用户名: 密码: 验证码:
猪繁殖与呼吸综合征病毒流行毒株NSP2基因遗传变异及GM-CSF对GP3/GP5的免疫增强作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪繁殖与呼吸综合征病毒(Porcine reproductive and respiratory syndrome virus, PRRSV)属于动脉炎病毒科,基因组为单股正链RNA,具有快速变异特性。自1991年首次分离获得病毒以来,该病毒基因逐渐发生变化并伴随着给养猪业带来严重经济损失。2000年美国出现非典型PRRSV,免疫商品猪群和母猪群出现严重死亡。PRRS于1996年在我国首次爆发,并逐渐传播各省市。2006年在中国大陆地区多省份出现高致病性PRRS,主要临床表现为持续高热(41.0℃以上)、皮肤发红、发病率和死亡率高。病毒非结构蛋白NSP2上存在30个氨基酸缺失。近年来,PRRSV持续流行,造成了我国养猪业的巨大经济损失。为了深入阐明该病毒基因遗传变异规律和NSP2毒力作用,探索该病毒新的免疫防控方法,本研究从华东地区部分省份2004-2009年发病猪群分离获得38株PRRSV,并对其NSP2基因高变异区进行了克隆和序列分析;根据基因分析结果,从中选择4株PRRSV流行毒株进行仔猪人工感染发病试验,研究NSP2基因变异与病毒毒力间的关系;同时,设计构建共表达PRRSV GP3和GP5与猪粒细胞巨噬细胞集落细胞刺激因子(Granulocyte/macrophage colony stimulating factor, GM-CSF)融合蛋白重组腺病毒,并进行了小鼠和猪体免疫试验,具体研究内容和结果分为以下5个部分:
     1.我国猪繁殖与呼吸综合征病毒流行毒株分离与鉴定
     2004-2009年在临床流行病学研究基础上,从江苏、上海、山东、安徽、浙江和广西等省市收集临床发病猪场仔猪肺脏病料,经匀浆、冻融和过滤处理后接种Macr-145或猪肺泡巨噬细胞(PAM),通过CPE观察、RT-PCR检测和PRRS阳性抗体间接免疫荧光试验鉴定,分离获得38株PRRSV,其中,32株病毒直接采用Macr-145细胞分离获得,其余6株病毒则是先用PAM细胞分离,然后接种Marc-145细胞分离获得;分离病毒在Marc-145细胞上培养特性有一定差异,病毒毒价为103.75-106.33TCID50/ml,为PRRSV研究提供了重要物质基础。
     2.2004-2009年猪繁殖与呼吸综合征病毒流行毒株NSP2基因遗传变异分析
     根据PRRSV NSP2基因设计合成2对PCR引物,采用巢式RT-PCR方法对上述分离的38株PRRSV NSP2基因高变区进行克隆和测序分析,结果显示:不同毒株PCR扩增产物长度有所不同,共出现5种长度类型,分别为:1215、1275、1287、1373和1374bp。38株PRRSV核苷酸同源性为71.6%-99.6%,推测的氨基酸同源性为63.7%-98.3%。NSP2基因进化分析结果显示,38株分离株可以分为两个基因亚型,即NSP2基因亚型Ⅰ和NSP2基因亚型Ⅱ,其中,NSP2基因亚型Ⅰ内的毒株有28株,具有30个或更多个氨基酸的缺失,基因同源性为92.9%-99.2%;NSP2基因亚型Ⅱ内的毒株具有1个或不具有氨基酸的缺失,但基因差异较大,基因同源性为76.5%-99.6%。根据NSP2基因高变区基因缺失情况,38株PRRSV分离株分为5种类型,其中,30aa缺失型毒株比例最高(26/38),2种新的NSP2基因缺失类型的PRRSV毒株出现于2008年后。该研究结果表明,我国PRRSV流行毒株NSP2基因变异较大,并不断出现新的变异毒株,加强PRRSV流行毒株基因变异监测十分必要。
     3.猪繁殖与呼吸综合征病毒NSP2基因变异与毒力变化间的关系研究
     根据上述PRRSV NSP2基因序列分析结果,选择4个PRRSV毒株,包括YX0907、BB0907、SY0909和NT0801毒株,其中,YX0907、BB0907和SY0909毒株属于基因亚型Ⅰ,具有30个氨基酸缺失的特征,NT0801属于NSP2基因亚型Ⅱ,其NSP2上不存在缺失。GP5基因序列分析结果为:4株PRRSV毒株GP5基因同源性为98.0%-99.8%,其氨基酸同源性为97.5%-99.5%。选择23头45日龄PRRSV、猪圆环病毒2型(PCV2)和副猪嗜血杆菌(HPs)阴性健康商品仔猪,随机分为5组,第1-4组分别颈部肌肉注射上述4株PRRSV分离株(第3代),2×10432TCID50/1ml/头,第5组3头猪作为空白对照,隔离饲养21d,每天测量体温,观察临床症状;攻毒后第7d、14d和21d采血分离血清,测定PRRSV含量;对死亡猪和第21天处死猪进行病理解剖,观察肉眼病理变化和组织病理变化,并进行记分和比较,结果显示,BB0907毒株毒力最强,试验猪感染后体温明显升高,临床症状明显,可引起3/5死亡,病猪肺脏组织具有明显病理变化;YX0907毒株毒力较强,试验猪临床症状和病理变化明显,可引起2/5死亡;NT0801毒力较弱,部分猪感染后出现1-2d体温升高和轻度临床症状,但未引起死亡;SY0909毒株毒力最弱,感染猪出现1-3d体温升高,临床症状不明显,病理变化较轻;而对照组猪无临床异常表现和病理变化。该研究结果表明,PRRSV分离株毒力存在明显差异,4个毒株毒力高低为:BB0907> YX0907> NT0801> SY0909。具有NSP2相同基因缺失类型的3个PRRSV分离株毒力差异较大,证实PRRSV毒力与NSP2的30个氨基酸基因缺失没有直接联系。
     4.猪繁殖与呼吸综合征病毒GP3-GP5与猪GM-CSF融合基因重组腺病毒的构建与鉴定
     利用PCR扩增出高致病性PRRSV SY0608分离株的GP3和GP5基因及猪粒细胞巨噬细胞集落刺激因子(GM-CSF)基因,并按顺序将它们连入梭载体pShuttle-CMV,并在GM-CSF和GP3之间及GP3和GP5间分别插入FMDV 2A基因和"AAGCTT"连接子,重组穿梭载体经酶切和测序鉴定后用PmeⅠ线性化,然后电转化入基因工程菌株大肠杆菌BJ5183内,与腺病毒骨架载体pAdEasy-1重组,获得重组腺病毒质粒。将重组腺病毒质粒经PacⅠ酶切线性化,然后用脂质体法转染HEK-293A细胞,10d后获得重组腺病毒,命名为rAd-GF35。用RT-PCR方法检测,可以扩增获得长度约1.8kb的GM-CSF-GP3-GP5融合表达转录产物;用猪抗PRRSV阳性血清和小鼠免疫原核表达猪GM-CSF蛋白获得的血清进行间接免疫荧光试验(IFA),证明该重组腺病毒在293A细胞中可以表达GM-CSF和GP3-GP5目的蛋白;用Western blot检测,结果显示GM-CSF-GP3-GP5融合蛋白能够正确表达,且抗原性良好;猪骨髓细胞用感染rAd-GF35的PK-15细胞上清刺激,可以表现明显增殖并形成集落。该研究结果证明,本研究构建的重组腺病毒rAd-GF35可以有效表达GM-CSF-GP3-GP5重组蛋白,并具有GM-CSF生物活性。
     5.猪繁殖与呼吸综合征病毒GP3-GP5与猪GM-CSF融合基因重组腺病毒小鼠免疫特性研究取60只BALB/c小鼠,随机分为4组,每组15只。第1和第2组分别背部皮下注射PBS缓冲液和野生型腺病毒(wtAd)作为对照组,第3和第4组分别于背部皮下注射重组腺病毒rAd-GP35(表达GP3-GP5融合蛋白)和rAd-GF35(表达GM-CSF-GP3-GP5融合蛋白),接种剂量为1010TCID50/0.5ml/只,隔离饲养3周后用同样方法加强免疫一次。首次免疫后不同时间,随机抽取5只/组采血和取脾脏,分别检测PRRSV特异抗体、淋巴细胞增殖指数、IFN-y和IL-4,结果为:第3-4组小鼠在免疫后21d,均可以检测到PRRSV特异ELISA抗体产生,42d达到最高,抗体水平差异显著(P<0.05);首次免疫后42d, rAd-GF35免疫组抗体最高可达1:128,平均效价为1:80,显著高于rAd-GP35免疫组(1:32)(P<0.05);同时,rAd-GF35免疫组小鼠淋巴细胞增殖指数(Stimulation Index,SI)平均值显著高于rAd-GP35免疫组(P<0.05); rAd-GF35免疫组小鼠脾细胞经PRRSV抗原体外刺激后,细胞培养上清中IFN-γ平均含量为175pg/ml, IL-4平均含量为87.3 pg/ml,而rAd-GP35免疫小鼠脾细胞培养上清中IFN-γ和IL-4的含量只有117.3 pg/ml和46.5pg/ml,差异显著(P<0.05)。该结果表明,重组腺病毒rAd-GF35诱导的体液免疫和细胞免疫明显高于重组腺病毒rAd-GP35, GM-CSF可以显著增强GP3/GP5蛋白在小鼠体内的免疫反应。
     6.猪繁殖与呼吸综合征病毒GP3-GP5与猪GM-CSF融合基因重组腺病毒仔猪免疫保护效力研究
     取15头2周龄的PRRSV, PCV2和HPs阴性健康商品仔猪,随机分为3组,每组5头,隔离饲养。第1和第2组肌肉注射重组腺病毒rAd-GF35和rAd-GP35,第3组同样方法接种野生型腺病毒(wtAd)作为对照,接种剂量为5×10.0TCID50/1ml/头,间隔3周后用同样方法加强免疫一次,免疫后不同时间采血,测定ELISA抗体和猪外周血淋巴细胞(PBMC)增殖指数SI;首免后42d用PRRSV-SY0608强毒滴鼻,2×104.0TCID50/1ml/头,每个鼻孔1 ml,攻毒后分别观察临床症状、PRRSV病毒血症和病理变化,并进行综合记分和比较,结果为:免疫后21d,重组腺病毒rAd-GP35和rAd-GF35组ELISA抗体水平显著高于wtAd, rAd-GF35组中和抗体水平最高可达1:10,平均效价1:7.6,而rAd-GP35免疫组最高为1:8,平均效价<1:5;免疫后42d, rAd-GF35免疫组PBMC增殖指数SI平均值显著高于rAd-GP35免疫组(P< 0.05); rAd-GF35免疫组猪血清中IFN-γ与IL-4含量为276.2 pg/ml和312.7 pg/ml,显著高于rAd-GP35免疫猪血中的94.6 pg/ml和242.5pg/ml (P< 0.05).攻毒后,rAd-GF35免疫组临床症状明显减轻,综合评定数值为26.2,显著低于rAd-GF35免疫组的44和wtAd组的82.2(P<0.05);攻毒后7d, rAd-GF35、rAd-GP35和wtAd组猪血清病毒含量分别为1.5×1030、3.3×1030和1.0×1040个TCID50,三个组间差异显著(P<0.05)。此外,对照组猪攻毒后出现明显病理变化,包括肺脏出血、炎性浸润和肺泡损伤等,其次为rAd-GP35,而rAd-GF35无明显病理变化。该研究结果证明,rAd-GF35免疫可以提供仔猪较好免疫保护作用。
     综上所述,我国流行PRRSV毒株发生了新的变异,多种NSP2基因缺失类型病毒株同时存在,丰富了PRRSV分子流行病学资料;人工感染发病试验进一步证实,NSP2基因缺失与病毒毒力间没有直接关系;用腺病毒表达的GM-CSF-GP3-GP5能够在小鼠和猪体内诱导PRRSV特异性体液和细胞免疫反应,证实GM-CSF能够显著增强GP3-GP5的免疫反应,提高对仔猪的攻毒保护,从而为PRRSV新型疫苗研究奠定了基础。
Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus, belonging to Arteriviridae. PRRSV was firstly isolated in the last century, and then it has kept varying and caused great economic losses in pig farms. In 2000, the atypical PRRSV appeared in America and the immunized herds still encountered with serious mortality. PRRSV firstly emergeed in China in 1996, and then rapidly spread out to all the provinces. In 2006, there was a harrowing outbreak of PRRSV in the Mid-East China, which was characterized by durative fever (>41.0℃) and high mortality in herds of each age. The pathogen was identified as a new variant of PRRSV, with a unique hallmark in NSP2 gene (with two discontinues deletion of 30aa). In order to reveal the variation rule of PRRSV genetics and the contribution of NSP2 to PRRSV virulence, thirty-eight PRRSV isolates were isolated from different farms in the southeast of China during 2004-2009, and the NSP2 of the isolates were sequenced partly and analyzed. Then 4 representative isolates were selected to challenge piglets and the relationship between the NSP2 variation and virulence change was analyzed. Meanwhile, the recombinant adenovirus co-expressing the porcine granulocyte/macrophage colony stimulating factor (GM-CSF) and PRRSV GP3/GP5 was constructed and the immunogenicity was detected in mice and piglets.
     1. Isolation and identification of porcine reproduction and respiratory syndrome virus
     Base on the clinical epidemiology of the pig disease, we collected the lung samples from pathogenic pig farm in Jiangsu, Shanghai, Shandong, Anhui, Zhejiang and Guangxi provinces. After homogenization, freeze-thawing and then filtrated with filter membrane, the supernatants were collected and inoculated into Macr-145 cells or PAM for virus isolation. Thirty-eight PRRSV isolates were isolated and identified by RT-PCR and IFA. Among them, thity-two were isolated directly with Marc-145 cells and 6 were recovered with first PAM and then passaged in Marc-145. The 38 PRRSV isolates had different characters for in vitro culture and graw up with different titers of 10-3.75-10-6.33TCID50/ml. These virus isolates could be used to study on the disese in the future.
     2. Genetic variation of porcine reproduction and respiratory syndrome virus based on NSP2 during the period of 2004-2009
     Base on NSP2 sequence of PRRSV, two pairs of primers were designed for Nest-PCR to amplify the high variation region of NSP2. Totally 5 fragments with different length,1215,1275,1287,1373 and 1374bp were obtained from the 38 isolates. The homology of the isolates base on the nucleotide sequence was 72.7%-99.6% and the derivation of amino sequence was 63.7%-98.3%. According to the polygenic analysis results, the 38 PRRSV isolates could be classified into two subgenomic groups:NSP2-subtypeⅠand NSP2-subtypeⅡ. Of the 38 isolates,28 were sorted into NSP2-subtypeⅠsharing with 1 and 29 amino acids deletion, and the homology of NSP2-subtypeⅠwas 92.9%-99.2%. The isolates in NSP2-subtypeⅡhad 1 or no amino acid deletion with 76.5%-99.6% genic homology. Moreover, five different deletion patterns were identified in NSP2 in these 38 isolates. The most popular isolates were the virus with 30aa deletion. Two new deletion patterns were identified in these 38 isolates, which isolated since 2008. It indicated that the NSP2 of the PRRSV isolates in China had high variety and it was need to monitor on the variation of NSP2 in the future.
     3. The relationship between the NSP2 variation and the virulence of porcine reproduction and respiratory syndrome virus
     Based on the NSP2 sequence of the 38 PRRSV iolates, four different isolates named as YX0907, BB0907, SY0909 and NT0801 were selected. Among them, YX0907, BB0907 and SY0909 isolates were ranged to NSP2-subtypeⅠwith 30aa deletion and NT0801 isolate to NSP2-subtypeⅡwithout any amino acids deletion. The homology of these 4 isolates base on GP5 nucleotide sequence was 98.0%-99.8% and the derivation of amino sequence was 97.5%-99.5%. Twenty-three 45-day old piglets free of PRRSV, PCV2 and HPs were selected and randomly separated into 5 groups. The first 4 groups were challenged individully with the 4 PRRSV isolates by injection of 2ml of 2×104.32TCID50/ml. Three pigs in the 5th group were served as control. After challeng, the rectal temperatures of the pigs were recorded every day. The sera were collected at 7,14 and 21 days post challenge (dpc) for detection of the viremia. The dead and sacrificed pigs at 21 dpc were autopsied and the gross lesions were valued. The results showed that BB0907 isolate had highest virulence. It caused apparent fever and clinical disease with great pathological changes. And 3 pigs out of 5 were dead after infection. Comparing with BB0907, YX0907 isolate had less virulent. The pigs in this group also showed apparent clinical syndrome and tissue gross lesion, and 2 pigs were dead after inoculation. But NT0801 isolate has relatively lower pathogenic ability and caused the pigs had 1-2 days fever with slight clinical signs. SY0909 isolates has lowest virulence. Only some pigs in this group only experienced 1-2 days fever without clinical sign. Meanwhile, the pigs in the control group were quite healthy throughout the trail. These results revealed that the level of the virulence of these four isolates is BB0907> YX0907> NT0801> SY0909, indicating that the isolates with 30aa deletion have different pathogenic ability and the 30aa deletion has no relationship with the virulence of isolate.
     4. Construction and identification of the recombinant adenovirus co-expressing pig GM-CSF and GP3 and GP5 of porcine reproduction and respiratory syndrome virus
     PRRSV GP3 and GP5 were amplified from high pathogenic isolate SY0608 and pig GM-CSF was amplified from stimulated PBMC by RT-PCR, respectively. And then they were inserted into the different sites of the adenovirus shuttle vector one by one. Between GM-CSF and GP3, the gene of 2A protein from FMDV was used as a linker, and "AAGCTT" as a linker between GP3 and GP5. The recombinant plasmid was identified by restriction enzyme digestion and then sequenced. The linearized positive shuttle plasmid was electro-transformated into BJ5183 and recombined with the adenovirus backbone vector, and then recombined plasmid linearized with PacⅠ. After that, the recombinant adenovirus, named as pAd-GF35, were transfected into 293A cells. At 10 days post incubation, the recombinant adenovirus came up with CPE. Then, the expressions of these target proteins were identified by IFA and western blot, the bioactivity of the GM-CSF was confirmed by MTT assay and colony formation assay. It indicated that a recombinant adenovirus, rAd-GF35, co-expressing the GM-CSF-GP3-GP5 fusion protein was successfully constructed and it could be used to deteced the immunogenicity in the future.
     5. Immunogenicity of recombinant adenovirus co-expressing GM-CSF and GP3-GP5 of porcine reproduction and respiratory syndrome virus in mice
     Sixty BALB/c mice were randomly separated into 4 groups with15 in each. The mice in the first two groups were ranged as control, empty control with PBS and scramble control with wtAd, respectively. Group3 were immunized with rAd-GP35 (expressing GP3-GP5 fusion protein) and group 4 with rAd-GF35 (expressing the GM-CSF-GP3-GP5 fusion protein). After 3 weeks, the all groups were boosted vaccined except those mice were slaughtered. And PRRSV-specific antibody, lymphocyte proliferation index, IFN-γand IL-4 were detected to evaluate the immunization at different time after vaccination. The results showed that the antibody against PRRSV became detectable in group3 and group4 at 21 days post immunization (dpi), and reached to the peak at 42dpi. At 42dpi, the neutralizing antibody (NA) titers in some mice from rAd-GF35 group could reach to 1:128 and the average level was 1:80. It was significantly higher than that in rAd-GP35 group with the level of 1:32. The lymphocytes proliferation index in rAd-GF35 group was significant higher than that of the rAd-GP35 group. The secretion of IFN-γand IL-4 of the lymphocytes from the mice immunized with rAd-GF35 is 175pg/ml and 87.3pg/ml and which are significant higher than that with rAd-GP35 (117.3 pg/ml and 46.5pg/ml). These results indicated that the recombinant adenovirus rAd-GF35 could induce distinctly higher humoral and cell immune response than rAd-GP35. GM-CSF could enhance the immune response induced by GP3/GP5.
     6. Protective efficacy of recombinant adenovirus co-expressing GM-CSF and GP3-GP5 of porcine reproduction and respiratory syndrome virus
     Fifiteen 2-week old commericall pigs free of PRRSV, PCV2 and HPS were randomly separated into 3 groups with 5 in each. The first two groups were immunized with the recombinant adenovirus rAd-GP35 and rAd-GF35 (5×10.0TCID50/ml), respectively, and the last one as control, inoculated with wtAd. After 3 weeks, the all groups were boosted vaccined. PRRSV specific antibody, lymphocyte proliferation index, IFN-γand IL-4 were detected at different time after vaccination. And at 42 days post immunized (dpi), all the animals were challenged with high pathogenic PRRSV isolate SY0608 (2×104.0 TCID50/ml). And then the rectal temperature, virema, gross tissue lesion and microscope lesion were used to judgment the protective efficacy. The results showed that at 21dpi, rAd-GP35 and rAd-GF35 immunized pigs developed significant higher level of PRRSV-specific antibodies compared with the control. The highest NA titer in rAd-GF35group was 1:10 and the average level was 1:8. But the average NA titer in group rAd-GP35 was less than 1:4. The lymphocytes proliferation index of rAd-GF35 group was significantly higher than rAd-GP35 group. The contents of IFN-γand IL-4 in sera were 276.2pg/ml and 312.7pg/ml in rAd-GF35 immunized pigs, which are significantly higher than that immunized with rAd-GP35 (117.3 pg/ml and 46.5pg/ml). The pigs immunized with rAd-GF35 showed less clinical signs with integrated score 26.2, while the score in rAd-GP35 group is 44 and that in wtAd is 82.2. The pigs in rAd-GF35 group developed lower level of viremia (1.5×103.0 TCID50), which was significant with other two groups (3.3×103.0 and 104.0TCID50). Meanwhile, the piglets in control groups experienced the most serious tissue lesion. All results indicated rAd-GF35 could provide partly a protection against PRRSVchalleng in piglets.
     In summary, based on the NSP2 sequences of PRRSV isoaltes, it proved that there were a lot of PRRSV variants with various kinds of NSP2 deletion in China, which enriched our current epidemiologic knowledge of PRRSV. The results of challenge experiment revealed that there was no relationship between the 30 aa deletion of NSP2 gene and the virulence of PRRSV. The recombinant adenoviruses co-expressing porcine GM-CSF and PRRSV GP3/GP5 could induce PRRSV-specific immune response in mice and pigs. GM-CSF could enhance the immune response induced by GP3-GP5 and increased the protective effect to PRRSV challenge. This study provides new strategies for developing new efficient PRRSV vaccine.
引文
[1]Meulenberg J. PRRSV, the virus. Veterinary research 2000;31(1):11-21.
    [2]Wensvoort G, Terpstra C, Pol J, Ter Laak E, Bloemraad M, De Kluyver E, et al. Mystery swine disease in The Netherlands:the isolation of Lelystad virus. The Veterinary Quarterly 1991;13(3):121.
    [3]Gorbalenya A, Enjuanes L, Ziebuhr J, Snijder E. Nidovirales:evolving the largest RNA virus genome. Virus Research 2006;117(I):17-37.
    [4]Snijder E, Meulenberg J. The molecular biology of arteriviruses. Journal of General Virology 1998;79(5):961-80.
    [5]Snijder E, Van Tol H, Pedersen K, Raamsman M, de Vries A. Identification of a novel structural protein of arteriviruses. Journal of Virology 1999;73(8):6335.
    [6]Wieringa R, de Vries A, Post S, Rottier P. Intra-and intermolecular disulfide bonds of the GP2b glycoprotein of equine arteritis virus:relevance for virus assembly and infectivity. Journal of Virology 2003;77(24):12996.
    [7]Wissink E, Kroese M, Van Wijk H, Rijsewijk F, Meulenberg J, Rottier P. Envelope protein requirements for the assembly of infectious virions of porcine reproductive and respiratory syndrome virus. The Journal of Virology 2005;79(19):12495.
    [8]Mardassi H, Wilson L, Mounir S, Dea S. Detection of porcine reproductive and respiratory syndrome virus and efficient differentiation between Canadian and European strains by reverse transcription and PCR amplification. J Clin Microbiol 1994 Sep;32(9):2197-203.
    [9]Mardassi H, Mounir S, Dea S. Identification of major differences in the nucleocapsid protein genes of a Quebec strain and European strains of porcine reproductive and respiratory syndrome virus. J Gen Virol 1994 Mar;75 (Pt 3):681-5.
    [10]Mardassi H, Mounir S, Dea S. Structural gene analysis of a Quebec reference strain or porcine reproductive and respiratory syndrome virus (PRRSV). Adv Exp Med Biol 1995;380:277-81.
    [11]Meulenberg JJM, Petersen-Den Besten A, De Kluyver EP, Moormann RJM, Schaaper WMM, Wensvoort G. Characterization of proteins encoded by ORFs 2 to 7 of Lelystad virus. Virology 1995;206(1):155-63.
    [12]Meulenberg JJ, Petersen-den Besten A. Identification and characterization of a sixth structural protein of Lelystad virus:the glycoprotein GP2 encoded by ORF2 is incorporated in virus particles. Virology 1996 Nov 1;225(1):44-51.
    [13]Van Nieuwstadt A, Meulenberg J, van Essen-Zanbergen A, Petersen-den Besten A, Bende R, Moormann R, et al. Proteins encoded by open reading frames 3 and 4 of the genome of Lelystad virus (Arteriviridae) are structural proteins of the virion. Journal of Virology 1996;70(7):4767.
    [14]Verheije MH, Olsthoorn RC, Kroese MV, Rottier PJ, Meulenberg JJ. Kissing interaction between 3' noncoding and coding sequences is essential for porcine arterivirus RNA replication. J Virol 2002 Feb;76(3):1521-6.
    [15]Wu WH, Fang Y, Farwell R, Steffen-Bien M, Rowland RR, Christopher-Hennings J, et al. A 10-kDa structural protein of porcine reproductive and respiratory syndrome virus encoded by ORF2b. Virology 2001 Aug 15;287(1):183-91.
    [16]Meulenberg J, Bos-de Ruijter J, Van de Graaf R, Wensvoort G, Moormann R. Infectious transcripts from cloned genome-length cDNA of porcine reproductive and respiratory syndrome virus. The Journal of Virology 1998;72(1):380.
    [17]Molenkamp R, van Tol H, Rozier B, van der Meer Y, Spaan W, Snijder E. The arterivirus replicase is the only viral protein required for genome replication and subgenomic mRNA transcription. Journal of General Virology 2000;81(10):2491.
    [18]Yoo D, Welch S, Lee C, Calvert J. Infectious cDNA clones of porcine reproductive and respiratory syndrome virus and their potential as vaccine vectors. Veterinary Immunology and Immunopathology 2004;102(3):143-54.
    [19]Verheije M, Kroese M, Rottier P, Meulenberg J. Viable porcine arteriviruses with deletions proximal to the 3'end of the genome. Journal of General Virology 2001;82(11):2607.
    [20]de Lima M, Kwon B, Ansari I, Pattnaik A, Flores E, Osorio F. Development of a porcine reproductive and respiratory syndrome virus differentiable (DIVA) strain through deletion of specific immunodominant epitopes. Vaccine 2008;26(29-30):3594-600.
    [21]Fang Y, Christopher-Hennings J, Brown E, Liu H, Chen Z, Lawson S, et al. Development of genetic markers in the non-structural protein 2 region of a US type 1 porcine reproductive and respiratory syndrome virus:implications for future recombinant marker vaccine development. Journal of General Virology 2008;89(12):3086.
    [22]Kim D, Kaiser T, Horlen K, Keith M, Taylor L, Jolie R, et al. Insertion and deletion in a non-essential region of the nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome (PRRS) virus:effects on virulence and immunogenicity. Virus Genes 2009;38(1):118-28.
    [23]Yu D, Lv J, Sun Z, Zheng H, Lu J, Yuan S. Reverse genetic manipulation of the overlapping coding regions for structural proteins of the type Ⅱ porcine reproductive and respiratory syndrome virus. Virology 2009;383(1):22-31.
    [24]den Boon JA, Faaberg KS, Meulenberg JJ, Wassenaar AL, Plagemann PG, Gorbalenya AE, et al. Processing and evolution of the N-terminal region of the arterivirus replicase ORFla protein:identification of two papainlike cysteine proteases. J Virol 1995 Jul;69(7):4500-5.
    [25]Snijder E, Wassenaar A, Spaan W, Gorbalenya A. The Arterivirus Nsp2 Protease. Journal of Biological Chemistry 1995;270(28):16671.
    [26]Snijder E, van Tol H, Roos N, Pedersen K. Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex. Journal of General Virology 2001;82(5):985.
    [27]Wassenaar A, Spaan W, Gorbalenya A, Snijder E. Alternative proteolytic processing of the arterivirus replicase ORFla polyprotein:evidence that NSP2 acts as a cofactor for the NSP4 serine protease. Journal of Virology 1997;71(12):9313.
    [28]Allende R, Lewis T, Lu Z, Rock D, Kutish G, Ali A, et al. North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. Journal of General Virology 1999;80(2):307.
    [29]Meulenberg J, Hulst M, Meijer E, Moonen P, Besten A, Kluyver E, et al. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology (USA) 1993.
    [30]Nelsen C, Murtaugh M, Faaberg K. Porcine reproductive and respiratory syndrome virus comparison:divergent evolution on two continents. Journal of Virology 1999;73(1):270.
    [31]Yoshii M, Okinaga T, Miyazaki A, Kato K, Ikeda H, Tsunemitsu H. Genetic polymorphism of the nsp2 gene in North American type--porcine reproductive and respiratory syndrome virus. Arch Virol 2008;153(7):1323-34.
    [32]Han J, Liu G, Wang Y, Faaberg K. Identification of nonessential regions of the nsp2 replicase protein of porcine reproductive and respiratory syndrome virus strain VR-2332 for replication in cell culture. The Journal of Virology 2007;81(18):9878.
    [33]Fang Y, Kim D, Ropp S, Steen P, Christopher-Hennings J, Nelson E, et al. Heterogeneity in Nsp2 of European-like porcine reproductive and respiratory syndrome viruses isolated in the United States. Virus Research 2004;100(2):229-35.
    [34]Gao ZQ, Guo X, Yang HC. Genomic characterization of two Chinese isolates of porcine respiratory and reproductive syndrome virus. Arch Virol 2004 Jul; 149(7):1341-51.
    [35]Han J, Wang Y, Faaberg KS. Complete genome analysis of RFLP 184 isolates of porcine reproductive and respiratory syndrome virus. Virus Research 2006; 122(1-2):175-82.
    [36]Ropp S, Wees C, Fang Y, Nelson E, Rossow K, Bien M, et al. Characterization of emerging European-like porcine reproductive and respiratory syndrome virus isolates in the United States. The Journal of Virology 2004;78(7):3684.
    [37]Shen S, Kwang J, Liu W, Liu D. Determination of the complete nucleotide sequence of a vaccine strain of porcine reproductive and respiratory syndrome virus and identification of the Nsp2 gene with a unique insertion. Archives of virology 2000; 145(5):871-83.
    [38]Zhou Y, Hao X, Tian Z, Tong G, Yoo D, An T, et al. Highly virulent porcine reproductive and respiratory syndrome virus emerged in China. Transboundary and Emerging Diseases 2008;55(3):152-64.
    [39]Li Y, Wang X, Bo K, Tang B, Yang B, Jiang W, et al. Emergence of a highly pathogenic porcine reproductive and respiratory syndrome virus in the Mid-Eastern region of China. The Veterinary Journal 2007;174(3):577-84.
    [40]Tian K, Yu X, Zhao T, Feng Y, Cao Z, Wang C, et al. Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. Plos One 2007;2(6).
    [41]de Lima M, Pattnaik AK, Flores EF, Osorio FA. Serologic marker candidates identified among B-cell linear epitopes of Nsp2 and structural proteins of a North American strain of porcine reproductive and respiratory syndrome virus. Virology 2006 Sep 30;353(2):410-21.
    [42]Johnson CR, Yu W, Murtaugh MP. Cross-reactive antibody responses to nsp1 and nsp2 of Porcine reproductive and respiratory syndrome virus. J Gen Virol 2007 Apr;88(Pt 4):1184-95.
    [43]Bautista EM, Faaberg KS, Mickelson D, McGruder ED. Functional Properties of the Predicted Helicase of Porcine Reproductive and Respiratory Syndrome Virus. Virology 2002;298(2):258-70.
    [44]Bautista E, Suarez P, Molitor T. T cell responses to the structural polypeptides of porcine reproductive and respiratory syndrome virus. Archives of virology 1999;144(1):117-34.
    [45]Wu W-H, Fang Y, Farwell R, Steffen-Bien M, Rowland RRR, Christopher-Hennings J, et al. A 10-kDa Structural Protein of Porcine Reproductive and Respiratory Syndrome Virus Encoded by ORF2b. Virology 2001;287(1):183-91.
    [46]Lee C, Yoo D. The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties. Virology 2006;355(1):30-43.
    [47]Gonin P, Mardassi H, Gagnon C, Massie B, Dea S. A nonstructural and antigenic glycoprotein is encoded by ORF3 of the IAF-Klop strain of porcine reproductive and respiratory syndrome virus. Archives of virology 1998; 143(10):1927-40.
    [48]Mardassi H, Mounir S, Dea S. Molecular analysis of the ORFs 3 to 7 of porcine reproductive and respiratory syndrome virus, Quebec reference strain. Arch Virol 1995;140(8):1405-18.
    [49]Meng XJ, Paul PS, Halbur PG, Morozov I. Sequence comparison of open reading frames 2 to 5 of low and high virulence United States isolates of porcine reproductive and respiratory syndrome virus. J Gen Virol 1995 Dec;76 (Pt 12):3181-8.
    [50]Drew TW, Lowings JP, Yapp F. Variation in open reading frames 3,4 and 7 among porcine reproductive and respiratory syndrome virus isolates in the UK. Vet Microbiol 1997 Apr;55(1-4):209-21.
    [51]Katz JB, Shafer AL, Eernisse KA, Landgraf JG, Nelson EA. Antigenic differences between European and American isolates of porcine reproductive and respiratory syndrome virus (PRRSV) are encoded by the carboxyterminal portion of viral open reading frame 3. Veterinary Microbiology 1995;44(1):65-76.
    [52]Oleksiewicz M, B tner A, Toft P, Grubbe T, Nielsen J, Kamstrup S, et al. Emergence of porcine reproductive and respiratory syndrome virus deletion mutants:correlation with the porcine antibody response to a hypervariable site in the ORF 3 structural glycoprotein. Virology 2000;267(2):135-40.
    [53]Mardassi H, Gonin P, Gagnon C, Massie B, Dea S. A subset of porcine reproductive and respiratory syndrome virus GP3 glycoprotein is released into the culture medium of cells as a non-virion-associated and membrane-free (soluble) form. The Journal of Virology 1998;72(8):6298.
    [54]Drew TW, Meulenberg JJ, Sands JJ, Paton DJ. Production, characterization and reactivity of monoclonal antibodies to porcine reproductive and respiratory syndrome virus. J Gen Virol 1995 Jun;76(Pt 6):1361-9.
    [55]Oleksiewicz MB, Botner A, Normann P. Semen from boars infected with porcine reproductive and respiratory syndrome virus (PRRSV) contains antibodies against structural as well as nonstructural viral proteins. Vet Microbiol 2001 Jul 26;81(2):109-25.
    [56]Oleksiewicz MB, Kristensen B, Ladekj-Mikkelsen AS, Nielsen J. Development of a rapid in vitro protein refolding assay which discriminates between peptide-bound and peptide-free forms of recombinant porcine major histocompatibility class Ⅰ complex (SLA-Ⅰ). Veterinary Immunology and Immunopathology 2002;86(1-2):55-77.
    [57]Zhou YJ, An TQ, He YX, Liu JX, Qiu HJ, Wang YF, et al. Antigenic structure analysis of glycosylated protein 3 of porcine reproductive and respiratory syndrome virus. Virus Res 2006 Jun;118(1-2):98-104.
    [58]Cancel-Tirado SM, Evans RB, Yoon K-J. Monoclonal antibody analysis of Porcine Reproductive and Respiratory Syndrome virus epitopes associated with antibody-dependent enhancement and neutralization of virus infection. Veterinary Immunology and Immunopathology 2004;102(3):249-62.
    [59]Meulenberg JJM, Petersen den Besten A, de Kluyver E, van Nieuwstadt A, Wensvoort G, Moormann RJM. Molecular characterization of Lelystad virus. Veterinary Microbiology 1997;55(1-4):197-202.
    [60]Kwang J, Kim HS, Joo HS. Cloning, expression, and sequence analysis of the ORF4 gene of the porcine reproductive and respiratory syndrome virus MN-lb. J Vet Diagn Invest 1994 Jul;6(3):293-6.
    [61]Barfoed AM, Kristensen B, Dannemann-Jensen T, Viuff B, B鴗ner A, Kamstrup S, et al. Influence of routes and administration parameters on antibody response of pigs following DNA vaccination. Vaccine 2004;22(11-12):1395-405.
    [62]Gonin P, Pirzadeh B, Gagnon C, Dea S. Seroneutralization of porcine reproductive and respiratory syndrome virus correlates with antibody response to the GP5 major envelope glycoprotein. Journal of veterinary diagnostic investigation 1999;11(1):20.
    [63]Key K, Haqshenas G, Guenette D, Swenson S, Toth T, Meng X. Genetic variation and phylogenetic analyses of the ORF5 gene of acute porcine reproductive and respiratory syndrome virus isolates. Veterinary Microbiology 2001;83(3):249-63.
    [64]Plagemann P. GP5 ectodomain epitope of porcine reproductive and respiratory syndrome virus, strain Lelystad virus. Virus Research 2004;102(2):225-30.
    [65]Wissink E, van Wijk H, Kroese M, Weiland E, Meulenberg J, Rottier P, et al. The major envelope protein, GP5, of a European porcine reproductive and respiratory syndrome virus contains a neutralization epitope in its N-terminal ectodomain. Journal of General Virology 2003;84(6):1535.
    [66]Ostrowski M, Galeota J, Jar A, Platt K, Osorio F, Lopez O. Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain. Journal of Virology 2002;76(9):4241.
    [67]Rowland R, Steffen M, Ackerman T, Benfield D. The evolution of porcine reproductive and respiratory syndrome virus:quasispecies and emergence of a virus subpopulation during infection of pigs with VR-2332. Virology 1999;259(2):262-6.
    [68]Mardassi H, Mounir S, Dea S. Molecular analysis of the ORFs 3 to 7 of porcine reproductive and respiratory syndrome virus, Quebec reference strain. Archives of virology 1995;140(8):1405-18.
    [69]Ansari I, Kwon B, Osorio F, Pattnaik A. Influence of N-linked glycosylation of porcine reproductive and respiratory syndrome virus GP5 on virus infectivity, antigenicity, and ability to induce neutralizing antibodies. The Journal of Virology 2006;80(8):3994.
    [70]Faaberg K, Hocker J, Erdman M, Harris D, Nelson E, Torremorell M, et al. Neutralizing antibody responses of pigs infected with natural GP5 N-glycan mutants of porcine reproductive and respiratory syndrome virus. Viral immunology 2006;19(2):294-304.
    [71]Jiang W, Jiang P, Wang X, Li Y, Du Y. Influence of porcine reproductive and respiratory syndrome virus GP5 glycoprotein N-linked glycans on immune responses in mice. Virus Genes 2007;35(3):663-71.
    [72]Faaberg K, Han J, Wang Y. Molecular dissection of porcine reproductive and respiratory virus putative nonstructural protein 2. Advances in experimental medicine and biology 2006;581:73.
    [73]Vashisht K, Goldberg TL, Husmann RJ, Schnitzlein W, Zuckermann FA. Identification of immunodominant T-cell epitopes present in glycoprotein 5 of the North American genotype of porcine reproductive and respiratory syndrome virus. Vaccine 2008;26(36):4747-53.
    [74]Meng XJ, Paul PS, Halbur PG. Molecular cloning and nucleotide sequencing of the 3'-terminal genomic RNA of the porcine reproductive and respiratory syndrome virus. J Gen Virol 1994 Jul;75 (Pt 7):1795-801.
    [75]Meulenberg JJ. PRRSV, the virus. Vet Res 2000 Jan-Feb;31(1):11-21.
    [76]Delputte P, Vanderheijden N, Nauwynck H, Pensaert M. Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages. The Journal of Virology 2002;76(9):4312.
    [77]Cancel-Tirado S, Evans R, Yoon K. Monoclonal antibody analysis of porcine reproductive and respiratory syndrome virus epitopes associated with antibody-dependent enhancement and neutralization of virus infection. Veterinary Immunology and Immunopathology 2004;102(3):249-62.
    [78]Yang L, Frey M, Yoon K, Zimmerman J, Platt K. Categorization of North American porcine reproductive and respiratory syndrome viruses:epitopic profiles of the N, M, GP5 and GP3 proteins and susceptibility to neutralization. Archives of virology 2000;145(8):1599-619.
    [79]Bautista E, Molitor T. IFNγ inhibits porcine reproductive and respiratory syndrome virus replication in macrophages. Archives of virology 1999; 144(6):1191-200.
    [80]Lee C, Hodgins D, Calvert JG, Welch S-KW, Jolie R, Yoo D. Mutations within the nuclear localization signal of the porcine reproductive and respiratory syndrome virus nucleocapsid protein attenuate virus replication. Virology 2006;346(1):238-50.
    [81]Rowland RR, Schneider P, Fang Y, Wootton S, Yoo D, Benfield DA. Peptide domains involved in the localization of the porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus. Virology 2003 Nov 10;316(1):135-45.
    [82]Pei Y, Hodgins D, Lee C, Calvert J, Welch S, Jolie R, et al. Functional mapping of the porcine reproductive and respiratory syndrome virus capsid protein nuclear localization signal and its pathogenic association. Virus Research 2008;135(1):107-14.
    [83]Stadejek T, Oleksiewicz MB, Scherbakov AV, Timina AM, Krabbe JS, Chabros K, et al. Definition of subtypes in the European genotype of porcine reproductive and respiratory syndrome virus:nucleocapsid characteristics and geographical distribution in Europe. Arch Virol 2008;153(8):1479-88.
    [84]Dea S, Wilson L, Therrien D, Cornaglia E. Competitive ELISA for detection of antibodies to porcine reproductive and respiratory syndrome virus using recombinant E. coli-expressed nucleocapsid protein as antigen. Journal of Virological Methods 2000;87(1-2):109-22.
    [85]Loemba H, Mounir S, Mardassi H, Archambault D, Dea S. Kinetics of humoral immune response to the major structural proteins of the porcine reproductive and respiratory syndrome virus. Archives of virology 1996;141(3):751-61.
    [86]Wieringa R, de Vries A, van der Meulen J, Godeke G, Onderwater J, van Tol H, et al. Structural protein requirements in equine arteritis virus assembly. The Journal of Virology 2004;78(23):13019.
    [87]Kroese M, Zevenhoven-Dobbe J, Bos-de Ruijter J, Peeters B, Meulenberg J, Cornelissen L, et al. The nsp1{alpha} and nspl papain-like autoproteinases are essential for porcine reproductive and respiratory syndrome virus RNA synthesis. Journal of General Virology 2008;89(2):494.
    [88]Nielsen H, Oleksiewicz M, Forsberg R, Stadejek T, Botner A, Storgaard T. Reversion of a live porcine reproductive and respiratory syndrome virus vaccine investigated by parallel mutations. Journal of General Virology 2001;82(6):1263.
    [89]Wootton S, Rowland R, Yoo D. Phosphorylation of the porcine reproductive and respiratory syndrome virus nucleocapsid protein. Journal of Virology 2002;76(20):10569.
    [90]Lee C, Hodgins D, Calvert J, Welch S, Jolie R, Yoo D. Mutations within the nuclear localization signal of the porcine reproductive and respiratory syndrome virus nucleocapsid protein attenuate virus replication. Virology 2006;346(1):238-50.
    [91]Kwon B, Ansari I, Pattnaik A, Osorio F. Identification of virulence determinants of porcine reproductive and respiratory syndrome virus through construction of chimeric clones. Virology 2008;380(2):371-8.
    [92]Feng Y, Zhao T, Nguyen T, Inui K, Ma Y, Nguyen TH, et al. Porcine respiratory and reproductive syndrome virus variants, Vietnam and China,2007. Emerg Infect Dis 2008 Nov;14(11):1774-6.
    [93]Zhou L, Zhang J, Zeng J, Yin S, Li Y, Zheng L, et al. The 30-Amino-Acid Deletion in the Nsp2 of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Emerging in China Is Not Related to Its Virulence. Journal of Virology 2009;83(10):5156.
    [94]Kim W, Yoon K. Molecular assessment of the role of envelope-associated structural proteins in cross neutralization among different PRRS viruses. Virus Genes 2008;37(3):380-91.
    [95]Meng X. Heterogeneity of porcine reproductive and respiratory syndrome virus:implications for current vaccine efficacy and future vaccine development. Veterinary Microbiology 2000;74(4):309-29.
    [96]Plagemann P. Porcine reproductive and respiratory syndrome virus:origin hypothesis. Emerging Infectious Diseases 2003;9(8):903-8.
    [97]Han J, Wang Y, Faaberg K. Complete genome analysis of RFLP 184 isolates of porcine reproductive and respiratory syndrome virus. Virus Research 2006;122(1-2):175-82.
    [98]Cho J, Dee S. Porcine reproductive and respiratory syndrome virus. Theriogenology 2006;66(3):655-62.
    [99]Prieto C, Vazquez A, Nu ez J, alvarez E, Simarro I, Castro J. Influence of time on the genetic heterogeneity of Spanish porcine reproductive and respiratory syndrome virus isolates. The Veterinary Journal 2009;180(3):363-70.
    [100]Wang C, Lee F, Huang T, Pan C, Jong M, Chao P. Genetic variation in open reading frame 5 gene of porcine reproductive and respiratory syndrome virus in Taiwan. Veterinary Microbiology 2008; 131(3-4):339-47.
    [101]Meng X, Paul P, Halbur P, Morozov I. Sequence comparison of open reading frames 2 to 5 of low and high virulence United States isolates of porcine reproductive and respiratory syndrome virus. Journal of General Virology 1995;76(12):3181.
    [102]Albina E. Epidemiology of porcine reproductive and respiratory syndrome (PRRS):An overview. Veterinary Microbiology 1997;55(1-4):309-16.
    [103]Van Reeth K, Labarque G, Nauwynck H, Pensaert M. Differential production of proinflammatory cytokines in the pig lung during different respiratory virus infections: correlations with pathogenicity. Research in Veterinary Science 1999;67(1):47-52.
    [104]Yang L, Yoon KJ, Li Y, Lee JH, Zimmerman JJ, Frey ML, et al. Antigenic and genetic variations of the 15 kD nucleocapsid protein of porcine reproductive and respiratory syndrome virus isolates. Arch Virol 1999;144(3):525-46.
    [105]Duan X, Nauwynck H, Pensaert M. Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV). Archives of virology 1997;142(12):2483-97.
    [106]Duan X, Nauwynck HJ, Pensaert MB. Virus quantification and identification of cellular targets in the lungs and lymphoid tissues of pigs at different time intervals after inoculation with porcine reproductive and respiratory syndrome virus (PRRSV). Vet Microbiol 1997 May;56(1-2):9-19.
    [107]Beyer J, Fichtner D, Schirrmeier H, Polster U, Weiland E, Wege H. Porcine reproductive and respiratory syndrome virus (PRRSV):kinetics of infection in lymphatic organs and lung. J Vet Med B Infect Dis Vet Public Health 2000 Feb;47(1):9-25.
    [108]Rossow K, Collins J, Goyal S, Nelson E, Christopher-Hennings J, Benfield D. Pathogenesis of porcine reproductive and respiratory syndrome virus infection in gnotobiotic pigs. Veterinary Pathology Online 1995;32(4):361.
    [109]Allende R, Kutish G, Laegreid W, Lu Z, Lewis T, Rock D, et al. Mutations in the genome of porcine reproductive and respiratory syndrome virus responsible for the attenuation phenotype. Archives of virology 2000; 145(6):1149-61.
    [110]Christopher-Hennings J, Nelson EA, Hines RJ, Nelson JK, Swenson SL, Zimmerman JJ, et al. Persistence of porcine reproductive and respiratory syndrome virus in serum and semen of adult boars. J Vet Diagn Invest 1995 Oct;7(4):456-64.
    [111]Labarque G, Nauwynck H, Van Reeth K, Pensaert M. Effect of cellular changes and onset of humoral immunity on the replication of porcine reproductive and respiratory syndrome virus in the lungs of pigs. Journal of General Virology 2000;81(5):1327.
    [112]Lawson S, Rossow K, Collins J, Benfield D, Rowland R. Porcine reproductive and respiratory syndrome virus infection of gnotobiotic pigs:sites of virus replication and co-localization with MAC-387 staining at 21 days post-infection. Virus Research 1997;51(2):105-13.
    [113]Halbur PG, Miller LD, Paul PS, Meng XJ, Huffman EL, Andrews JJ. Immunohistochemical identification of porcine reproductive and respiratory syndrome virus (PRRSV) antigen in the heart and lymphoid system of three-week-old colostrum-deprived pigs. Vet Pathol 1995 Mar;32(2):200-4.
    [114]Christopher-Hennings J, Nelson EA, Nelson JK, Hines RJ, Swenson SL, Hill HT, et al. Detection of porcine reproductive and respiratory syndrome virus in boar semen by PCR. J Clin Microbiol 1995 Jul;33(7):1730-4.
    [115]Delputte P, Van Breedam W, Barbe F, Van Reeth K, Nauwynck H. IFN-α treatment enhances porcine arterivirus infection of monocytes via upregulation of the porcine arterivirus receptor sialoadhesin. Journal of Interferon & Cytokine Research 2007;27(9):757-66.
    [116]Delputte P, Costers S, Nauwynck H. Analysis of porcine reproductive and respiratory syndrome virus attachment and internalization:distinctive roles for heparan sulphate and sialoadhesin. Journal of General Virology 2005;86(5):1441.
    [117]Duan X, Nauwynck H, Favoreel H, Pensaert M. Identification of a putative receptor for porcine reproductive and respiratory syndrome virus on porcine alveolar macrophages. Journal of Virology 1998;72(5):4520.
    [118]Vanderheijden N, Delputte P, Favoreel H, Vandekerckhove J, Van Damme J, Van Woensel P, et al. Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages. The Journal of Virology 2003;77(15):8207.
    [119]Van Gorp H, Van Breedam W, Delputte P, Nauwynck H. Sialoadhesin and CD 163 join forces during entry of the porcine reproductive and respiratory syndrome virus. Journal of General Virology 2008;89(12):2943.
    [120]Misinzo G, Delputte P, Nauwynck H. Involvement of proteases in porcine reproductive and respiratory syndrome virus uncoating upon internalization in primary macrophages. Veterinary research 2008;39(6):55-.
    [121]Zhang X, Wang C, Schook LB, Hawken RJ, Rutherford MS. An RNA helicase, RHIV-1, induced by porcine reproductive and respiratory syndrome virus (PRRSV) is mapped on porcine chromosome 10q13. Microbial Pathogenesis 2000;28(5):267-78.
    [122]Genini S, Delputte PL, Malinverni R, Cecere M, Stella A, Nauwynck HJ, et al. Genome-wide transcriptional response of primary alveolar macrophages following infection with porcine reproductive and respiratory syndrome virus. J Gen Virol 2008 Oct;89(Pt 10):2550-64.
    [123]Moore C, Bergstralh D, Duncan J, Lei Y, Morrison T, Zimmermann A, et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 2008;451(7178):573-7.
    [124]Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. The RNA helicase RIG-Ⅰ has an essential function in double-stranded RNA-induced innate antiviral responses. Nature immunology 2004;5(7):730-7.
    [125]Zhang X, Wang C, Schook LB, Hawken RJ, Rutherford MS. An RNA helicase, RHIV-1, induced by porcine reproductive and respiratory syndrome virus (PRRSV) is mapped on porcine chromosome 10q13. Microb Pathog 2000 May;28(5):267-78.
    [126]Sieg S, King C, Huang Y, Kaplan D. The role of interleukin-10 in the inhibition of T-cell proliferation and apoptosis mediated by parainfluenza virus type 3. The Journal of Virology 1996;70(7):4845.
    [127]Zhou J, Broussard S, Strle K, Freund G, Johnson R, Dantzer R, et al. IL-10 inhibits apoptosis of promyeloid cells by activating insulin receptor substrate-2 and phosphatidylinositol 3'-kinase. The Journal of Immunology 2001;167(8):4436.
    [128]Kubo A, Minamino N, Isumi Y, Katafuchi T, Kangawa K, Dohi K, et al. Production of adrenomedullin in macrophage cell line and peritoneal macrophage. Journal of Biological Chemistry 1998;273(27):16730.
    [129]Li H, Wang A, Zhang R, Wei Y, Chen H, She Z, et al. A20 inhibits oxidized low-density lipoprotein-induced apoptosis through negative Fas/Fas ligand-dependent activation of caspase-8 and mitochondrial pathways in murine RAW264.7 macrophages. Journal of cellular physiology 2006;208(2):307-18.
    [130]Qin Y, Zhang Z, Yu L, He J, Hou Y, Liu T, et al. A20 overexpression under control of mouse osteocalcin promoter in MC3T3-E1 cells inhibited tumor necrosis factor-alpha-induced apoptosis. Acta Pharmacologica Sinica 2006;27(9):1231-7.
    [131]Bruick R. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proceedings of the National Academy of Sciences of the United States of America 2000;97(16):9082.
    [132]Maiese K, Vincent A, Lin S, Shaw T. Group Ⅰ and group Ⅲ metabotropic glutamate receptor subtypes provide enhanced neuroprotection. Journal of Neuroscience Research 2000;62(2):257-72.
    [133]Lamontagne L, Page C, Larochelle R, Magar R. Porcine reproductive and respiratory syndrome virus persistence in blood, spleen, lymph nodes, and tonsils of experimentally infected pigs depends on the level of CD8high T cells. Viral immunology 2003;16(3):395-406.
    [134]Miller L, Fox J. Apoptosis and porcine reproductive and respiratory syndrome virus. Veterinary Immunology and Immunopathology 2004; 102(3):131-42.
    [135]Goldberg T, Lowe J, Milburn S, Firkins L. Quasispecies variation of porcine reproductive and respiratory syndrome virus during natural infection* 1. Virology 2003;317(2):197-207.
    [136]Fernandez A, Suarez P, Castro J, Tabares E, Diaz-Guerra M. Characterization of regions in the GP5 protein of porcine reproductive and respiratory syndrome virus required to induce apoptotic cell death. Virus Research 2002;83(1-2):103-18.
    [137]Labarque G, Van Gucht S, Nauwynck H, Van Reeth K, Pensaert M. Apoptosis in the lungs of pigs infected with porcine reproductive and respiratory syndrome virus and associations with the production of apoptogenic cytokines. Veterinary research 2003;34(3):249-60.
    [138]Suarez P, Diaz-Guerra M, Prieto C, Esteban M, Castro J, Nieto A, et al. Open reading frame 5 of porcine reproductive and respiratory syndrome virus as a cause of virus-induced apoptosis. Journal of Virology 1996;70(5):2876.
    [139]Choi C, Chae C. Expression of tumour necrosis factor-[alpha] is associated with apoptosis in lungs of pigs experimentally infected with porcine reproductive and respiratory syndrome virus. Research in Veterinary Science 2002;72(1):45-9.
    [140]Lee S-M, Kleiboeker SB. Porcine arterivirus activates the NF-[kappa]B pathway through I[kappa]B degradation. Virology 2005;342(1):47-59.
    [141]Costers S, Lefebvre D, Delputte P, Nauwynck H. Porcine reproductive and respiratory syndrome virus modulates apoptosis during replication in alveolar macrophages. Archives of virology 2008;153(8):1453-65.
    [142]Thanawongnuwech R, Young T, Thacker B, Thacker E. Differential production of proinflammatory cytokines:in vitro PRRSV and Mycoplasma hyopneumoniae co-infection model. Veterinary Immunology and Immunopathology 2001;79(1-2):115-27.
    [143]Loving C, Brockmeier S, Sacco R. Differential type Ⅰ interferon activation and susceptibility of dendritic cell populations to porcine arterivirus. Immunology 2007;120(2):217.
    [144]Lee S, Schommer S, Kleiboeker S. Porcine reproductive and respiratory syndrome virus field isolates differ in in vitro interferon phenotypes. Veterinary Immunology and Immunopathology 2004; 102(3):217-31.
    [145]Albina E, Carrat C, Charley B. [Response of interferon-alpha to porcine arterivirus (PoAV), the virus of porcine reproductive and respiratory syndrome]; Respuesta del interferon-alfa al arterivirus porcino (PoAV), el virus del sindrome reproductivo y respiratorio porcino. Anaporc (Espa a) 2000.
    [146]Le Bon A, Schiavoni G, DAgostino G, Gresser I, Belardelli F, Tough D. Type Ⅰ interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 2001;14(4):461-70.
    [147]Luo R, Xiao S, Jiang Y, Jin H, Wang D, Liu M, et al. Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses interferon-[beta] production by interfering with the RIG-I signaling pathway. Molecular Immunology 2008;45(10):2839-46.
    [148]Beura L, Sarkar S, Kwon B, Subramaniam S, Jones C, Pattnaik A, et al. Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 1{beta} Modulates Host Innate Immune Response by Antagonizing 1RF3 Activation. The Journal of Virology;84(3):1574.
    [149]Wesley R, Lager K, Kehrli Jr M. Infection with porcine reproductive and respiratory syndrome virus stimulates an early gamma interferon response in the serum of pigs. Canadian Journal of Veterinary Research 2006;70(3):176.
    [150]Loving C, Brockmeier S, Vincent A, Lager K, Sacco R. Differences in clinical disease and immune response of pigs challenged with a high-dose versus low-dose inoculum of porcine reproductive and respiratory syndrome virus. Viral immunology 2008;21(3):315-26.
    [151]Gaudreault N, Rowland R, Wyatt C. Factors affecting the permissiveness of porcine alveolar macrophages for porcine reproductive and respiratory syndrome virus. Archives of virology 2009;154(1):133-6.
    [152]Le-Thi-Phuong T, Thirion G, Coutelier J. Distinct gamma interferon-production pathways in mice infected with lactate dehydrogenase-elevating virus. Journal of General Virology 2007;88(11):3063.
    [153]Sang Y, Ross C, Rowland R, Blecha F. Toll-like receptor 3 activation decreases porcine arterivirus infection. Viral immunology 2008;21(3):303-14.
    [154]Chaung H, Chen C, Hsieh B, Chung W. Toll-like receptor expressions in porcine alveolar macrophages and dendritic cells in responding to poly IC stimulation and porcine reproductive and respiratory syndrome virus (PRRSV) infection. Comparative Immunology, Microbiology and Infectious Diseases 2008.
    [155]Miller L, Lager K, Kehrli Jr M. Role of Toll-Like Receptors in Activation of Porcine Alveolar Macrophages by Porcine Reproductive and Respiratory Syndrome Virus. Clinical and Vaccine Immunology 2009;16(3):360.
    [156]Flores-Mendoza L, Silva-Campa E, Resendiz M, Osorio F, Hernandez J. Porcine reproductive and respiratory syndrome virus infects mature porcine dendritic cells and up-regulates interleukin-10 production. Clinical and Vaccine Immunology:CVI 2008;15(4):720.
    [157]Chang H, Peng Y, Chang H, Chaung H, Chung W. Phenotypic and functional modulation of bone marrow-derived dendritic cells by porcine reproductive and respiratory syndrome virus. Veterinary Microbiology 2008;129(3-4):281-93.
    [158]Charerntantanakul W, Platt R, Roth J. Effects of porcine reproductive and respiratory syndrome virus-infected antigen-presenting cells on T cell activation and antiviral cytokine production. Viral immunology 2006;19(4):646-61.
    [159]Wang X, Eaton M, Mayer M, Li H, He D, Nelson E, et al. Porcine reproductive and respiratory syndrome virus productively infects monocyte-derived dendritic cells and compromises their antigen-presenting ability. Archives of virology 2007;152(2):289-303.
    [160]Park J, Kim H, Seo S. Characterization of interaction between porcine reproductive and respiratory syndrome virus and porcine dendritic cells. Journal of microbiology and biotechnology 2008;18(10):1709.
    [161]Thanawongnuwech R, Thacker B, Halbur P, Thacker E. Increased production of proinflammatory cytokines following infection with porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae. Clinical and Vaccine Immunology 2004;11(5):901.
    [162]Costers S, Delputte P, Nauwynck H. Porcine reproductive and respiratory syndrome virus-infected alveolar macrophages contain no detectable levels of viral proteins in their plasma membrane and are protected against antibody-dependent, complement-mediated cell lysis. Journal of General Virology 2006;87(8):2341.
    [163]Butler J, Wertz N, Weber P, Lager K. Porcine reproductive and respiratory syndrome virus subverts repertoire development by proliferation of germline-encoded B cells of all isotypes bearing hydrophobic heavy chain CDR3. The Journal of Immunology 2008;180(4):2347.
    [164]Paulmann D, Magulski T, Schwarz R, Heitmann L, Flehmig B, Vallbracht A, et al. Hepatitis A virus protein 2B suppresses beta interferon (IFN) gene transcription by interfering with IFN regulatory factor 3 activation. Journal of General Virology 2008;89(7):1593.
    [165]Nfon C, Ferman G, Toka F, Gregg D, Golde W. Interferon-a Production by Swine Dendritic Cells Is Inhibited During Acute Infection with Foot-and-Mouth Disease Virus. Viral immunology 2008;21(1):68-77.
    [166]Johnson K, Song B, Knipe D. Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling. Virology 2008;374(2):487-94.
    [167]Murtaugh M, Xiao Z, Zuckermann F. Immunological responses of swine to porcine reproductive and respiratory syndrome virus infection. Viral immunology 2002;15(4):533-47.
    [168]Duan X, Nauwynck HJ, Pensaert MB. Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV). Arch Virol 1997; 142(12):2483-97.
    [169]SL B. Evaluation of protective immunity in gilts inoculated with the NADC-8 isolate of porcine reproductive and respiratory syndrome virus (PRRSV) and challenge-exposed with an antigenically distinct PRRSV isolate. American journal of veterinary research 1999;60(8):1022-7.
    [170]Diaz I, Darwich L, Pappaterra G, Pujols J, Mateu E. Different European-type vaccines against porcine reproductive and respiratory syndrome virus have different immunological properties and confer different protection to pigs. Virology 2006;351(2):249-59.
    [171]Plagemann PGW. Peptide ELISA for measuring antibodies to N-protein of porcine reproductive and respiratory syndrome virus. Journal of Virological Methods 2006;134(1-2):99-118.
    [172]Osorio F, Galeota J, Nelson E, Brodersen B, Doster A, Wills R, et al. Passive transfer of virus-specific antibodies confers protection against reproductive failure induced by a virulent strain of porcine reproductive and respiratory syndrome virus and establishes sterilizing immunity. Virology 2002;302(1):9-20.
    [173]Lopez OJ, Osorio FA. Role of neutralizing antibodies in PRRSV protective immunity. Veterinary Immunology and Immunopathology 2004;102(3):155-63.
    [174]Zuckermann FA, Garcia EA, Luque ID, Christopher-Hennings J, Doster A, Brito M, et al. Assessment of the efficacy of commercial porcine reproductive and respiratory syndrome virus (PRRSV) vaccines based on measurement of serologic response, frequency of gamma-IFN-producing cells and virological parameters of protection upon challenge. Veterinary Microbiology 2007;123(1-3):69-85.
    [175]Plagemann PG. Neutralizing antibody formation in swine infected with seven strains of porcine reproductive and respiratory syndrome virus as measured by indirect ELISA with peptides containing the GP5 neutralization epitope. Viral Immunol 2006 Summer;19(2):285-93.
    [176]Jiang Y, Fang L, Xiao S, Zhang H, Pan Y, Luo R, et al. Immunogenicity and protective efficacy of recombinant pseudorabies virus expressing the two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus. Vaccine 2007;25(3):547-60.
    [177]Jiang W, Jiang P, Li Y, Wang X, Du Y. Analysis of immunogenicity of minor envelope protein GP3 of porcine reproductive and respiratory syndrome virus in mice. Virus Genes 2007;35(3):695-704.
    [178]Delputte P, Meerts P, Costers S, Nauwynck H. Effect of virus-specific antibodies on attachment, internalization and infection of porcine reproductive and respiratory syndrome virus in primary macrophages. Veterinary Immunology and Immunopathology 2004;102(3):179-88.
    [179]Kim W, Kim J, Cha S, Yoon K. Different biological characteristics of wild-type porcine reproductive and respiratory syndrome viruses and vaccine viruses and identification of the corresponding genetic determinants. Journal of clinical microbiology 2008;46(5):1758.
    [180]Plagemann PGW. GP5 ectodomain epitope of porcine reproductive and respiratory syndrome virus, strain Lelystad virus. Virus Research 2004;102(2):225-30.
    [181]Wissink EH, van Wijk HA, Kroese MV, Weiland E, Meulenberg JJ, Rottier PJ, et al. The major envelope protein, GP5, of a European porcine reproductive and respiratory syndrome virus contains a neutralization epitope in its N-terminal ectodomain. J Gen Virol 2003 Jun;84(Pt 6):1535-43.
    [182]Meulenberg J, Besten A. Identification and Characterization of a Sixth Structural Protein of Lelystad Virus:The Glycoprotein GP2Encoded by ORF2 Is Incorporated in Virus Particles. Virology 1996;225(1):44-51.
    [183]Plagemann P, Rowland R, Faaberg K. The primary neutralization epitope of porcine respiratory and reproductive syndrome virus strain VR-2332 is located in the middle of the GP5 ectodomain. Archives of virology 2002;147(12):2327-47.
    [184]Dea S, Gagnon C, Mardassi H, Pirzadeh B, Rogan D. Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus:comparison of the North American and European isolates. Archives of virology 2000;145(4):659-88.
    [185]Jiang Y, Xiao S, Fang L, Yu X, Song Y, Niu C, et al. DNA vaccines co-expressing GP5 and M proteins of porcine reproductive and respiratory syndrome virus (PRRSV) display enhanced immunogenicity. Vaccine 2006;24(15):2869-79.
    [186]Mulupuri P, Zimmerman J, Hermann J, Johnson C, Cano J, Yu W, et al. Antigen-specific B-cell responses to porcine reproductive and respiratory syndrome virus infection. Journal of Virology 2008;82(1):358.
    [187]Brown E, Lawson S, Welbon C, Gnanandarajah J, Li J, Murtaugh M, et al. Antibody response to porcine reproductive and respiratory syndrome virus (PRRSV) nonstructural proteins and implications for diagnostic detection and differentiation of PRRSV types I and II. Clinical and Vaccine Immunology 2009;16(5):628.
    [188]Ostrowski M, Galeota JA, Jar AM, Platt KB, Osorio FA, Lopez OJ. Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain. J Virol 2002 May;76(9):4241-50.
    [189]Fang L, Jiang Y, Xiao S, Niu C, Zhang H, Chen H. Enhanced immunogenicity of the modified GP5 of porcine reproductive and respiratory syndrome virus. Virus Genes 2006;32(1):5-11.
    [190]Jiang W, Jiang P, Wang X, Li Y, Du Y, Wang X. Enhanced immune responses of mice inoculated recombinant adenoviruses expressing GP5 by fusion with GP3 and/or GP4 of PRRS virus. Virus Research 2008;136(1-2):50-7.
    [191]Wei X, Decker J, Wang S, Hui H, Kappes J, Wu X, et al. Antibody neutralization and escape by HIV-1. Nature 2003;422(6929):307-12.
    [192]Mateu E, Diaz I, Darwich L, Casal J, Martin M, Pujols J. Evolution of ORF5 of Spanish porcine reproductive and respiratory syndrome virus strains from 1991 to 2005. Virus Res 2006 Feb;115(2):198-206.
    [193]Faaberg KS, Hocker JD, Erdman MM, Harris DL, Nelson EA, Torremorell M, et al. Neutralizing antibody responses of pigs infected with natural GP5 N-glycan mutants of porcine reproductive and respiratory syndrome virus. Viral Immunol 2006 Summer; 19(2):294-304.
    [194]Delputte P, Nauwynck H. Porcine arterivirus infection of alveolar macrophages is mediated by sialic acid on the virus. The Journal of Virology 2004;78(15):8094.
    [195]Carlin A, Uchiyama S, Chang Y, Lewis A, Nizet V, Varki A. Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 2009;113(14):3333.
    [196]Calvert J, Sheppard M, Welch S, Rowland R, Kim D. Infectious cDNA clone of North American porcine reproductive and respiratory syndrome (PRRS) virus and uses thereof. Google Patents,2006.
    [197]Welch S-KW, Jolie R, Pearce DS, Koertje WD, Fuog E, Shields SL, et al. Construction and evaluation of genetically engineered replication-defective porcine reproductive and respiratory syndrome virus vaccine candidates. Veterinary Immunology and Immunopathology 2004; 102(3):277-90.
    [198]Batista L, Pijoan C, Dee S, Olin M, Molitor T, Joo H, et al. Virological and immunological responses to porcine reproductive and respiratory syndrome virus in a large population of gilts. Canadian Journal of Veterinary Research 2004;68(4):267.
    [199]Lowe J, Husmann R, Firkins L, Zuckermann F, Goldberg T. Correlation of cell-mediated immunity against porcine reproductive and respiratory syndrome virus with protection against reproductive failure in sows during outbreaks of porcine reproductive and respiratory syndrome in commercial herds. Journal of the American Veterinary Medical Association 2005;226(10):1707-11.
    [200]Diaz I, Darwich L, Pappaterra G, Pujols J, Mateu E. Immune responses of pigs after experimental infection with a European strain of porcine reproductive and respiratory syndrome virus. Journal of General Virology 2005;86(7):1943.
    [201]Meier W, Galeota J, Osorio F, Husmann R, Schnitzlein W, Zuckermann F. Gradual development of the interferon-[gamma] response of swine to porcine reproductive and respiratory syndrome virus infection or vaccination. Virology 2003;309(1):18-31.
    [202]Meier W, Wheeler J, Husmann R, Osorio F, Zuckermann F. Characteristics of the immune response of pigs to PRRS virus. Veterinary research 2000;31(1):41-.
    [203]Lopez Fuertes L, Domenech N, Alvarez B, Ezquerra A, Dominguez J, Castro J, et al. Analysis of cellular immune response in pigs recovered from porcine respiratory and reproductive syndrome infection. Virus Research 1999;64(1):33-42.
    [204]Blanco P, Palucka A, Pascual V, Banchereau J. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine & growth factor reviews 2008;19(1):41.
    [205]Janeway C, Travers P, Walport M, Shlomchik M. The immune system in health and disease. Immunobiology 2005.
    [206]Bettelli E, Korn T, Oukka M, Kuchroo V. Induction and effector functions of TH17 cells. Nature 2008;453(7198):1051-7.
    [207]Chen Z, Lund R, Aittokallio T, Kosonen M, Nevalainen O, Lahesmaa R. Identification of novel IL-4/Stat6-regulated genes in T lymphocytes. The Journal of Immunology 2003;171(7):3627.
    [208]Mahic M, Henjum K, Yaqub S, Bj rnbeth B, Torgersen K, Tasken K, et al. Generation of highly suppressive adaptive CD8+CD25+FOXP3+ regulatory T cells by continuous antigen stimulation. European journal of immunology 2008;38(3):640-6.
    [209]Mahic M, Yaqub S, Bryn T, Henjum K, Eide D, Torgersen K, et al. Differentiation of naive CD4+T cells into CD4+CD25+FOXP3+ regulatory T cells by continuous antigen stimulation. Journal of leukocyte biology 2008;83(5):1111.
    [210]Roncarolo M, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings M. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunological reviews 2006;212(1):28-50.
    [211]Shimizu M, Yamada S, Kawashima K, Ohashi S, Shimizu S, Ogawa T. Changes of lymphocyte subpopulations in pigs infected with porcine reproductive and respiratory syndrome (PRRS) virus. Veterinary Immunology and Immunopathology 1996;50(1-2):19-27.
    [212]Gomez-Laguna J, Salguero F, De Marco M, Pallares F, Bernabe A, Carrasco L. Changes in Lymphocyte Subsets and Cytokines During European Porcine Reproductive and Respiratory Syndrome:Increased Expression of IL-12 and IL-10 and Proliferation of CD4- CD8high. Viral immunology 2009;22(4):261-71.
    [213]Samsom J, de Bruin T, Voermans J, Meulenberg J, Pol J, Bianchi A. Changes of leukocyte phenotype and function in the broncho-alveolar lavage fluid of pigs infected with porcine reproductive and respiratory syndrome virus:a role for CD8+ cells. Journal of General Virology 2000;81(2):497.
    [214]Tingstedt J, Nielsen J. Cellular immune responses in the lungs of pigs infected in utero with PRRSV:an immunohistochemical study. Viral immunology 2004;17(4):558-64.
    [215]Xiao Z, Batista L, Dee S, Halbur P, Murtaugh M. The level of virus-specific T-cell and macrophage recruitment in porcine reproductive and respiratory syndrome virus infection in pigs is independent of virus load. Journal of Virology 2004;78(11):5923.
    [216]Kawashima K, Narita M, Yamada S. Changes in macrophage and lymphocyte subpopulations of lymphoid tissues from pigs infected with the porcine reproductive and respiratory syndrome virus (PRRSV). Vet Immunol Immunopathol 1999 Nov 30;71(3-4):257-62.
    [217]Albina E, Piriou L, Hutet E, Cariolet R, L'Hospitalier R. Immune responses in pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV). Veterinary Immunology and Immunopathology 1998;61(1):49-66.
    [218]Nielsen HS, Liu G, Nielsen J, Oleksiewicz MB, Botner A, Storgaard T, et al. Generation of an infectious clone of VR-2332, a highly virulent North American-type isolate of porcine reproductive and respiratory syndrome virus. J Virol 2003 Mar;77(6):3702-11.
    [219]BAUTISTA E, MOLITOR T. Cell-mediated immunity to porcine reproductive and respiratory syndrome virus in swine. Viral immunology 1997;10(2):83-94.
    [220]Lopez-Fuertes L, Campos E, Domenech N, Ezquerra A, Castro J, Dominguez J, et al. Porcine reproductive and respiratory syndrome (PRRS) virus down-modulates TNF-[alpha] production in infected macrophages. Virus Research 2000;69(1):41-6.
    [221]Feng W, Tompkins M, Xu J, Zhang H, McCaw M. Analysis of constitutive cytokine expression by pigs infected in-utero with porcine reproductive and respiratory syndrome virus. Veterinary Immunology and Immunopathology 2003;94(1-2):35-45.
    [222]Suradhat S, Thanawongnuwech R, Poovorawan Y. Upregulation of IL-10 gene expression in porcine peripheral blood mononuclear cells by porcine reproductive and respiratory syndrome virus. Journal of General Virology 2003;84(2):453.
    [223]Bluestone J, Abbas A. Natural versus adaptive regulatory T cells. Nature Reviews Immunology 2003;3(3):253-7.
    [224]Silva-Campa E, Flores-Mendoza L, Resdiz M, Pinelli-Saavedra A, Mata-Haro V, Mwangi W, et al. Induction of T helper 3 regulatory cells by dendritic cells infected with porcine reproductive and respiratory syndrome virus. Virology 2009;387(2):373-9.
    [225]Labarque G, Van Gucht S, Van Reeth K, Nauwynck H, Pensaert M. Respiratory tract protection upon challenge of pigs vaccinated with attenuated porcine reproductive and respiratory syndrome virus vaccines. Veterinary Microbiology 2003;95(3):187-97.
    [226]Osorio F, Zuckermann F, Wills R, Meier W, Christian S, Galeota J, et al. PRRSV: comparison of commercial vaccines in their ability to induce protection against current PRRSV strains of high virulence.1998; 1998. p.179-82.
    [227]Scortti M, Prieto C, Alvarez E, Simarro I, Castro J. Failure of an inactivated vaccine against porcine reproductive and respiratory syndrome to protect gilts against a heterologous challenge with PRRSV. The Veterinary Record 2007;161(24):809.
    [228]Okuda Y, Kuroda M, Ono M, Chikata S, Shibata I. Efficacy of vaccination with porcine reproductive and respiratory syndrome virus following challenges with field isolates in Japan. The Journal of veterinary medical science 2008;70(10):1017-25.
    [229]Cano J, Dee S, Murtaugh M, Trincado C, Pijoan C. Effect of vaccination with a modified-live porcine reproductive and respiratory syndrome virus vaccine on dynamics of homologous viral infection in pigs. American journal of veterinary research 2007;68(5):565-71.
    [230]Cano J, Dee S, Murtaugh M, Pijoan C. Impact of a modified-live porcine reproductive and respiratory syndrome virus vaccine intervention on a population of pigs infected with a heterologous isolate. Vaccine 2007;25(22):4382-91.
    [231]Lopez O, Osorio F. Role of neutralizing antibodies in PRRSV protective immunity. Veterinary Immunology and Immunopathology 2004; 102(3):155-63.
    [232]Zuckermann FA, Garcia EA, Luque ID, Christopher-Hennings J, Doster A, Brito M, et al. Assessment of the efficacy of commercial porcine reproductive and respiratory syndrome virus (PRRSV) vaccines based on measurement of serologic response, frequency of gamma-IFN-producing cells and virological parameters of protection upon challenge. Vet Microbiol 2007 Jul 20;123(1-3):69-85.
    [233]Mengeling W, Vorwald A, Lager K, Clouser D, Wesley R. Identification and clinical assessment of suspected vaccine-related field strains of porcine reproductive and respiratory syndrome virus. American journal of veterinary research 1999;60(3):334.
    [234]Wesley RD, Mengeling WL, Lager KM, Vorwald AC, Roof MB. Evidence for divergence of restriction fragment length polymorphism patterns following in vivo replication of porcine reproductive and respiratory syndrome virus. Am J Vet Res 1999 Apr;60(4):463-7.
    [235]Charerntantanakul W, Platt R, Johnson W, Roof M, Vaughn E, Roth J. Immune responses and protection by vaccine and various vaccine adjuvant candidates to virulent porcine reproductive and respiratory syndrome virus. Veterinary Immunology and Immunopathology 2006;109(1-2):99-115.
    [236]Foss D, Zilliox M, Meier W, Zuckermann F, Murtaugh M. Adjuvant danger signals increase the immune response to porcine reproductive and respiratory syndrome virus. Viral immunology 2002;15(4):557-66.
    [237]Shen G, Jin N, Ma M, Jin K, Zheng M, Zhuang T, et al. Immune responses of pigs inoculated with a recombinant fowlpox virus coexpressing GP5/GP3 of porcine reproductive and respiratory syndrome virus and swine IL-18. Vaccine 2007;25(21):4193-202.
    [238]de Lima M, Kwon B, Ansari IH, Pattnaik AK, Flores EF, Osorio FA. Development of a porcine reproductive and respiratory syndrome virus differentiable (DIVA) strain through deletion of specific immunodominant epitopes. Vaccine 2008;26(29-30):3594-600.
    [239]Qiu H, Tian Z, Tong G, Zhou Y, Ni J, Luo Y, et al. Protective immunity induced by a recombinant pseudorabies virus expressing the GP5 of porcine reproductive and respiratory syndrome virus in piglets. Veterinary Immunology and Immunopathology 2005;106(3-4):309-19.
    [240]Wang S, Fang L, Fan H, Jiang Y, Pan Y, Luo R, et al. Construction and immunogenicity of pseudotype baculovirus expressing GP5 and M protein of porcine reproductive and respiratory syndrome virus. Vaccine 2007;25(49):8220-7.
    [241]Shen G, Jin N, Ma M, Jin K, Zheng M, Zhuang T, et al. Immune responses of pigs inoculated with a recombinant fowlpox virus coexpressing GP5/GP3 of porcine reproductive and respiratory syndrome virus and swine IL-18. Vaccine 2007;25(21):4193-202.
    [242]Bastos R, Dellagostin O, Barletta R, Doster A, Nelson E, Zuckermann F, et al. Immune response of pigs inoculated with Mycobacterium bovis BCG expressing a truncated form of GP5 and M protein of porcine reproductive and respiratory syndrome virus. Vaccine 2004;22(3-4):467-74.
    [243]Barfoed AM, Blixenkrone-Mler M, Jensen MH, Bener A, Kamstrup S. DNA vaccination of pigs with open reading frame 1-7 of PRRS virus. Vaccine 2004;22(27-28):3628-41.
    [244]Pirzadeh B, Dea S. Immune response in pigs vaccinated with plasmid DNA encoding ORF5 of porcine reproductive and respiratory syndrome virus. Journal of General Virology 1998;79(5):989.
    [245]Rompato G, Ling E, Chen Z, Van Kruiningen H, Garmendia A. Positive inductive effect of IL-2 on virus-specific cellular responses elicited by a PRRSV-ORF7 DNA vaccine in swine. Veterinary Immunology and Immunopathology 2006; 109(1-2):151-60.
    [246]Dee S, Philips R. Use of polymerase chain reaction to detect vertical transmission of PRRS virus in piglets from gilt litters. Swine Health and Production 1999;7(5):237-9.
    [247]Cano JP, Dee SA, Murtaugh MP, Pijoan C. Impact of a modified-live porcine reproductive and respiratory syndrome virus vaccine intervention on a population of pigs infected with a heterologous isolate. Vaccine 2007;25(22):4382-91.
    [248]Dee SA, Torremorell M, Rossow K, Mahlum C, Otake S, Faaberg K. Identification of genetically diverse sequences (ORF 5) of porcine reproductive and respiratory syndrome virus in a swine herd. Can J Vet Res 2001 Oct;65(4):254-60.
    [249]Dee S, Joo H, Henry S, Tokach L, Park B, Molitor T, et al. Detecting subpopulations after PRRS virus infection in large breeding herds using multiple serologic tests. Swine Health and Production 1996;4(4):181-4.
    [250]Dee S, Joo H. Clinical investigation of recurrent reproductive failure with PRRS virus in a swineherd. J Am Vet Med Assoc 1994;204:1017-8.
    [251]Fano E, Olea L, Pijoan C. Eradication of porcine reproductive and respiratory syndrome virus by serum inoculation of naive gilts. Canadian Journal of Veterinary Research 2005;69(1):71.
    [252]Dee S, Dipl A. An overview of production systems designed to prepare naive replacement gilts for impending PRRSV challenge:A global perspective. Swine Health and Production 1997;5:231-40.
    [253]Batista L, Dee S, Rossow K, Deen J, Pijoan C. Assessing the duration of persistence and shedding of porcine reproductive and respiratory syndrome virus in a large population of breeding-age gilts. Canadian Journal of Veterinary Research 2002;66(3):196.
    [254]Dee S, Molitor T. Elimination of porcine reproductive and respiratory syndrome virus using a test and removal process. The Veterinary Record 1998;143(17):474.
    [255]Dee S, Joo H, Pijoan C. Controlling the spread of PRRS virus in the breeding herd through management of the gilt pool. Swine Health Prod 1994;3:64-9.
    [256]Torremorell M, Moore C, Christianson W. Establishment of a herd negative for porcine reproductive and respiratory syndrome virus (PRRSV) from PRRSV-positive sources. Journal of Swine Health and Production 2002; 10(4):153-60.
    [257]Ait-Ali T, Wilson A, Westcott D, Frossard J, Mellencamp M, Drew T, et al. Dynamic differential regulation of innate immune transcripts during the infection of alveolar macrophages by the porcine reproductive and respiratory syndrome virus. Developments in biologicals 2008;132:239.
    [258]Wensvoort G, de Kluyver E, Pol J, Wagenaar F, Moormann R, Hulst M, et al. Lelystad virus, the cause of porcine epidemic abortion and respiratory syndrome:a review of mystery swine disease research at Lelystad. Veterinary Microbiology 1992;33(1-4):185-93.
    [259]Thiel HJ, Meyers G, Stark R, Tautz N, Rumenapf T, Unger G, et al. Molecular characterization of positive-strand RNA viruses:pestiviruses and the porcine reproductive and respiratory syndrome virus (PRRSV). Arch Virol Suppl 1993;7:41-52.
    [260]Lee YJ, Park C-K, Nam E, Kim S-H, Lee OS, Lee DS, et al. Generation of a Porcine Alveolar Macrophage Cell line for the Growth of Porcine Reproductive and Respiratory Syndrome Virus. Journal of Virological Methods;In Press, Accepted Manuscript.
    [261]Patton JB, Rowland RR, Yoo D, Chang K-O. Modulation of CD 163 receptor expression and replication of porcine reproductive and respiratory syndrome virus in porcine macrophages. Virus Research 2009; 140(1-2):161-71.
    [262]Zhou YJ, Hao XF, Tian ZJ, Tong GZ, Yoo D, An TQ, et al. Highly virulent porcine reproductive and respiratory syndrome virus emerged in China. Transbound Emerg Dis 2008 May;55(3-4):152-64.
    [263]张战峰,李肖梁,张莹,查云侠,方维焕.欧洲型PRRSV RT-PCR检测方法的建立及ORF7基因序列比较.动物医学进展2007;28(005):26-9.
    [264]黄梅清,车勇良,陈少莺,江斌,魏宏,王隆柏,et al.猪繁殖与呼吸综合征病毒欧洲型FJ0602株的分离及其ORF7的序列分析.中国预防兽医学报2008;30(003):174-8.
    [265]Li Y, Wang X, Bo K, Wang X, Tang B, Yang B, et al. Emergence of a highly pathogenic porcine reproductive and respiratory syndrome virus in the Mid-Eastern region of China. The Veterinary Journal 2007;174(3):577-84.
    [266]Feng Y, Zhao T, Nguyen T, Inui K, Ma Y, Nguyen T, et al. Porcine respiratory and reproductive syndrome virus variants, Vietnam and China,2007. Emerging Infectious Diseases 2008;14(11):1774.
    [267]Murtaugh MP, Elam MR, Kakach LT. Comparison of the structural protein coding sequences of the VR-2332 and Lelystad virus strains of the PRRS virus. Arch Virol 1995;140(8):1451-60.
    [268]Shen S, Kwang J, Liu W, Liu DX. Determination of the complete nucleotide sequence of a vaccine strain of porcine reproductive and respiratory syndrome virus and identification of the Nsp2 gene with a unique insertion. Arch Virol 2000;145(5):871-83.
    [269]An T-q, Zhou Y-j, Liu G-q, Tian Z-j, Li J, Qiu H-j, et al. Genetic diversity and phylogenetic analysis of glycoprotein 5 of PRRSV isolates in mainland China from 1996 to 2006: Coexistence of two NA-subgenotypes with great diversity. Veterinary Microbiology 2007;123(1-3):43-52.
    [270]Hu H, Li X, Zhang Z, Shuai J, Chen N, Liu G, et al. Porcine reproductive and respiratory syndrome viruses predominant in southeastern China from 2004 to 2007 were from a common source and underwent further divergence. Arch Virol 2009;154(3):391-8.
    [271]Key KF, Haqshenas G, Guenette DK, Swenson SL, Toth TE, Meng X-J. Genetic variation and phylogenetic analyses of the ORF5 gene of acute porcine reproductive and respiratory syndrome virus isolates. Veterinary Microbiology 2001;83(3):249-63.
    [272]Kiss I, Sami L, Kecskemeti S, Hanada K. Genetic variation of the prevailing porcine respiratory and reproductive syndrome viruses occurring on a pig farm upon vaccination. Arch Virol 2006 Nov; 151(11):2269-76.
    [273]Pirzadeh B, Gagnon CA, Dea S. Genomic and antigenic variations of porcine reproductive and respiratory syndrome virus major envelope GP5 glycoprotein. Can J Vet Res 1998 Jul;62(3):170-7.
    [274]Zhou Y-J, Yu H, Tian Z-J, Li G-X, Hao X-F, Yan L-P, et al. Genetic diversity of the ORF5 gene of porcine reproductive and respiratory syndrome virus isolates in China from 2006 to 2008. Virus Research 2009; 144(1-2):136-44.
    [275]Wang X, Li J, Jiang P, Li Y Zeshan B, Cao J, et al. GM-CSF fused with GP3 and GP5 of porcine reproductive and respiratory syndrome virus increased the immune responses and protective efficacy against virulent PRRSV challenge. Virus Research 2009;143(1):24-32.
    [276]Zheng Q, Chen D, Li P, Bi Z, Cao R, Zhou B, et al. Co-expressing GP5 and M proteins under different promoters in recombinant modified vaccinia virus ankara (rMVA)-based vaccine vector enhanced the humoral and cellular immune responses of porcine reproductive and respiratory syndrome virus (PRRSV). Virus Genes 2007 Dec;35(3):585-95.
    [277]Zhou Y-J, Yu H, Tian Z-J, Liu J-X, An T-Q, Peng J-M, et al. Monoclonal antibodies and conserved antigenic epitopes in the C terminus of GP5 protein of the North American type porcine reproductive and respiratory syndrome virus. Veterinary Microbiology 2009;138(1-2):1-10.
    [278]Fang Y, Kim DY, Ropp S, Steen P. Christopher-Hennings J, Nelson EA, et al. Heterogeneity in Nsp2 of European-like porcine reproductive and respiratory syndrome viruses isolated in the United States. Virus Res 2004 Mar 15;100(2):229-35.
    [279]谢丽基,谢芝勋,刘加波,庞耀珊,谢志勤,邓显文,et al.广西高致病性PRRSV Nsp2基因的克隆,序列分析和抗原表位预测.动物医学进展2008;29(001):1-4.
    [280]Yan Y, Guo X, Ge X, Chen Y, Cha Z, Yang H. Monoclonal antibody and porcine antisera recognized B-cell epitopes of Nsp2 protein of a Chinese strain of porcine reproductive and respiratory syndrome virus. Virus Research 2007;126(1-2):207-15.
    [281]Oleksiewicz MB, Botner A, Toft P, Normann P, Storgaard T. Epitope mapping porcine reproductive and respiratory syndrome virus by phage display:the nsp2 fragment of the replicase polyprotein contains a cluster of B-cell epitopes. J Virol 2001 Apr;75(7):3277-90.
    [282]毛君婷,史开志,周碧君,王开功,汪德生,文明,et al.贵州省猪繁殖与呼吸综合征病毒分子流行病学调查.中国兽医学报(002):162-5.
    [283]毛君婷,周碧君,史开志,汪德生,文明,李永明.PRRSV不同Nsp2基因缺失型毒株混合感染的鉴定.中国兽医科学2009;39(002):150-3.
    [284]Amonsin A, Kedkovid R, Puranaveja S, Wongyanin P, Suradhat S, Thanawongnuwech R. Comparative analysis of complete nucleotide sequence of porcine reproductive and respiratory syndrome virus (PRRSV) isolates in Thailand (US and EU genotypes). Virol J 2009;6:143.
    [285]Hill H. Overview and history of mystery swine disease (swine infertility/respiratory syndrome). PrOf Mystery Swine Dis Committee 1990:29-31.
    [286]Cavanagh D. Nidovirales:a new order comprising Coronaviridae and Arteriviridae. Archives of virology 1997;142(3):629-33.
    [287]Andreyev V, Wesley R, Mengeling W, Vorwald A, Lager K. Genetic variation and phylogenetic relationships of 22 porcine reproductive and respiratory syndrome virus (PRRSV) field strains based on sequence analysis of open reading frame 5. Archives of virology 1997;142(5):993-1001.
    [288]Murtaugh M, Faaberg K, Laber J, Elam M, Kapur V. Genetic variation in the PRRS virus. Advances in experimental medicine and biology 1998;440:787.
    [289]Halbur P, Paul P, Meng X, Lum M, Andrews J, Rathje J. Comparative pathogenicity of nine US porcine reproductive and respiratory syndrome virus (PRRSV) isolates in a five-week-old cesarean-derived, colostrum-deprived pig model. Journal of veterinary diagnostic investigation 1996;8(1):11.
    [290]Mengeling W, Lager K, Vorwald A, Clouser D. Comparative safety and efficacy of attenuated single-strain and multi-strain vaccines for porcine reproductive and respiratory syndrome. Veterinary Microbiology 2003;93(1):25-38.
    [291]Nodelijk G, De Jong M, van Leengoed L, Wensvoort G, Pol J, Steverink P, et al. A quantitative assessment of the effectiveness of PRRSV vaccination in pigs under experimental conditions. Vaccine 2001;19(27):3636-44.
    [292]Opriessnig T, Halbur P, Yoon K, Pogranichniy R, Harmon K, Evans R, et al. Comparison of molecular and biological characteristics of a modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine (Ingelvac PRRS MLV), the parent strain of the vaccine (ATCC VR2332), ATCC VR2385, and two recent field isolates of PRRSV. The Journal of Virology 2002;76(23):11837.
    [293]Mengeling W, Lager K, Vorwald A, Koehler K. Strain specificity of the immune response of pigs following vaccination with various strains of porcine reproductive and respiratory syndrome virus. Veterinary Microbiology 2003;93(1):13-24.
    [294]Haynes J, Halbur P, Sirinarumitr T, Paul P, Meng X, Huffman E. Temporal and morphologic characterization of the distribution of porcine reproductive and respiratory syndrome virus (PRRSV) by in situ hybridization in pigs infected with isolates of PRRSV that differ in virulence. Veterinary Pathology Online 1997;34(1):39.
    [295]Thanawongnuwech R, Halbur P, Ackermann M, Thacker E, Royer R. Effects of low (modified-live virus vaccine) and high (VR-2385)-virulence strains of porcine reproductive and respiratory syndrome virus on pulmonary clearance of copper particles in pigs. Veterinary Pathology Online 1998;35(5):398.
    [296]AC M. Clinical consequences of exposing pregnant gilts to strains of porcine reproductive and respiratory syndrome (PRRS) virus isolated from field cases of atypical" PRRS. American journal of veterinary research 1998;59:12.
    [297]Johnson W, Roof M, Vaughn E, Christopher-Hennings J, Johnson C, Murtaugh M. Pathogenic and humoral immune responses to porcine reproductive and respiratory syndrome virus (PRRSV) are related to viral load in acute infection. Veterinary Immunology and Immunopathology 2004;102(3):233-47.
    [298]Kwon B, Ansari IH, Pattnaik AK, Osorio FA. Identification of virulence determinants of porcine reproductive and respiratory syndrome virus through construction of chimeric clones. Virology 2008;380(2):371-8.
    [299]Ziebuhr J, Snijder E, Gorbalenya A. Virus-encoded proteinases and proteolytic processing in the Nidovirales. Journal of General Virology 2000;81(4):853.
    [300]van Dinten L, Rensen S, Gorbalenya A, Snijder E. Proteolytic processing of the open reading frame lb-encoded part of arterivirus replicase is mediated by nsp4 serine protease and is essential for virus replication. Journal of Virology 1999;73(3):2027.
    [301]Han J, Rutherford M, Faaberg K. The Porcine Reproductive and Respiratory Syndrome Virus nsp2 Cysteine Protease Domain Possesses both trans-and cis-Cleavage Activities. The Journal of Virology 2009;83(18):9449.
    [302]Tian X, Lu G, Gao F, Peng H, Feng Y, Ma G, et al. Structure and cleavage specificity of the chymotrypsin-like serine protease (3CLSP/nsp4) of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). J Mol Biol 2009 Oct 2;392(4):977-93.
    [303]Scortti M, Prieto C, Mart ez-Lobo FJ, Simarro I, Castro JM. Effects of two commercial European modified-live vaccines against porcine reproductive and respiratory syndrome viruses in pregnant gilts. The Veterinary Journal 2006;172(3):506-14.
    [304]Tarr P, Lin R, Mueller E, Kovarik J, Guillaume M, Jones T. Evaluation of tolerability and antibody response after recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) and a single dose of recombinant hepatitis B vaccine. Vaccine 1996;14(13):1199-204.
    [305]Robinson H, Montefiori D, Villinger F, Robinson J, Sharma S, Wyatt L, et al. Studies on GM-CSF DNA as an adjuvant for neutralizing Ab elicited by a DNA/MVA immunodeficiency virus vaccine. Virology 2006;352(2):285-94.
    [306]Jiang W, Jiang P, Li Y, Tang J, Wang X, Ma S. Recombinant adenovirus expressing GP5 and M fusion proteins of porcine reproductive and respiratory syndrome virus induce both humoral and cell-mediated immune responses in mice. Veterinary Immunology and Immunopathology 2006;113(1-2):169-80.
    [307]Roitsch C, Achstetter T, Benchaibi M, Bonfils E, Cauet G, Gloeckler R, et al. Characterization and quality control of recombinant adenovirus vectors for gene therapy. Journal of Chromatography B:Biomedical Sciences and Applications 2001;752(2):263-80.
    [308]Brun A, Albina E, Barret T, Chapman DAG, Czub M, Dixon LK, et al. Antigen delivery systems for veterinary vaccine development:Viral-vector based delivery systems. Vaccine 2008;26(51):6508-28.
    [309]Li J, Jiang P, Li Y, Wang X, Cao J, Wang X, et al. HSP70 fused with GP3 and GP5 of porcine reproductive and respiratory syndrome virus enhanced the immune responses and protective efficacy against virulent PRRSV challenge in pigs. Vaccine 2009;27(6):825-32.
    [310]李玉峰,姜平,蒋文明,汤景元.猪繁殖与呼吸综合征病毒GP5蛋白重组腺病毒的构建与免疫原性测定.中国病毒学2006;21(004):364-7.
    [311]蒋文明.猪繁殖与呼吸综合征重组腺病毒疫苗免疫候选分子研究:南京农业大学;2007.
    [312]Du Y, Jiang P, Li Y, He H, Jiang W, Wang X, et al. Immune responses of two recombinant adenoviruses expressing VPl antigens of FMDV fused with porcine granulocyte macrophage colony-stimulating factor. Vaccine 2007;25(49):8209-19.
    [313]Li J, Jiang P, Li Y, Wang X, Cao J, Zeshan B. HSP70 fused with GP3 and GP5 of porcine reproductive and respiratory syndrome virus enhanced the immune responses and protective efficacy against virulent PRRSV challenge in pigs. Vaccine 2009 Feb 5;27(6):825-32.
    [314]Inumaru S, Kokuho T, Denham S, Denyer M, Momotani E, Kitamura S, et al. Expression of biologically active recombinant porcine GM-CSF by baculovirus gene expression system. Immunology and cell biology 1998;76(3):195-201.
    [315]Disis M, Bernhard H, Shiota F, Hand S, Gralow J, Huseby E, et al. Granulocyte-macrophage colony-stimulating factor:an effective adjuvant for protein and peptide-based vaccines. Blood 1996;88(1):202.
    [316]Kusakabe K, Xin K, Katoh H, Sumino K, Hagiwara E, Kawamoto S, et al. The timing of GM-CSF expression plasmid administration influences the Th1/Th2 response induced by an HIV-1-specific DNA vaccine. The Journal of Immunology 2000; 164(6):3102.
    [317]Skountzou 1, Quan F, Gangadhara S, Ye L, Vzorov A, Selvaraj P, et al. Incorporation of GPI-anchored GM-CSF or CD40 ligand enhances immunogenicity of chimeric simian immunodeficiency virus-like particles. Journal of Virology 2006.
    [318]Den Boon J, Faaberg K, Meulenberg J, Wassenaar A, Plagemann P, Gorbalenya A, et al. Processing and evolution of the N-terminal region of the arterivirus replicase ORFla protein: identification of two papainlike cysteine proteases. Journal of Virology 1995;69(7):4500.
    [319]Zhang Y, Sharma RD, Paul PS. Monoclonal antibodies against conformationally dependent epitopes on porcine reproductive and respiratory syndrome virus. Veterinary Microbiology 1998;63(2-4):125-36.
    [320]Hedges JF, Balasuriya UBR, MacLachlan NJ. The Open Reading Frame 3 of Equine Arteritis Virus Encodes an Immunogenic Glycosylated, Integral Membrane Protein. Virology 1999;264(1):92-8.
    [321]Zhou Y-J, An T-Q, He Y-X, Liu J-X, Qiu H-J, Wang Y-F, et al. Antigenic structure analysis of glycosylated protein 3 of porcine reproductive and respiratory syndrome virus. Virus Research 2006; 118(1-2):98-104.
    [322]Wieczorek-Krohmer M, Weiland F, Conzelmann K, Kohl D, Visser N, van Woensel P, et al. Porcine reproductive and respiratory syndrome virus (PRRSV):monoclonal antibodies detect common epitopes on two viral proteins of European and U.S. isolates. Vet Microbiol 1996 Aug;51(3-4):257-66.
    [323]Weiland E, Wieczorek-Krohmer M, Kohl D, Conzelmann KK, Weiland F. Monoclonal antibodies to the GP5 of porcine reproductive and respiratory syndrome virus are more effective in virus neutralization than monoclonal antibodies to the GP4. Veterinary Microbiology 1999;66(3):171-86.
    [324]Plagemann PGW. Epitope specificity of monoclonal antibodies to the N-protein of porcine reproductive and respiratory syndrome virus determined by ELISA with synthetic peptides. Veterinary Immunology and Immunopathology 2005;104(1-2):59-68.
    [325]Zhou YJ, Yu H, Tian ZJ, Liu JX, An TQ, Peng JM, et al. Monoclonal antibodies and conserved antigenic epitopes in the C terminus of GP5 protein of the North American type porcine reproductive and respiratory syndrome virus. Vet Microbiol 2009 Jul 2;138(1-2):1-10.
    [326]De Vries A, Post S, Raamsman M, Horzinek M, Rottier P. The two major envelope proteins of equine arteritis virus associate into disulfide-linked heterodimers. Journal of Virology 1995;69(8):4668.
    [327]Rompato G, Ling E, Chen Z, Van Kruiningen H, Garmendia AE. Positive inductive effect of IL-2 on virus-specific cellular responses elicited by a PRRSV-ORF7 DNA vaccine in swine. Vet Immunol Immunopathol 2006 Jan 15;109(1-2):151-60.
    [328]Carter QL, Curiel RE. Interleukin-12 (IL-12) ameliorates the effects of porcine respiratory and reproductive syndrome virus (PRRSV) infection. Vet Immunol Immunopathol 2005 Aug 15;107(1-2):105-18.
    [329]Mandrioli L, Sarli G, Panarese S, Baldoni S, Marcato PS. Apoptosis and proliferative activity in lymph node reaction in postweaning multisystemic wasting syndrome (PMWS). Veterinary Immunology and Immunopathology 2004;97(1-2):25-37.
    [330]Li Y, Wang X, Jiang P, Wang X, Chen W, Wang X, et al. Genetic variation analysis of porcine reproductive and respiratory syndrome virus isolated in China from 2002 to 2007 based on ORF5. Veterinary Microbiology 2009;138(1-2):150-5.
    [331]Charerntantanakul W. Adjuvants for porcine reproductive and respiratory syndrome virus vaccines. Veterinary Immunology and Immunopathology 2009; 129(1-2):1-13.
    [332]Zecconi A, Piccinini R, Fiorina S, Cabrini L, Dapr V, Amadori M. Evaluation of interleukin-2 treatment for prevention of intramammary infections in cows after calving. Comparative Immunology, Microbiology and Infectious Diseases 2009;32(5):439-51.
    [333]Ullenhag G, Fr din J, Jeddi-Tehrani M, Strig rd K, Eriksson E, Samanci A, et al. Durable carcinoembryonic antigen (CEA)-specific humoral and cellular immune responses in colorectal carcinoma patients vaccinated with recombinant CEA and granulocyte/macrophage colony-stimulating factor. Clinical Cancer Research 2004;10(10):3273.
    [334]Jiang W, Jiang P, Wang X, Li Y, Du Y. Enhanced immune responses of mice inoculated recombinant adenoviruses expressing GP5 by fusion with GP3 and/or GP4 of PRRS virus. Virus Research 2008;136(1-2):50-7.
    [335]Rowland RRR, Steffen M, Ackerman T, Benfield DA. The Evolution of Porcine Reproductive and Respiratory Syndrome Virus:Quasispecies and Emergence of a Virus Subpopulation during Infection of Pigs with VR-2332. Virology 1999;259(2):262-6.
    [336]Goldberg TL, Lowe JF, Milburn SM, Firkins LD. Quasispecies variation of porcine reproductive and respiratory syndrome virus during natural infection[small star, filled]. Virology 2003;317(2):197-207.
    [337]Xue Q, Zhao Y-G, Zhou Y-J, Qiu H-J, Wang Y-F, Wu D-L, et al. Immune responses of swine following DNA immunization with plasmids encoding porcine reproductive and respiratory syndrome virus ORFs 5 and 7, and porcine IL-2 and IFN[gamma]. Veterinary Immunology and Immunopathology 2004;102(3):291-8.
    [338]van Drunen Littel-van den Hurk S, Gerdts V, Loehr BI, Pontarollo R, Rankin R, Uwiera R, et al. Recent advances in the use of DNA vaccines for the treatment of diseases of farmed animals. Advanced Drug Delivery Reviews 2000;43(1):13-28.
    [339]Jiang P, Jiang W, Li Y, Wu S, Xu J. Humoral immune response induced by oral administration of S. typhimurium containing a DNA vaccine against porcine reproductive and respiratory syndrome virus. Veterinary Immunology and Immunopathology 2004;102(3):321-8.
    [340]Weiss W, Ishii K, Hedstrom R, Sedegah M, Ichino M, Barnhart K, et al. A plasmid encoding murine granulocyte-macrophage colony-stimulating factor increases protection conferred by a malaria DNA vaccine. The Journal of Immunology 1998;161(5):2325.
    [341]Lee S, Cho J, Sung Y. Optimal induction of hepatitis C virus envelope-specific immunity by bicistronic plasmid DNA inoculation with the granulocyte-macrophage colony-stimulating factor gene. Journal of Virology 1998;72(10):8430.
    [342]Xiang Z, Ertl H. Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity 1995;2(2):129.
    [343]Heufler C, Koch F, Schuler G. Granulocyte/macrophage colony-stimulating factor and interleukin 1 mediate the maturation of murine epidermal Langerhans cells into potent immunostimulatory dendritic cells. Journal of Experimental Medicine 1988; 167(2):700.
    [344]Armitage J. Emerging applications of recombinant human granulocyte-macrophage colony-stimulating factor. Blood 1998;92(12):4491.
    [345]Cheon DS, Chae C. Comparision of the Pathogenicity of Two Strains (Wild Type and Vaccine-Like) of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in Experimentally Infected Sows. Journal of Comparative Pathology 2004/4//;130(2-3):105-11.
    [346]Mengeling WL, Lager KM, Vorwald AC, Koehler KJ. Strain specificity of the immune response of pigs following vaccination with various strains of porcine reproductive and respiratory syndrome virus. Veterinary Microbiology 2003;93(1):13-24.
    [347]Koo HN, Oh JM, Lee JK, Choi JY, Lee KS, Roh JY, et al. Molecular characterization of ORFs 2 to 7 of Korean porcine reproductive and respiratory syndrome virus (CA) and its protein expression by recombinant baculoviruses. J Microbiol 2008 Dec;46(6):709-19.
    [348]Bastos RG, Borsuk S, Seixas FK, Dellagostin OA. Recombinant Mycobacterium bovis BCG. Vaccine 2009;27(47):6495-503.
    [349]Xie Z, Li H, Chen J, Zhang H-b, Wang Y-Y, Chen Q, et al. Shuffling of pig interleukin-2 gene and its enhancing of immunity in mice to Pasteurella multocida vaccine. Vaccine 2007;25(48):8163-71.
    [350]Solano-Aguilar GI, Zarlenga D, Beshah E, Vengroski K, Gasbarre L, Junker D, et al. Limited effect of recombinant porcine interleukin-12 on porcine lymphocytes due to a low level of IL-12 beta2 receptor. Veterinary Immunology and Immunopathology 2002;89(3-4):133-48.
    [351]Kang I, Ha Y, Kim D, Oh Y, Cho K-D, Lee B-H, et al. Localization of porcine reproductive and respiratory syndrome virus in mammary glands of experimentally infected sows. Research in Veterinary Science;In Press, Corrected Proof.
    [352]Yoon K, Zimmerman J, Swenson S, McGinley M, Eernisse K, Brevik A, et al. Characterization of the humoral immune response to porcine reproductive and respiratory syndrome (PRRS) virus infection. Journal of veterinary diagnostic investigation 1995;7(3):305.
    [353]Lopez OJ, Oliveira MF, Garcia EA, Kwon·BJ, Doster A, Osorio FA. Protection against porcine reproductive and respiratory syndrome virus (PRRSV) infection through passive transfer of PRRSV-neutralizing antibodies is dose dependent. Clin Vaccine Immunol 2007 Mar;14(3):269-75.
    [354]Bilodeau R, Archambault D, Vezina S, Sauvageau R, Fournier M, Dea S. Persistence of porcine reproductive and respiratory syndrome virus infection in a swine operation. Canadian Journal of Veterinary Research 1994;58(4):291.
    [355]Jeong HJ, Song YJ, Lee SW, Lee JB, Park SY, Song CS, et al. Comparative Measurement of Cell-Mediated Immune Response of Swine to the M and N Proteins of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). Clin Vaccine Immunol Feb 3.
    [356]Kang Y, Jin H, Zheng G, Du X, Xiao C, Zhang X, et al. Co-inoculation of DNA and protein vaccines induces antigen-specific T cell suppression. Biochemical and Biophysical Research Communications 2007;353(4):1034-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700