用户名: 密码: 验证码:
ZrO_2助剂对Ni/SiO_2气凝胶催化性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多相催化剂工业化应用以来,助催化剂一直是备受关注的热点问题,现在商品化的催化剂,一般都包含了多种助催化剂以提高催化剂的活性、选择性、寿命等。实践证明,通常情况下,酸催化和催化加氢反应中,助剂的效应是非常重要甚至是必不可少的。
     本论文研究了引入ZrO_2助剂对Ni/SiO_2气凝胶催化顺酐加氢性能的影响规律。
     ZrO_2是具有氧化还原性和酸碱性的两性氧化物,在催化领域ZrO_2有广泛的应用,作为助催化剂可对主催化剂产生各种调控效应,已有的研究表明,ZrO_2作为助催化剂可以明显提高催化剂的热稳定性、表面酸性及活性组分的分散度等。
     气凝胶是经由溶胶-凝胶(sol-gel)过程和超临界流体干燥技术制备的高比表面、高孔隙率的新型催化材料,SiO_2气凝胶是一种优异的催化剂载体,具有化学惰性、高比表面积、高孔隙率和好的热稳定性,SiO_2负载的镍基催化剂具有活性高及价廉等优点,广泛应用于催化加氢反应。
     本论文以气凝胶催化剂的制各方法为核心,利用溶胶-凝胶方法结合超临界流体干燥技术,制备了系列ZrO_2-SiO_2复合氧化物气凝胶,以该气凝胶为载体,浸渍法制备了负载型Ni/ZrO_2-SiO_2催化剂,考察了不同镍、锆含量对催化剂顺酐加氢催化性能的影响;并与一步溶胶-凝胶法制备的Ni-ZrO_2-SiO_2气凝胶催化剂,以及镍、锆混合溶液共浸渍单组分SiO_2气凝胶载体制备的Ni-ZrO_2/SiO_2催化剂进行了比较;采用N_2-物理吸附、FT-IR、XRD、TPR、NH_3-TPD、吡啶吸附红外光谱及CO吸附与加氢原位红外光谱等方法对制备的催化剂进行了结构和理化性质表征,探索ZrO_2助剂对催化剂结构和理化性质的影响规律,阐明引起催化性能差别的结构及理化性质原因。
     本论文的工作主要分为两部分内容:一、催化剂的制备和顺酐催化加氢性能评价(第三、四章);二、催化剂的结构表征分析(第五、六、七章)。
     一、采用溶胶-凝胶法结合超临界流体干燥技术制备了不同ZrO_2含量的ZrO_2-SiO_2复合氧化物气凝胶,浸渍法负载镍制备了系列Ni/ZrO_2-SiO_2催化剂,考察不同锆、镍含量对顺酐加氢活性和γ-丁内酯(GBL)选择性的影响;同时与单组分SiO_2气凝胶为载体浸渍镍、锆混合溶液的Ni-ZrO_2/SiO_2催化剂,以及镍、锆、硅前驱物一步共胶法制备的Ni-ZrO_2-SiO_2催化剂进行了比较。
     二、采用N_2-物理吸附、FT-IR、XRD、TPR、NH_3-TPD、吡啶吸附红外光谱及CO吸附与加氢原位红外光谱等方法表征了催化剂的结构及表面性质,阐明造成催化性能差别的结构及理化性质原因。
     催化活性评价表明,以溶胶-凝胶结合超临界流体干燥技术制备的ZrO_2-SiO_2复合氧化物气凝胶为载体,浸渍法制备的Ni/ZrO_2-SiO_2系列催化剂:ZrO_2助剂对GBL选择性的影响与Ni含量密切相关,当Ni含量低于13wt%时,引入ZrO_2助剂,GBL的选择性几乎没有变化;当Ni含量达到30wt%时,1wt%的ZrO_2就可使30Ni/ZrO_2-SiO_2催化剂的GBL选择性从0.7%提高到12.9%,ZrO_2含量为5wt%时,GBL选择性达到最大值,为15.1%。
     单组分SiO_2气凝胶为载体浸渍镍、锆混合溶液制备的Ni-ZrO_2/SiO_2系列催化剂,在Ni含量低于40 wt%以下时,引入ZrO_2助剂对GBL选择性没有影响,只有当Ni含量达到50wt%时,GBL选择性从1.8%提高到13.07%;而镍、锆、硅前驱物一步共胶法制备的Ni-ZrO_2-SiO_2系列催化剂与共胶法制备的Ni-SiO_2催化剂对比,引入ZrO_2降低了催化剂对GBL的选择性,特别是当Ni含量为30 wt%时,使GBL的选择性从12.2%降低到了0.4%。
     对催化剂的结构分析表明:
     ①共胶法制备的30Ni-SiO_2具有较高的比表面积和较大的孔容,这可能是其催化活性较高的主要原因。其余四种催化剂比表面和孔结构参数相近,特别是30Ni/ZrO_2-SiO_2和30Ni/SiO_2。可以推测,除30Ni-SiO_2外,孔结构不是各催化剂活性差别的主要原因。
     ②红外光谱、XRD和TPR等研究表明:锆的引入,一方面形成了Zr—O—Si键,降低了NiO与载体之间的相互作用,使NiO的可还原度增加,特别是30Ni-Zr/Si催化剂,表面形成的Zr—O—Si键可能阻断了部分形成Ni—O—Si键的位点,使得NiO与载体间的相互作用减弱明显,耗氢量最大;另一方面,对于30Ni/Zr-Si催化剂,锆在载体中的引入可能在催化剂表面增加了Ni与载体的作用位点。
     ③表面酸性研究表明:ZrO_2助剂明显增加了催化剂的表面酸量,并新增了B酸位,且表面ZrO_2含量越多酸性越强;同时,较多的Si-O-Zr键会增加中强度酸区的酸密度。
     ④MA、SAH和GBL表面吸附红外光谱研究表明:ZrO_2助剂明显提高了催化剂30Ni/Zr-Si和30Ni-Zr-Si与MA和SAH的相互作用,也可以说是结构适应性,增加了对反应物的吸附量;但对30Ni-Zr/Si催化剂的结构适应性没有提高,而且还有降低的趋势。
     ⑤CO吸附及加氢的原位红外光谱研究表明:ZrO_2助剂的引入明显提高了30Ni/Zr-Si催化剂表面活性组分的分散度,催化剂表面活性位分布密集,活性位之间相互作用密切;30Ni-Si催化剂发达的孔隙结构和高的比表面积使其具有了较高的CO吸附力和加氢活性;30Ni-Zr/Si催化剂单一的Ni晶体组成、弱的活性组分与载体之间的相互作用,使其对CO的吸附极弱;30Ni-Zr-Si催化剂则主要由于低的还原镍含量,使其没有足够的吸附CO活性位点,导致了其对CO弱的吸附力和加氢活性。
     综合催化剂评价与表征结果可以得出,在顺酐液相加氢反应中,获得较高GBL选择性的主要因素是:较高的表面酸性、活性组分的高分散度及与载体之间合适的相互作用。
     ZrO_2助剂的引入:①增加了气凝胶催化剂的表面酸性,新增了B酸位;②降低了NiO与载体之间的相互作用,提高了催化剂的可还原度,增加了催化剂表面活性组分含量;③提高了活性组分在催化剂表面的分散度,使表面活性位点分布密集,活性位之间相互作用密切。
     ZrO_2助剂的不同引入方式对其作用有明显影响,只有ZrO_2-SiO_2复合气凝胶为载体浸渍法制各的Ni/ZrO_2-SiO_2催化剂能明显体现出ZrO_2助剂促进性能。而镍、锆混合溶液共浸渍单组分SiO_2气凝胶载体制备的Ni-ZrO_2/SiO_2催化剂,其活性组分与载体之间的相互作用被降低太多,形成了不利于催化反应的结构;一步共胶法引入ZrO_2助剂则造成了催化剂微孔结构的破坏和比表面积的大幅下降,同样是不利的结构。
     总之,ZrO_2助剂调变了催化剂的表面酸性和活性组分的分散度及与载体间的相互作用,较好地调控了顺酐液相加氢GBL的选择性。
Promoters have been studied extensively since heterogeneous catalysts have been used industrially.Commercial catalysts tend to involve multiple promoters to enhance the activity,selectivity,lifetime and structural integrity. Generally,in acid catalysis and hydrogenation reactions,promoter effects can be dramatic and unexpected.
     In this paper,the promotion effect of ZrO_2 in Ni/SiO_2 aerogel catalyst is investigated systematically.
     ZrO_2 has received considerable attention as a promoter due to chemical inertness,higher thermal stability and a special combination of surface properties,namely the preservation of both acidic and basic sites,on the one hand,and reducing and oxidizing properties,on the other.It is reported: introduction of a small amount of zirconium into the support leads to a significant increase of the dispersion of supported metal oxide species, especially,on silica.
     Silica aerogel is an excellent catalytic support due to its desirable characteristics,such as inertness,high specific surface area,pronounced mesoporosity,and good thermal stability.Among the silica-supported catalysts,Ni/SiO_2 has been investigated widely.
     In this paper,ZrO_2 promoted Ni/SiO_2 catalysts were prepared via three different routes:(ⅰ) impregnation ZrO_2-SiO_2 composite aerogels with a aqueous solution of Ni(NO_3)_2,catalyst code Ni/Zr-Si;(ⅱ) impregnation SiO_2 aerogels with a mixed aqueous solution of Ni(NO_3)_2 and ZrO(NO_3)_2·2H_2O, catalyst code Ni-Zr/Si;(ⅲ) one-pot sol-gel procedure from precursors Ni(NO_3)_2/ZrO(NO_3)_2·2H_2O/Si(OC_2H_5)_4,catalyst code Ni-Zr-Si.For comparison,non-promoted catalysts Ni/Si and Ni-Si also prepared respectively by impregnation Ni(NO_3)_2 with silica aerogel and by one-pot sol-gel process of Ni(NO_3)_2/Si(OC_2H_5)_4.
     The above prepared catalysts were characterized by X-ray diffraction (XRD),temperature programmed reduction(TPR),ammonia temperature-programmed desorption(NH_3-TPD),N_2 adsorption-desorption isotherms and Fourier transform infrared(FTIR).The Liquid-phase hydrogenation of maleic anhydride(MA) was evaluated over these catalysts. And the adsorptions of MA,SAH and GBL on these catalysts surfaces were also investigated by FT-IR.
     The results revealed that the different preparation routes result in a difference among the obtained catalysts,concerning the crystal structure and composition,surface acidity,mixed level of each component,texture,and catalytic selectivity.
     The main results and conclusions are summarized below:
     1.Comparing to 30Ni/Si the promoted catalyst 30Ni/Zr-Si has higher activity and selectivity to GBL,which is due to increased surface acidity and the decreased interaction between NiO and SiO_2 and the Ni coverage that was induced by ZrO_2 promoter.
     2.The 30Ni-Zr/Si catalyst has lower activity and selectivity than that of 30Ni/Zr-Si.The most possible reason is about the decreased interaction between NiO and SiO_2 that was induced by ZrO_2,and the poor structural suitability between the SAH and the catalyst.
     3.The catalyst 30Ni-Zr-Si also has lower activity and selectivity.The main reason is that the content of Ni is too low to increase the GBL selectivity.
     4.The main reason for the higher activity and selectivity of 30Ni-Si catalyst is the higher S_(BET) and pore volume over the other four catalysts.
引文
[1]ALAIN C.PIERRE and GERARD M.PAJONK.Chemistry of Aerogels and Their Applications[J].Chem.Rev.2002,102:4243-4265.
    [2]JINSOON CHOI,DONG JIN SUH.Catalytic Applications of Aerogels[J].Catal Surv Asia,2007,11:123-133.
    [3](a) KISTLER S.S.Coherent Expanded Aero Gels and Jellies[J].Nature,1931,227:741-746.
    (b) KISTLER,S.S.Coherent Expanded-Aerogels[J].J.Phys.Chem.1932,36:52-64.
    [4]C.MORENO-CASTILLA,F.J.MALDONADO-HODAR.Carbon Aerogels for Catalysis Applications:An Overview[J].Carbon,2005,43:455-465.
    [5]同小刚,王芬,冯海涛,等.二氧化硅气凝胶的制备和应用研究[J].材料导报,2006,20:24-26.
    [6]SCHWERTFEGER,F.,Frank,D.Schmidt,M.Proceedings of the Fifth International Symposium on Aerogels(ISA 5)[J].d.Non-Cryst.Solids,1998,225:24.
    [7]MICHIO INAGAKI,KATSUMI KANEKO,TAKASHI NISHIZAWA.Nanocarbons—Recent Research in Japan[J].Carbon,2004,42:1401-1417.
    [8]G.M.Pajonk.Catalytic Aerogels[J].Catalysis Today,1997,35:319-337.
    [9]高秀霞,张伟娜,任敏,等.硅气凝胶的研究进展[J].长春理工大学学报,2007,30:87-91.
    [10]郝利峰,高志华,阴丽华,等.气凝胶的制备及其在催化领域的应用[J].天然气化工,2005,30:49-53.
    [11]DONG JIN SUH.Catalytic Applications of Composite Aerogels[J],Journal of Non-Crystalline Solids,2004,350:314-319.
    [12]HIROSHI HIRASHIMA,CHIHIRO KOJIMA,KEN KOHAMA,et al.Oxide Aerogel Catalysts[J].Journal of Non-Crystalline Solids,1998,225:153-156.
    [13]O.A.KHOLDEEVA,N.N.TRUKHAN,M.P.Vanina,et al.A New Environmentally Friendly Method for the Production of 2,3,5-Trimethyl-p-Benzoquinone[J].Catalysis Today,2002,75:203-209.
    [14]M.LAKSHMI KANTAM,B.PURNA CHANDRA RAO,R.SUDARSHAN REDDY,et al.Aerobic Epoxidation of Olefins Catalyzed by Co-SiO_2Nanocomposites[J].Journal of Molecular Catalysis A:Chemical,2007,272:1-5.
    [15]M.V.LANDAU,G.E.SHTER,L.TITELMAN,et al.Alumina Foam Coated with Nanostructured Chromia Aerogel:Efficient Catalytic Material for Complete Combustion of Chlorinated VOC[J].Ind.Eng.Chem.Res.2006,45:7462-7469.
    [16]N.MOUSSA,JOSE M.FRAILE,A.GHORBEL,et al.Catalytic Oxidation of Thioanisole Ph-S-CH_3 over VO_x/SiO_2 and VO_x/Al_2O_3 Catalysts Prepared by Sol-Gel Method[J].Journal of Molecular Catalysis A:Chemical,2006,255:62-68.
    [17]JINSOON CHOI,CHEE BURM SHIN,TAE-JIN PARK,et al.Characteristics of Vanadia-Titania Aerogel Catalysts for Oxidative Destruction of 1,2-Dichlorobenzene [J].Applied Catalysis A:General,2006,311:105-111.
    [18]SIHEM KHADDAR-ZINE,ABDELHAMID GHORBEL,CLAUDE NACCACHE.Characterization and Catalytic Properties of Aerogel Chromium Oxide Supported by Alumina or Silica[J].Journal of Sol-Gel Science and Technology,2000,19:637-641.
    [19]JINSOON CHOI,CHEE BURM SHIN,DONG JIN SUH.Co-promoted Pt Catalysts Supported on Silica Aerogel for Preferential Oxidation of CO[J].Catalysis Communications,2008,9:880-885.
    [20]赵惠忠,葛山,汪厚植,等.Cu/SiO_2纳米气凝胶的组成及催化氧化CO性能研究[J].高等学校化学学报,2006,27:914-919.
    [21]YU-CHUAN LIN and KEITH L.HOHN.Effect of Sol-Gel Synthesis on Physical and Chemical Properties of V/SiO_2 and V/MgO Catalysts[J].Catalysis Letters,2006,107:215-222.
    [22]FILIPPO SOMMA,PATRIZIA CANTON,GIORGIO STURKUL.Effect of the Matrix in Niobium-Based Aerogel Catalysts for the Selective Oxidation of Olefins with Hydrogen Peroxide[J].Journal of Catalysis,2005,229:90-498.
    [23]P.FABRIZIOLI,T.B(U|¨)RGI and A.BAIKER.Environmental Catalysis on Iron Oxide-Silica Aerogels:Selective Oxidation of NH_3 and Reduction of NO by NH_3[J].Journal of Catalysis,2002,206:143-154.
    [24]N.V.MAKSIMCHUK,M.S.MELGUNOV,J.MROWIEC-BIALON,et al.H_2O_2-Based Allylic Oxidation of α-Pinene Over Different Single Site Catalysts [J].Journal of Catalysis,2005,235:175-183.
    [25]H.ROTTER,M.V.LANDAU,M.CARRERA,et al.High Surface Area Chromia Aerogel Efficient Catalyst and Catalyst Support for Ethylacetate Combustion [J].Applied Catalysis B:Environmental,2004,47:111-126.
    [26]N.N.TRUKHAN and O.A.KHOLDEEVA.Kinetics and Mechanism of 2,3,6-Trimethylphenol Oxidation by Hydrogen Peroxide in the Presence of TiO_2-SiO_2 Aerogel[J].Kinetics and Catalysis,2003,44:347-352.
    [27]P.FABRIZIOLI,T.B(U|¨)RGI and A.BAIKER,MANGANESE.Oxide-Silica Aerogels:Synthesis and Structural and Catalytic Properties in the Selective Oxidation of NH_3[J].Journal of Catalysis,2002,207:88-100.
    [28]CHIEN-TSUNG Wang,RONALD J.WILLEY.Mechanistic Aspects of Methanol Partial Oxidation over Supported Iron Oxide Aerogels[J].Journal of Catalysis,2001,202:211-219.
    [29]CHIEN-TSUNG WANG,SHIH-HUNG RO.Nanocluster Iron Oxide-Silica Aerogel Catalysts for Methanol Partial Oxidation[J].Applied Catalysis A:General,2005,285:196-204.
    [30]CHIEN-TSUNG WANG,SHIH-HUNG RO.Nanoparticle Iron-Titanium Oxide Aerogels[J].Materials Chemistry and Physics,2007,101:41-48.
    [31]Y.TAI,Y.OCHI,F.OHASHI,et al.Oxidation Activity of Au Nanoparticles on Aerogel Supports[J].Eur.Phys.J.D,2005,34:125-128.
    [32]YUTAKA TAI,JUNICHI MURAKAMI,KOJI TAIJIRI,et al.Oxidation of Carbon Monoxide on Au Nanoparticles in Titania and Titania-Coated Silica Aerogels [J].Applied Catalysis A:General,2004,268:183-187.
    [33]TOSHIHIKO OSAKI,KIHO NAGASHIMA,KOJI WATARI,et al.Pt-Al_2O_3Cryogel with High Thermal Stability for Catalytic Combustion[J].Catalysis Letters,2007,119:134-141.
    [34]SATOSHI YODA,DONG JIN SUH,TSUGIO SATO.Adsorption and Photocatalytic Decomposition of Benzene Using Silica-Titania and Titania Aerogels:Effect of Supercritical Drying[J].Journal of Sol-Gel Science and Technology,2001,22:75-81.
    [35]SHENGLI CAO,KING LUN YEUNG,PO-LOCK YUE.An Investigation of Trichloroethylene Photocatalytic Oxidation on Mesoporous Titania-Silica Aerogel Catalysts[J].Applied Catalysis B:Environmental,2007,76:64-72.
    [36]SHENGLI CAO,KING LUN YEUNG,PO-LOCK YUE.Preparation of Freestanding and Crack-Free Titania-Silica Aerogels and Their Performance for Gas Phase,Photocatalytic Oxidation of VOCs[J].Applied Catalysis B:Environmental,2006,68:99-108.
    [37]CHIEN-TSUNG WANG.Photocatalytic Activity of Nanoparticle Gold/Iron Oxide Aerogels for Azo Dye Degradation[J].Journal of Non-Crystalline Solids,2007,353:1126-1133.
    [38]WON-I1 KIM,DONG JIN SUHA,TAE-JIN PARK,et al.Photocatalytic Degradation of Methanol on Titania and Titania-Silica Aerogels Prepared by Non-Alkoxide Sol-Gel Route[J].Topics in Catalysis,2007,44:499-505.
    [39]B.MALINOWSKA,J.WALENDZIEWSKI,D.ROBERT,et al.The Study of Photocatalytic Activities of Titania and Titania-Silica Aerogels[J].Applied Catalysis B:Environmental,2003,46:441-451.
    [40]王玉栋,郝志显,甘礼华,等.TiO_2/SiO_2气凝胶对吡啶的光催化降解[J].应用 化学,2004,21:1002-1005.
    [41]甘礼华,王小兰,郝志显等.TiO_2/SiO_2气凝胶对亚甲基蓝降解的光催化活性[J].同济大学学报(自然科学版),2005,33:1078-1082.
    [42]王玉栋,甘礼华,郝志显,等.气凝胶光催化剂的研究进展[J].化工科技,2005,13,3:36-40.
    [43]J.WANG,S.UMA,K.J.KLABUNDE.Visible Light Photocatalysis in Transition Metal Incorporated Titania-Silica Aerogels[J].Applied Catalysis B:Environmental,2004,48:151-154.
    [44]J.WANG,S.UMA,K.J.KLABUNDE.Visible Light Photocatalytic Activities of Transition Metal Oxide/Silica Aerogels[J].Microporous and Mesoporous Materials,2004,75:143-147.
    [45]C.BECK,T.MALLAT,A.BAIKER.Epoxidation of Allylic Alcohols with TiO_2-SiO_2:Hydroxy-Assisted Mechanism and Dynamic Structural Changes During Reaction[J].Catalysis Letters,2003,88:203-209.
    [46]ANDREAS GISLER,THOMAS B(U|¨)RGI,ALFONS BAIKER.Epoxidation on Titania-Silica Aerogel Catalysts Studied by Attenuated Total Reflection Fourier Transform Infrared and Modulation Spectroscopy[J].Phys.Chem.Chem.Phys.,2003,5:3539-3548.
    [47]WENDELIN J.STARK,SOTIRIS E.PRATSINIS,and ALFONS BAIKE.Flame Made Titania/Silica Epoxidation Catalysts[J].Journal of Catalysis,2001,203:516-524.
    [48]C.BECK,T.MALLAT,T.B(U|¨)RGI and A.BAIKER.Nature of Active Sites in Sol-Gel TiO_2-SiO_2 Epoxidation Catalysts[J].Journal of Catalysis,2001,204:428-439.
    [49]C.BECK,T.MALLAT and A.BAIKER,et al.On the Limited Selectivity of Silica-Based Epoxidafion Catalysts[J].Catalysis Letters,2001,75:131-136.
    [50]FILIPPO SOMMA,ALESSIO PUPPINATO,GIORGIO STRUKUL.Niobia-Silica Aerogel Mixed Oxide Catalysts:Effects of the Niobium Content,the Calcination.Temperature and the Surface Hydrophilicity on the Epoxidation of Olefins with.Hydrogen Peroxide[J].Applied Catalysis A:General,2006,309:115-121.
    [51]FILIPPO SOMMA and GIORGIO STRU-KUL.Niobium Containing Micro-,Mesoand Macroporous Silica Materials as Catalysts for the Epoxidation of Olefins with Hydrogen Peroxide[J].Catalysis Letters,2006,107:73-81.
    [52]N.MOUSSA,A.GHORBEL.Vanadia-Silica Catalysts Prepared by Sol-Gel Method:Application for Epoxidation Reaction[J].Journal of Sol-Gel Science and Technology,2005,33:127-132.
    [53]TOSHIHIKO OSAKI,TOSHIYUKI TANAKA,TATSURO HORIUCHI,et al.Application of NiO-Al_2O_3 aerogels to the CO_2-reforming of CH_4[J].Appl.Organometal.Chem.,2000,14:789-793.
    [54]JIXIANG CHEN,RIJIE WANG,JIYAN ZHANG..Effects of Preparation Methods on Properties of Ni/CeO_2-Al_2O_3 Catalysts for Methane Reforming with Carbon Dioxide:[J].Journal of Molecular Catalysis A:Chemical,2005,235:302-310.
    [55]ZHIGANG HAO,QINGSHAN ZHU,ZE LEI,et al.CH_4-CO_2 Reforming Over Ni/Al_2O_3 Aerogel Catalysts in a Fluidized Bed Reactor[J].Powder Technology,2007,179:157-162.
    [56]JIN-HONG KIMA,DONG JIN SUHB,TAE-JIN PARK B,et al.Effect of Metal Particle Size on Coking During CO_2 Reforming of CH_4 over Ni-alumina Aerogel Catalysts[J].Applied Catalysis A:General,2000,197:191-200.
    [57]ZHENG XU,YUMIN LI,JIYAN ZHANG,et al.Ultrafine NiO-La_2O_3-Al_2O_3 Aerogel:a Promising Catalyst for CH_4/CO_2 Reforming[J].Applied Catalysis A:General,2001,213:65-71.
    [58]许峥,张鎏,张继曼,等.超细镍基催化剂的CH_4-CO_2重整反应性能[J].分子催化,2001,15:346-350.
    [59]JINYAO LIU,JIANGLIU SHI,DEHUA HE,et al.Surface Active Structure of Ultra-Fine Cu/ZrO_2 Catalysts Used for the CO_2+H_2 to Methanol Reaction [J].Applied Catalysis A:General 2001,218:113-119.
    [60]I.FERINO,M.F.CASULA,A.CORRIAS,et al.4-Methylpentan-2-ol Dehydration Over Zirconia Catalysts Prepared by Sol-Gel[J].Phys.Chem.Chem.Phys.,2000,2:1847-1854.
    [61]M.K.YOUNES and A.GHORBEL,A.RIVES and R.HUBAUT.Acidity of Sulphated Zirconia Aerogels:Correlation Between XPS Studies,Surface Potential Measurements and Catalytic Activity in Isopropanol Dehydration Reaction [J].Journal of Sol-Gel Science and Technology,2004,32:349-352.
    [62]SHANGWEI HU,RONALD J.WILLEY and BRUNO NOTARI.An Investigation on the Catalytic Properties of Titania-Silica Materials[J].Journal of Catalysis,2003,220:240-248.
    [63]M.K.YOUNES,A.GHORBEL,A.RIVES,et al.Comparative Study of the Acidity of Sulphated Zirconia Supported on Alumina Prepared by Sol-Gel and Impregnation Methods[J].Journal of Sol-Gel Science and Technology,2003,26:677-680.
    [64]HEIKO KALIES,NICOLAS PINTO,GERARD MARCEL PAJONK,et al.Hydrogenation of Formate Species Formed by CO Chemisorption on a Zirconia Aerogel in the Presence of Platinum[J].Applied Catalysis A:General,2000,202:197-205.
    [65]余鑫萌,徐宝奎,袁发得.二氧化锆的稳定化及其应用[J].稀有金属快报,2007,1:28-32.
    [66]王国营,邵忠财,高景龙,等.纳米氧化锆在催化领域中的应用[J].化工中间体,2007,11:24-28.
    [67]I.FERINO,M.F.CASULA,A.CORRIAS,et al.4-Methylpentan-2-ol Dehydration Over Zirconia Catalysts Prepared by Sol-Gel[J].Phys.Chem.Chem.Phys.,2000,2:1847-1854.
    [68]M.K.YOUNES and A.GHORBEL,A.RIVES and R.HUBAUT.Acidity of Sulphated Zirconia Aerogels:Correlation Between XPS Studies,Surface Potential Measurements and Catalytic Activity in Isopropanol Dehydration Reaction [J].Journal of Sol-Gel Science and Technology,2004,32:349-352.
    [69]YIN-YAN HUANG,BI-YING ZHAO,YOU-CHANG XIE.Preparation of Zirconia-Based Acid Catalysts From Zirconia Aerogel of Tetragonal Phase [J].Applied Catalysis A:General,1998,172:327-331.
    [70]L.M.MARTINEZ TA,C.MONTES DE CORREA A,J.A.ODRIOZOLA B,et al.Synthesis and Characterization of Sol-Gel Zirconia Supported Pd and Ni Catalysts [J].Catalysis Today,2005,107-108:800-808.
    [71]LI YONG-FENG,DONG XIN-FA,LIN WEI-MING.Effects of ZrO_2-Promoter on Catalytic Performance of CuZnAlO Catalysts for Production of Hydrogen by Steam Reforming of Methanol[J].International Journal of Hydrogen Energy,2004,29:1617-1621.
    [72](a) OLIVER Y.GUTIERREZ,DIEGO VALENCIA,GUSTAVO A.FUENTES,et al.Mo and NiMo Catalysts Supported on SBA-15 Modified by Grafted ZrO_2 Species:Synthesis,Characterization and Evaluation in 4,6-dimethyldibenzothiophene Hydrodesulfurization[J].Journal of Catalysis,2007,249:140-153.
    (b) OLIVER Y.GUTIERREZ,FERNANDO PEREZ,GUSTAVO A.FUENTES,et al.Deep HDS Over NiMo/Zr-SBA-15 Catalysts with Varying MoO_3 Loading[J].Catalysis Today,2008,130:292-301.
    [73]YANQIAO ZHAO,JIXIANGCHEN,JIYAN ZHANG.Effects of ZrO_2 on the Performance of CuO-ZnO-Al_2O_3/HZSM-5 Catalyst for Dimethyl Ether Synthesis from CO_2 Hydrogenation[J].Journal of Natural Gas Chemistry,2007,16:389-392.
    [74]NAGI R.E.RADWAN.Influence of La_2O_3 and ZrO_2 as Promoters on Surface and Catalytic Properties of CuO/MgO System Prepared by Sol-Gel Method[J].Applied Catalysis A:General 2006,299:103-121.
    [75]F.ROHR,O.A.LINDVAG,A.HOLMEN,E.A.BLEKKAN.Fischer-Tropsch Synthesis Over Cobalt Catalysts Supported on Zirconia-Modified Alumina[J].Catalysis Today,2000,58:247-254.
    [76]XIARU DU,ZHONGSHAN YUAN,LEI CAO,et al.Water Gas Shift Reaction Over Cu-Mn Mixed Oxides Catalysts:Effects of the Third Metal[J].Fuel Processing Technology,2008,89:131-138.
    [77]JEONG GIL SEO,MIN HYE YOUN,IN KYU SONG.Effect of SiO_2-ZrO_2 Supports Prepared by a Grafting Method on Hydrogen Production by Steam Reforming of Liquefied Natural Gas Over Ni/SiO_2-ZrO_2 Catalysts[J].Journal of Power Sources,2007,168:251-257.
    [78]GANG LIU,HUAMIN ZHANG,HEXIANG ZHONG,et al.A Novel Sintering Resistant and Corrosion Resistant Pt4ZrO2/C Catalyst for High Temperature PEMFCs[J].Electrochimica Acta,2006,51:5710-5714.
    [79]XIULAN CAI,XINFA DONG,WEIMING LIN.Autothermal Reforming of Methane over Ni Catalysts Supported on CuO-ZrO_2-CeO_2-Al_2O_3[J].Journal of Natural Gas Chemistry,2006,15:122-126.
    [80]HAIFENG XIONG,YUHUA ZHANG,KONGYONG LIEW,et al.Catalytic Performance of Zirconium-Modified Co/Al_2O_3 for Fischer-Tropsch Synthesis[J].Journal of Molecular Catalysis A:Chemical,2005,231:145-151.
    [81]MARITA NIEMEL(A|¨),MILJA NOKKOSM(A|¨)KI.Activation of Carbon Dioxide on Fe-Catalysts[J].Catalysis Today,2005,100:269-274.
    [82]MINGDENG WEI,KIYOMI OKABE,HIRONORI ARAKAWA,et al.Synthesis and Characterization of Zirconium Containing Mesoporous Silicates and the Utilization as Support of Cobalt Catalysts for Fischer-Tropsch Synthesis[J].Catalysis Communications,2004,5:597-603.
    [83]MOHAN S.RANAA,S.K.MAITY,J.ANCHEYTA,et al.MoCo(Ni)/ZrO_2—SiO_2Hydrotreating Catalysts:Physico-Chemical Characterization and Activities Studies [J].Applied Catalysis A:General,2004,268:89-97.
    [84]CHUN-KAI SHI,LE-FU YANG,ZHONG-CHUN WANG,et al.Promotion Effects of ZrO_2 on the Pd/HZSM-5 Catalyst for Low-temperature Catalytic Combustion of Methane[J].Applied Catalysis A:General,2003,243:379-388.
    [85]GARY JACOBS,TAPAN K.DAS,YONGQING ZHANG,et al.Fischer-Tropsch Synthesis:Support,Loading,and Promoter Effects on the Reducibility of Cobalt Catalysts[J].Applied Catalysis A:General,2002,233:263-281.
    [86]O.CHERIFI,M.M.BETTAHAR,A.AUROUX.Microcalorimetric Study of the Acidity and Basicity of Ni/SiO_2 Catalysts Modified by Metallic Additives Fe,Co,Zr and Ce[J].Thermochimica Acta,1997,306:131-134.
    [87]VLADIMIR GALVITA,THOMAS HEMPEL,HEIKE LORENZ,et al.Deactivation of Modified Iron Oxide Materials in the Cyclic Water Gas Shift Process for CO-Free Hydrogen Production[J].Ind.Eng.Chem.Res.2008,47:303-310.
    [88]WEN-PING MA,YUN-JIE DING and LI-WU LIN.Fischer-Tropsch Synthesis Over Activated-Carbon-Supported Cobalt Catalysts:Effect of Co Loading and Promoters on Catalyst Performance[J].Ind.Eng.Chem.Res.2004,43:2391-2398.
    [89]M.T.SANANES,J.O.PETUNCHI and E.A.Lombardo.The effect of Zn,Ti and Zr Used as Additives in VPD Formulations[J].Catalysis Today,1992,15:527-535.
    [90]YU.A.RYNDIN,O.S.ALEKSEEV,E.A.PAUKSHTIS,et al.Influence of Zr ions on the Properties of Pd Supported on Graphite and Diamond[J].Journal of Molecular Catalysis,1991,68:355-370.
    [91]MASARU ICHIKAWA,KAZUHIKO SEKIZAWA,KOICHI SHIKAKURA.Metal-Support Interaction of Rh_4-Rh_(13) Carbonyl Clusters Impregnated on Ti-and Zr-Oxide-Containing Silica and Their Catalytic Activities in the Conversion of Co-H_2to ethanol[J].Journal of Molecular Catalysis,1981,11:167-179.
    [92]BUNJERD JONGSOMJIT,JOONGJAI PANPRANOT,and JAMES G.GOODWIN JR.Effect of Zirconia-Modified Alumina on the Properties of Co/γ-Al_2O_3 Catalysts [J].Journal of Catalysis,2003,215:66-77.
    93]M.C.SANCHEZ-SACHEZ,R.M.NAVARRO,J.L.G.FIERRO.Ethanol Steam Reforming Over Ni/MxOy-Al_2O_3(M=Ce,La,Zr and Mg) Catalysts:Influence of Support on the Hydrogen Production[J].International Journal of Hydrogen Energy,2007,32:1462-1471.
    [94]G.R.MORADI,M.M.BASIR,A.TAEB,et al.Promotion of Co/SiO_2Fischer-Tropseh Catalysts with Zirconium[J].Catalysis Communications,2003,4:27-32.
    [95]钟顺和,王希涛,宓立新,等.ZrO_2-SiO_2负载Cu-Ni催化剂的CO_2加氢反应性能[J].分子催化,2001,15(3):170-174.
    [96]钟顺和,雷泽,王建伟,等.Cu-Ni/ZrSiO催化剂的制备及其对CO_2和CH_3OH合成DMC的反应性能[J].天然气化工,2001,26(5):12-16.
    [97]钟顺和,黎汉生,王建伟.CO_2在Cu-Ni/ZrO_2-SiO_2催化剂上的吸附与反应[J].分子催化,2000,14(1):37-40.
    [98]钟顺和,黎汉生,王建伟,等.CO_2和CH_3OH直接合成碳酸二甲酯用Cu-Ni/ZrO_2-SiO_2催化剂[J].催化学报,2000,21(2):117-120.
    [99]蔡雄辉.正戊烷异构化Ni-W-Zr/HM绿色化工催化剂的研究[D].大庆石油学院硕士学位论文,2003.
    [100]汪海滨,吴静,耿彩军,等.Cu-Zn-Zr/SiO_2甲醇脱氢制甲酸甲酯催化剂反应性能研究[J].沈阳化工学院学报,2006,20(3):172-175.
    [101]杨槐馨,马静红,韩朝辉,等.Zr-Fe-ZSM-48的合成及催化性能的研究[J].太原理工大学学报,2001,32(6):572-575.
    [102]王晓书,季伟捷,许利军,等.Zr、Mo、Zn添加剂及机械球磨对钒-磷-氧催化剂性质的影响[J].燃料化学学报,2001,29(2):144-148.
    [103]王继元,曾崇余.Zr促进的Cu-ZnO/HZSM-5合成二甲醚催化剂的制备[J].石油炼制与化工,2004,35(12):13-17.
    [104]S.DAMYANOVA,L.PETROV,M.A.CENTENO,P.GRANGE.Characterization of Molybdenum Hydrodesulfurization Catalysts Supported on ZrO_2-Al_2O_3 and ZrO_2-SiO_2 Carriers[J].Applied Catalysis A:General,2002,224:271-284.
    [105]RYOJI TAKAHASHI,SATOSHI SATO,TOSHIAKI SODESAWA,et al.Addition of Zirconia in Ni/SiO_2 Catalyst for Improvement of Steam Resistance[J].Applied Catalysis A:General,2004,273:211-215.
    [106]赵永祥.镍基复合氧化物气凝胶的制备,表征和顺酐加氢反应性能[D].中国科学院兰州化学物理研究所博士学位论文,2002.
    [107]武志刚.ZrO_2和ZrO_2-SiO_2复合氧化物气凝胶的制备、表征及其应用[D].山西大学博士学位论文,2004.
    [108]白利红.醇-水加热法制备二氧化锆气凝胶的研究[D].山西大学硕士学位论文,2005.
    [109]马宏勋.稳定四方晶相二氧化锆气凝胶的制备研究[D].山西大学硕士学位论文,2006.
    [110]张莺.ZrO_2-SiO_2复合氧化物气凝胶负载镍催化剂的制备及其顺酐选择加氢性能研究[D].山西大学硕士学位论文,2006.
    [111](a) UWE HERRMANN and GERHARD EMIG.Liquid Phase Hydrogenation of Maleic Anhydride and Intermediates on Copper-Based and Noble Metal Catalysts [J].Ind.Eng.Chem.Res.1997,36:2885-2896.
    (b) UWE HERRMANN and GERHARD EMIG.Liquid Phase Hydrogenation of Maleic Anhydride to 1,4-Butanediol in a Packed Bubble Column Reactor[J].Incl.Eng.Chem.Res.1998,37:759-769.
    [112]SEONG MOON JUNG,ERIC GODARD,SANG YUN JUNG,et al.Liquid-Phase Hydrogenation of Maleic Anhydride Over Pd-Sn/SiO_2[J].Catalysis Today,2003,87:171-177.
    [113]M.MESSORI,A.VACCARI.Reaction Pathway in Vapor phase Hydrogenation of Maleie Anhydride and Its Esters to γ-Butyrolactone[J].J.Catal.1994,150:177-185.
    [114]V.PALLASSANA,M.NEUROCK,G.COULSTON.Towards Understanding the Mechanism for the Selective Hydrogenation of Maleic Anhydride to Tetrahydrogfuran Over Palladium[J].Catal.Today,1999,50:589-601.
    [115]刘蒲,刘省明,殷元骐.顺酐催化加氢衍生物研究[J].分子催化,1998,12:9-14.
    [116]金松寿等.有机催化[M].上海科学技术出版社,1986,14-20.
    [117]贺德华,朱启明,等.顺酐及其衍生物加氢合成γ-丁内酯[J].石油化工,1997,26(7):425-429.
    [118]赵永祥,武志刚,许临萍,等.前驱物对NiO/SiO_2气凝胶催化性能的影响[J].化学学报,2002,60:596-599.
    [119]赵永祥,武志刚,张临卿,等.溶胶.凝胶法制备NiO/SiO_2催化剂性能研究[J].分子催化,2001,15:369-373.
    [120]赵永祥,武志刚,张临卿,等.超细负载NiO/SiO_2催化剂用于顺酐加氢反应研究[J].分子催化,2002,16:55-59.
    [121]赵永祥,秦晓琴,侯希才,等.镍基催化剂的制备、表征及选择加氢性能[J].物理化学学报,2003,19:450-454.
    [122]赵永祥,秦晓琴,武志刚,等.NiO-SiP_2,NiO-Al_2O_3,NiO-Al_2O_3~-SiO_2催化剂上顺酐选择加氢性能的比较[J].燃料化学学报,2003,31:263-266.
    [1]王国营,邵忠财,高景龙,等.纳米氧化锆在催化领域中的应用[J].化工中间体,2007,11:24-28.
    [2]I.FERINO,M.F.CASULA,A.CORRIAS,et al.4-Methylpentan-2-ol Dehydration Over Zirconia Catalysts Prepared by Sol-Gel[J].Phys.Chem.Chem.Phys.,2000,2:1847-1854.
    [3]M.K.YOUNES and A.GHORBEL,A.RIVES and R.HUBAUT.Acidity of Sulphated Zirconia Aerogels:Correlation Between XPS Studies,Surface Potential Measurements and Catalytic Activity in Isopropanol Dehydration Reaction [J].Journal of Sol-Gel Science and Technology,2004,32:349-352.
    [4]YIN-YAN HUANG,BI-YING ZHAO,YOU-CHANG XIE.Preparation of Zirconia-Based Acid Catalysts From Zirconia Aerogel of Tetragonal Phase [J].Applied Catalysis A:General,1998,172:327-331.
    [5]L.M.MARTINEZ TA,C.MONTES DE CORREA A,J.A.ODRIOZOLA B,et al.Synthesis and Characterization of Sol-Gel Zirconia Supported Pd and Ni Catalysts [J].Catalysis Today,2005,107-108:800-808.
    [1]TOMAS VIVEROS,ALBERTO ZARATE,MIGUEL A.LOPEZ,et al.Alumina Support Modified by Zr and Ti.Synthesis and Characterization[M].Preparation of Catalysts Ⅵ,Scientific Bases for the Preparation of Heterogeneous Catalysts,G.Poncelet et al.(Editors),1995 Elsevier Science B.V.,807-815.
    [2]HAIFENG XIONG,YUHUA ZHANG,KONGYONG LIEW,et al.Catalytic Performance of Zirconium-Modified Co/Al_2O_3 for Fischer-Tropsch Synthesis[J].Journal of Molecular Catalysis A:Chemical,2005,231:145-151.
    [3]WEN-PING MA,YUN-JIE DING and LI-WU LIN.Fischer-Tropsch Synthesis over Activated-Carbon-Supported Cobalt Catalysts:Effect of Co Loading and Promoters;on Catalyst Performance[J].Ind Eng.Chem.Res.2004,43:2391-2398.
    [4]OLIVER Y.GUTIERREZ,FERNANDO PEREZ,GUSTAVO A.FUENTES,et al.Deep HDS over NiMo/Zr-SBA-15 Catalysts with Varying MoO_3 Loading [J].Catalysis Today,2008,130:292-301.
    [5]JEONG GIL SEO,MIN HYE YOUN,IN KYU SONG.Effect of SiO_2-ZrO_2 Supports Prepared by a Grafting Method on Hydrogen Production by Steam Reforming of Liquefied Natural Gas Over Ni/SiO_2-ZrO_2 Catalysts[J].Journal of Power Sources,2007,168:251-257.
    [6]MASARU ICHIKAWA,KAZUHIKO SEKIZAWA,KOICHI SHIKAKURA.Metal-Support Interaction of Rh_4-Rh_(13) Carbonyl Clusters Impregnated on Ti-and Zr-Oxide-Containing Silica and Their Catalytic Activities in the Conversion of Co-H_2to Ethanol[J].Journal of Molecular Catalysis,1981,11:167-179.
    [7]O.CHERIFI,M.M.BETTAHAR,A.AUROUX.Microcalorimetric Study of the Acidity and Basicity of Ni/SiO_2 Catalysts Modified by Metallic Additives Fe,Co,Zr and Ce[J].Thermochimica Acta,1997,306:131-134.
    [8]MOHAN S.RANAA,S.K.MAITY,J.ANCHEYTA,et al.MoCo(Ni)/ZrO_2-SiO_2Hydrotreating Catalysts:Physico-Chemical Characterization and Activities Studies [J].Applied Catalysis A:General,2004,268:89-97.
    [9]ZHI-GANG WU,YONG-XIANG ZHAO,DIAN-SHENG LIU.The Synthesis and Characterization of Mesoporous Siliea-Zirconia Aerogels[J].Microporous and Mesoporous Materials,2004,68:127-132.
    [10]Jack M.Millerl and L.Jhansi Lakshmi.Synthesis,Characterization,and Activity Studies of V_2O_5/ZrO_2-SiO_2 Catalysts[J].Journal of Catalysis,1999,184:68-76.
    [1]M.MESSORI,A.VACCARI.Reaction Pathway in Vapor phase Hydrogenation of Maleic Anhydride and Its Esters to γ-Butyrolactone[J].J.Catal.1994,150:177-185.
    [2]V.PALLASSANA,M.NEUROCK,G.COULSTON.Towards Understanding the Mechanism for the Selective Hydrogenation of Maleic Anhydride to Tetrahydrogfuran Over Palladium[J].Catal.Today,1999,50:589-601.
    [3]刘蒲,刘省明,殷元骐.顺酐催化加氢衍生物研究[J].分子催化,1998,12:9-14.
    [4]金松寿等.有机催化[M].上海科学技术出版社,1986,14-20.
    [5]贺德华,朱启明等.顺酐及其衍生物加氢合成γ-丁内酯[J].石油化工,1997,26(7):425-429.
    [6]CAROLINE M.PARLER,JAMES A.RITTER,MICHAEL D.AMIRIDIS.Infrared Spectroscopic Study of Sol-Gel Derived Mixed-Metal Oxides[J].Journal of Non-Crystalline Solids,2001,279:119-125.
    [7]MONICA POPA,JOSE M.CALDERON-MORENO,LILIANA POPESCU,et al.Crystallization of Gel-Derived and Quenched Glasses in the Ternary Oxide Al_2O_3-ZrO_2-SiO_2 System[J].Journal of Non-Crystalline Solids,2002,297:290-300.
    [8]S.DAMYANOVA P.GRANGE and B.DELMON.Surface Characterization of Zirconia-Coated Alumina and Silica Carriers[J].Journal of Catalysis,1997,168:421-430.
    [9]KOZE TANABE,TAKASHI SUMIYOSHI,KATSUE SHIBATA,et al.A New Hypothesis Regarding the Surface Acidity of Binary Metal Oxides[J].Bulletin of the chemical society of Japan,1974,47(5):1064-1066.
    [10]HAROLD H.KUNG.Formation of New Acid Sites in Dilute Oxide Solid Solutions:A Predictive Model[J].Journal of solid state chemistry,1984,52:191-196.
    [11]H.J.M.BOSMAN,A.P.PIJPERS,and A.W.M.A.JASPERS.An X-Ray Photoelectron Spectroscopy Study of the Acidity of SiO_2-ZrO_2 Mixed Oxides,[J].Journal of Catalysis,1996,161:551-559.
    [12]S.DAMYANOVA,P.GRANGE and B.DELMON.Surface Characterization of Zirconia-Coated Alumina and Silica Carriers[J].Journal of Catalysis,1997,168:421-430.
    [1]金松寿等.有机催化[M].上海:上海科学技术出版社,1986,14-21.
    [2]邝培翠.有机化合物波谱分析[M].武昌:华中师范大学出版社,1986,9-41.
    [3]AIST:RIO-DB Spectral Database for Organic Compounds,SDBS.http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi.
    [4]常建华,董绮功.波谱原理及解析[M].北京:科学出版社,2007,90-91.
    1.Blyholder G.Molecular Orbital View of Chemisorbed Carbon Monoxide[J].J.Phys.Chem.,1964,68:2772.
    2.陈诵英,孙予罕,丁云杰,等.吸附与催化[M[,郑州,河南科学技术出版社,2001,109-115.
    3.F.Abild-Pedersen,M.P.Andersson.CO Adsorption Energies On Metals With Correction For High Coordination Adsorption Sites-A Density Functional Study[J].Surface Science,2007,601:1747-1753.
    4.Changwei Hu,Yaoqiang Chen,Ping Li,et al.Temperature-programmed FT-IR study of the adsorption of CO and co-adsorption of CO and H,on Ni/Al_2O_3[J].Journal of Molecular Catalysis A:Chemical,1996,110:163-169.
    5.陈耀强,龚茂初,曹昭,等.RhCo双金属催化剂的研究Ⅵ.Rh_2Co_2/Al_2O_3上表面羰基氢化物及其动态行为[J].催化学报,1998,19(1):9-13.
    6.陈诵英,孙予罕,丁云杰,等.吸附与催化[M[,郑州,河南科学技术出版社,2001,172-173.
    7.Charles M.Grill and Richard D.Gonraler.Infrared Study of the Adsorption of CO and NO on Silica-Supported Pd and Pt-Pd[J].J.Phys.Chem.1980,84:878-882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700