett..2008.93(1).
    [142]Tai, D. F.. Lin, C. Y., et al., Artificial receptors in serologic tests for the early diagnosis of dengue virus infection [J]. Clin. Chem.,2006,52(8):1486-1491.
    [143]Lee, Y. G., and Chang. K. S., Application of a flow type quartz crystal microbalance immunosensor for real time determination of cattle bovine ephemeral fever virus in liquid [J]. Talanta,2005, 65(5):1335-1342.
    [144]Lee, Y. G.. Liu.S. S., et al., A novel method for determination of cattle bovine ephemeral fever virus in liquid with quartz crystal microbalance immunosensor [J]. Anal. Letters,2005.38(2):237-245.
    [145]Yao, C. Y., Zhu.T. Y., et al., Hybridization assay of hepatitis B virus by QCM peptide nucleic acid biosensor [J]. Biosens. Bioelectron..2008.23(6):879-885.
    [146]Tai, D. F., Lin. C. Y., et al., Recognition of dengue virus protein using epitope-mediated molecularly imprinted film [J]. Analytical Chemistry,2005.77(16):5140-5143.
    [147]Tai, D. F., Lin, C. Y.. et al., Artificial receptors in serologic tests for the early diagnosis of dengue virus infection [J]. Clinical Chemistry,2006.52(8):1486-1491.
    [148]Jenik. M., Schirhagl. R., et al., Sensing Picornaviruses Using Molecular Imprinting Techniques on a Quartz Crystal Microbalance [J]. Anal. Chem.,2009.81(13):5320-5326.
    [149]Eun, A. J. C., Huang, L. Q., et al., Detection of two orchid viruses using quartz crystal microbalance (QCM) immunosensors [J].J. Virological Methods,2002.99(1-2):71-79.
    [150]Abad, J. M., Pariente, F., et al., A quartz crystal microbalance assay for detection of antibodies against the recombinant African swine fever virus attachment protein p12 in swine serum [J].Analytica Chimica Acta,1998,368(3):183-189.
    [151]Liu, S. P., Chen,G. M., et al., An immuno-biosensor system based on quartz crystal microbalance for avian influenza virus detection-art. no.67943P. Icmit 2007:Mechatronics, Mems. and Smart Materials, Pts 1 and 2. M. Sasaki. G. C. Sang, Z. Liet al. Bellingham, Spie-Int Soc Optical Engineering,2008,6794:7943-7943.
    [152]Oberg, P., Ligensio, J., Crystal Film Thickness Monitor, Rev.Sci.Instrum.,1959,30:1053.
    [153]Shons. A., Dorman, F., Nagarian, J., An immunospecific microbalance [J]. J Biomed Mater Res, 1972,6(6):565-570.
    [154]Konash, P.L., Bastians. G.J., Piezoelectric crystals as detectors for liquid chro mtography [J]. Anal.Chem..1980,52:1929.
    [155]Zhang, Q., Huang, Y., et al., In situ growth of nanogold on quartz crystal microbalance and its application in the interaction between heparin and antithrombin Ⅲ [J]. Journal of Colloid and Interface Science,2008,319(1):94-99.
    [156]Shen, G., wang, H., et al., Au nanoparticle network-type thin films formed via mixed assembling and cross-linking route for biosensor application:Quartz crystal microbalance study [J]. Anal. Biochem., 2007,365(1):1-6.
    [157]Wang, H., Wang.C. C., et al., A novel biosensing interfacial design produced by assembling nano-Au particles on amine-terminated plasma-polymerized films [J]. Analytical and Bioanalytical Chemistry, 2003,377(4):632-638.
    [158]Wang. H., Wu, J., et al., Nanogold particle-enhanced oriented adsorption of antibody fragments for immunosensing platforms [J]. Biosens. Bioelectron.,2005,20(11):2210-2217.
    [159]Wu, T. Z., Su, C. C., et al., Piezoelectric immunochip for the detection of dengue fever in viremia phase [J]. Biosens. Bioelectron.,2005.21(5):689-695.
    [160]Hewa, T. M. P.. Tannock, G. A., et al., The detection of influenza A and B viruses in clinical specimens using a quartz crystal microbalance [J]. Journal of Virological Methods.2009, 162(1-2):14-21.
    [161]Liu. R. H., Lodes. M. J., et al., Validation of a fully integrated microfluidic array device for influenza A subtype identification and sequencing [J]. Anal. Chem.,2006,78(12):4184-93.
    [162]Chen, J., Zou,G. Z., et al., Ultrasensitive electrochemical immunoassay based on counting single magnetic nanobead by a combination of nanobead amplification and enzyme amplification [J]. Electrochemistry Communications,2009.11(7):1457-1459.
    [163]Di Corato, R., Piacenza, P.. et al., Magnetic-Fluorescent Colloidal Nanobeads:Preparation and Exploitation in Cell Separation Experiments [J]. Macromolecular Bioscience,2009,9(10):952-958.
    [164]Li, M. Y., Sun, Y. M., et al., Ultrasensitive Eletrogenerated Chemiluminescence Immunoassay by Magnetic Nanobead Amplification [J]. Electroanalysis,2010,22(3):333-337.
    [165]Shimazu, R., Tada, M., et al., Expediting magnetic separation using Ni wires, applicable for robot-manipulated bio-screening systems [J]. Ieee Transactions on Magnetics,2005. 41(10):4143-4145.
    1166] Soelberg, S. D., Stevens, R. C., et al., Surface Plasmon Resonance Detection Using Antibody-Linked Magnetic Nanoparticles for Analyte Capture, Purification, Concentration, and Signal Amplification [J]. Analytical Chemistry,2009.81(6):2357-2363.
    [167]Tsai, H.Y., Hsu, C.F., Chiu, I.W., Bor Fuh, C., Detection of C-reactive protein based on immunoassay using antibody-conjugated magnetic nanoparticles [J]. Anal. Chem.,2007,79: 8416-8419.
    [168]Chiang, C.L., Sung, C.S., Wu, T.F., Chen, C.Y., Hsu, C.Y.. Application of superparamagnetic nanoparticles in purification of plasmid DNA from bacterial cells [J].Journal of Chromatography B. 2005,822:54-60.
    [169]Mikhaylova, M., Kim, D.K., Bobrysheva, N., Osmolowsky, M., Semenov, V., Tsakalakos. T.. Muhammed, M., Superparamagnetism of magnetite nanoparticles:dependence on surface modification [J]. Langmuir,2004,20(6):2472-2477.
    [170]Sun, S.H., Murray, C.B., Weller, D., Folks. L., Moser, A., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices [J]. Science,2000,287(5460):1989-1992.
    [171]Gu. H., Ho, P.L., Tsang, K.W.T., Wang, L.. Xu. B., Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration [J]. J. Am. Chem. Soc.,2003,125:15702-15703.
    [172]Josephson. L.. Kircher, M.F.. Mahmood. U., Tang, Y., Weissleder, R., Near- infrared fluorescent nanoparticles as combined MR/optical imaging probes [J]. Bioconjug Chem,2002.13(3):554-560.
    [173]Tripp, S.L., Pusztay, S.V.. Ribbe, A.E., Wei, A., Self-assembly of cobalt nanoparticle rings [J].J Am Chem Soc.2002.124(27):7914-7915.
    [174]Yavuz, C.T., Mayo, J.T., Yu, W.W., Prakash, A., Falkner, J.C., Yean. S., Cong, L., Shipley, H.J., Kan, A., Tomson, M., Natelson. D., Colvin, V.L..Low-field magnetic separation of monodisperse Fe3O4 nanocrystals [J]. Science,2006,314(5801):964-967.
    [175]Sever, J.L., Castellano, G.A., Peron, W., Huebner, R.J., Wolman, F., J. Lab. Clin. Med.,1964,64: 983.
    [176]Goldstein, M.A., Tauraso, N.M., Appl. Microbiol.,1970,19 (2):290.
    [177]Bain. C.D., Troughton, E.B., Tao, Y.T., Evall. J., Whitesides, G.M., Nuzzo, R.G., Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold [J].J. Am. Chem. Soc.,1989,111:321-335.
    [178]曹楚南,张鉴清,电化学阻抗谱导论.北京:科学出版社,2002.
    [179]Kharitonov, A. B., Alfonta, L., Katz, E., et al., Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry [J]. J. Electroanal. Chem.,2000,487:133-141.
    [180]Bardea, A., Patolsky, F., Dagan, A., et al., Amplified electronic transduction of oligonucleotide interactions:novel routes for Tay-Sachs biosensors [J]. Chem. Commun.,1999,33-43.
    [181]Mantzila, A.G., Maipa, V.. Prodromidis, M.I., Development of a faradic impedimetric immunosensor for the detection of Salmonella typhimurium in milk [J]. Anal. Chem.,2008.80:1169-1175.
    [182]Hnaien. M., Diouani, M.F., Helali, S., Hafaid, I., Hassen. W.M., Renault, N.J., Ghram, A., Abdelghani. A., Immobilization of specific antibody on SAM functionalized gold electrode for rabies virus detection by electrochemical impedance spectroscopy [J]. Biochem. Eng. J.,2008.39: 443-449.
    [183]Thavarungkul, P., Dawan, S., Kanatharana. P.. Asawatreratanakul, P., Detecting penicillin G in milk with impedimetric label-free immunosensor [J]. Biosens. Bioelectron.,2007,23:688-694.
    [184]lonescu, R.E., Jaffrezic-Renault. N., Bouffier. L., Gondran, C., Cosnier, S., Pinacho. D.G., Marco, M.P., Sanchez-Baeza. F.J., Healy, T., Martelet. C., Impedimetric immunosensor for the specific label free detection of ciprofloxacin antibiotic [J]. Biosens. Bioelectron.,2007,23:549-555.
    [185]张灯.陈松月.秦利锋,检测大肠杆菌0157:H7的电化学阻抗谱生物传感器的研究[J].传感 技术学报,2005,18(1):5-9.
    [186]史美伦.交流阻抗谱原理及应用.北京:国防工业出版社,2001.
    [187]Pethig. R. Dielectric and Electronic Properties of Biological Materials; J. Wiley:New York,1979.
    [188]Hicks, J. F., Zamborini, F. P., Murray, R. W., Dynamics of Electron Transfers between Electrodes and Monolayers of Nanoparticles [J]. J. Phys. Chem. B,2002.106:7751-7757.
    [189]Horswell, S. L., O'Neil, I. A., Schiffrin, D. J., Kinetics of Electron Transfer at Pt Nanostruetured Film Electrodes [J]. J. Phys. Chem. B,2003,107:4844-4854.
    [190]Park, I., Kim, N., Thiolated Salmonella antibody immobilization onto the gold surface of piezoelectric quartz crystal [J].Biosen. Bioelectron.,1998,13:1091-1097.
    [191]Gebbert. A., Alvarez-Icaza, M., Stocklein,W., Schmid, R.D., Real-time monitoring of immunochemical interactions with a tantalum capacitance flow-through cell [J]. Anal. Chem.,1992, 64,997-1003.
    [192]Labib, M., Hedstrom, M., Amin, M., Mattiasson. B., A capacitive immunosensor for detection of cholera toxin [J]. Analytica Chimica Acta,2009,634(2):255-261.
    [193]Numnuam, A., Kanatharana, P., Mattiasson, B., Asawatreratanakul, P., Wongkittisuksa, B., Limsakul, C., et al., Capacitive biosensor for quantification of trace amounts of DNA [J]. Biosen. Bioelectron., 2009,24(8):2559-2565.
    [194]Capell. C.J., Kirby, R.M., Moss, M.O., A method and medium for the electrical detection of Listeria spp. from food [J].International Journal of Food Microbiology,1995.25(2):169-177.
    [195]Frey, B.L., Corn. R.M., Covalent attachment and derivatization of poly(L-lysine) monolayers on gold surfaces as characterized by polarization-modulation FT-IR spectroscopy [J]. Anal. Chem., 1996,68:3187-3193.
    [196]Limbut, W., Kanatharana, P., Mattiasson, B., Asawatreratanakul, P., Thavarungkul, P., A comparative study of capacitive immunosensors based on self- assembled monolayers formed from thiourea, thioctic acid, and 3-mercapto propionic acid [J].Biosens. Bioelectron.,2006. 22(2):233-240.
    [197]Li. D., Xu. K., Wang. J., Ye. Z., Ying. Y., Li, Y., Quartz crystal Au electrode-based electrochemical immunosensor for rapid detection of Escherichia coli O157:117 [J].Trans. ASABE,2008, 51(5):1847-1852.
    [198]Berggren, C., Bjarnason, B., Johansson, G., Capacitive biosensors. Electroanal.,2001. 13(3):173-180.
    [199]Matsushita Electronic Components Co., Ltd., Technical Guide of Electric Double Layer Capacitors. Capacitor Division,1992.1-47.
    [200]Laczka, O., Baldrich, E., Munoz, EX., del Campo, F.J., Detection of Escherichia coli and Salmonella typhimurium using interdigitated microelectrode capacitive immunosensors:The importance of transducer geometry [J].Anal. Chem.,2008,80(19):7239-7247.
    [201]Ruan. CM., Zeng, K.F., Varghese, O.K., Grimes, C.A., Magnetoelastic immunosensors:Amplified mass immunosorbent assay for detection of Escherichia coli O157:H7 [J]. Anal. Chem.,2003. 75(23):6494-6498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700