用户名: 密码: 验证码:
声子晶体型周期复合结构禁带特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹性波或声波在周期性复合介质中传播时,有可能会产生类似光子晶体的禁带特性;即处于禁带频率范围内的弹性波或声波将被禁止传播,于是提出了声子晶体的概念。这一概念的提出和证实,迅速引起了世界各国有关研究机构的高度关注,并积极地开展了研究。这些研究一方面是深入探索声子晶体的禁带机理和特性;另一方面是努力谋求为工程中日益迫切和苛严的振动噪声控制提供新的思路和途径。
     本论文在讨论了声子晶体现有基本理论和研究方法的基础上,较深入地研究了一维、二维和三维声子晶体的某些特性及其影响因素。同时,利用声子晶体的禁带原理,尝试通过构建具有声子晶体禁带特性的周期性复合结构,用于工程结构振动噪声控制的可行性。主要研究工作包括:
     (1)用波传播法对纵波在一维声子晶体中的禁带特性进行了研究,并与平面波展开法进行对比,发现波传播法能在较短计算时间内得到禁带频率。在处理粘弹性材料的频变特性时,波传播法能直接得到禁带频率,比经过迭代改进的平面波展开法要快的多。
     (2)用平面波展开法对二维二元和三元薄板型声子晶体的弯曲禁带特性进行了研究。在二维三元薄板型声子晶体中得到了基于局域共振的低频禁带,分析讨论了填充率、半径比等对禁带特性的影响。采用有限元法对有限周期复合薄板结构弯曲振动的传输特性进行计算,发现弯曲振动在有限板中也受到了较大的抑制,但与禁带频率有一定的差异;并讨论了边界条件对有限周期复合薄板结构振动传输特性的影响。
     (3)用平面波展开法研究了将钢立方散射体以简单立方点阵形式嵌入环氧树脂基体中形成三维声子晶体的禁带特性,分析讨论了填充率、散射体参数变化等对禁带频率的影响。发现通过调节散射体的边长比,可以得到不同方向上的禁带。
     (4)用波传播法研究了钢/环氧树脂周期结构梁的禁带特性,发现剪切变形和转动惯量的考虑会使禁带频率降低,并分析讨论了梁几何物理参数对禁带频率的影响。利用声子晶体的禁带原理,在无限梁上周期性配置动力吸振器来阻止弯曲振动的传播,讨论了动力吸振器和梁参数等对禁带频率的影响。有限元仿真计算表明,禁带频率内的有限梁结构对弯曲振动也有很好的抑制作用。
     (5)用波传播法导出了平面波垂直入射时一维层状声子晶体禁带特性的计算方法,探讨了构建声子晶体型周期组合板结构用于阻断人体敏感噪声谱的可行性。分析计算了由多层铅/软橡胶和钢/丁腈橡胶声子晶体构成的组合板结构的隔声性能。讨论了层数、组合方式等对隔声性能的影响。发现通过参数的合理调制和搭配,多组声子晶体组合板结构能够降低起始频率和提高禁带宽度。
     (6)基于Flügge壳体理论,采用波传播法对两种不同材料组成的周期性复合管道的禁带特性进行了研究,在不同周向模态下均发现了禁带频率。分析讨论了弹性模量比、密度比、晶格常数和管厚等对禁带频率的影响。结果表明,通过参数的合理调制,设计一种能够隔阻振动的周期性复合管道结构是可行的。
     本文研究成果有助于将声子晶体这一概念和原理应用到振动噪声控制中;所构建的若干声子晶体型周期复合结构及对其禁带特性的分析研究,可为工程结构振动噪声控制提供新的思路和途径。
When elastic and acoustic waves propagate in the periodic composite media, maybe some photonic crystals-like band gaps will come into being. That is to say, the propagation of vibration and sound will be forbidden when the frequencies are the range of band gaps. So the concept of phononic crystals (PCs) was brought about. The propagation of elastic and acoustic waves in PCs has received much attention in the world, and a great deal of work has been devoted to the study of band gaps of PCs. The motivation for these studies is to further understand the forming mechanism of band gaps and make great efforts to provide some new idea and approach in vibration and noise control.
     Based on the research status and basic theory of PCs, the characteristics and effect factor of band gaps in one- two- and three-dimensional PCs are studied. At the same time, the feasibility of building some periodic composite structures with band gaps of PCs for vibration and noise control in engineering structures is presented by making use of the forming mechanism of band gaps of PCs. The main work is shown as following:
     (1) Using the wave propagation method (WPM), the band gaps of longitudinal wave in one-dimensional PCs are studied. Results obtained using WPM are evaluated against those by plane wave expansion (PWE). It shows that the computing speed of WPM is quicker than that of PWE. Considering the changing of elastic constants with frequency of viscoelastic material, the band gaps can be obtained directly, and the computing time of WPM is far too smaller than that of PWE improved using iterative method.
     (2) Using PWE, the flexural vibration band gaps in thin plate PCs with two-dimensional binary and ternary units are studied. It is found that the band gaps in low frequency with local resonant mechanism exist in the thin plate PCs with ternary units. The numerical results are used to show how the width of the first full band gap depends on radius ratio, filling fraction and so on. The vibration transmission characteristics of the finite periodic thin plates are simulated by finite element method, which shows that the flexural vibration in finite periodic thin plates will be inhibited seriously in some frequencies which are different from the frequencies of band gaps. And the effect of boundary condition on vibration transmission characteristics in thin plates is also discussed.
     (3) The characteristics of band gaps in three-dimensional PCs consisting of cubic steel embedded in an epoxy host periodically in simple cubic lattice are studied by using of PWE. Some numerical results are used to show how characteristics of band gaps depend on filling fraction, parameters of scatters and so on. It shows that the pseudo band gaps in some directions can be gotten by modulating the side length ratio of scatters.
     (4) Using WPM, the flexural vibration band gaps in periodic beams with inconstant section are studied. It is found that the frequencies of band gaps will have some decreases when shearing deform and rotation inertia are considered. And the effects of geometric and physical parameters of beams on band gaps are discussed. Enlightened by the forming mechanism of band gaps of PCs, the impediment to propagation of flexural waves in infinite beams using dynamic vibration absorbers (DVAs) arranged periodically is investigated. And the effects on band gaps of the parameters of DVAs and beams are studied. Then the flexural vibraton transmission characteristic of a finite beam is proposed by finite element method. The numerical results show that the propagation of flexural waves will be weakened greatly in corresponding band gaps of the infinite beams.
     (5) Using WPM, a method for the calculation of band gaps is deduced for the normal incident noise in one-dimensional PCs of layered plates. Then attention is turned to the feasibility of shielding the noise being sensitive to people in the case of building PCs-like composite plate structures. And the sound insulation of composite plate structures consisting of multilayer Pb-soft rubber and steel-butadience acrylnitrile rubber is presented. The results show that such composite plate structures can lower the starting frequency and widen the band gap by the reasonable modulation and collocation of parameters of PCs.
     (6) Based on Flügge’s shell theory, the band gaps in pipelines composed of a set of periodically repeated elements of two types are investigated by using WPM. It is shown that the band gaps do exist in such periodic pipelines for any circumferential modes. The effects on band gaps of density ratio, stiffness ratio, lattice constant, and thickness of pipelines and so on are discussed. The numerical results show that it is feasible to design a periodic composite structure for deadening the vibration of pipelines.
     The research results in the dissertation are helpful to apply the concept and principle of PCs to vibration and noise control. The band gaps of some certain PCs-like periodic composite structures presented in the dissertation will provide some new idea and approach in vibration and noise control.
引文
[1] R. Alkhatib, M. F. Golnaraghio. Active structural vibration control: a review. Shock and Vibration Digest, 2003, 35(5): 367-383
    [2] J. J. Wang, Q. H. Li. Active vibration control methods of axially moving material– a review. Journal of Vibration and Control, 2004, 10(4): 475-491
    [3]俞孟萨,黄国荣,伏同先.潜艇机械噪声控制技术的现状与发展概述.船舶力学, 2003, 7(4): 110-120
    [4] V. Giurgiutiu. Review of smart-materials actuation solutions for aeroelastic and vibration control. Journal of Intelligent Material Systems and Structures, 2000, 11(7): 525-544
    [5] B. S. Balapgol, S. A. Kulkarni, K. M. Bajoria. A review on shape memory alloy structures. International Journal of Acoustics and Vibrations, 2004, 9(2): 61-68
    [6] G. Song, V. Sethi, H. Li. Vibration control of civil structures using piezoceramic smart materials: a review. Engineering Structures, 2006, 28(11): 1513-1524
    [7]陈源,黄其柏,师汉民.基于振动与噪声控制的声子晶体研究进展.噪声与振动控制, 2005, (5): 1-3
    [8]温激鸿,韩小云,王刚等.声子晶体研究概述.功能材料, 2003, 34 (4): 364-367
    [9] P. G. Martnsson, A. B. Movchan. Vibrations of lattice structures and phononic band gaps. Quarterly Journal of Mechanics and Applied Mathematics, 2003, 56(1): 45-64
    [10] J. H. Page, A. Sukhovich, S. Yang et al. Phononic crystals. Physica Status Solidi (b), 2004, 241(15): 3454-3462
    [11] T. Miyashita. Sonic crystals and sonic wave-guides. Measurement Science and Technology, 2005, 16(5): R47-R63
    [12] B. K. Hendersona, K. I. Maslovb, V. K.Kinrac. Experimental investigation of acoustic band structures in tetragonal periodic particulate composite structures. Journal of the Mechanics and Physics of Solids, 2001, 49(10): 2369-2383
    [13] M. Hirsekorn, P. P. Delsanto, N. K. Batra et al. Modelling and simulation of acoustic wave propagation in locally resonant sonic materials. Ultrasonics, 2004, 42(1-9): 213-235
    [14]周光召.基础研究与国家目标—国家重点基础研究发展计划.中国基础科学, 2005, (2): 5-9
    [15] M. M. Sigalas, E. N. Economou. Elastic and acoustic wave band structure. Journal of Sound and Vibration, 1992, 158(2): 377-382
    [16] M. S. Kushwaha, P. Halevi, L. Dobrzynsi et al. Aoustic band structure of periodic elastic composites. Physical Review Letters, 1993, 71(13): 2022-2025
    [17] R. Martinez-Sala, J. Sancho, J. V. Sanchez et al. Sound attenuation by sculpture. Nature, 1995, 378(16): 241-245
    [18] Z. Y. Liu, X. X. Zhang, Y. W. Mao et al. Locally resonant sonic materials. Science, 2000, 289(8): 1734-1736
    [19]郁殿龙,刘耀宗,王刚等.一维杆状结构声子晶体扭转振动带隙研究.振动与冲击, 2006, 25(1): 104-108
    [20]郁殿龙,刘耀宗,邱静等.一维声子晶体振动特性与仿真.振动与冲击, 2005, 24(2): 92-96
    [21]王刚,温激鸿,刘耀宗等.一维粘弹性材料周期结构的振动带隙研究.机械工程学报, 2004, 40(7): 47-51
    [22] D. L. Yu, Y. Z. Liu, J. Qiu et al. Doubly coupled vibration band gaps in periodic thin-walled open cross-section beams. Chinese Physics, 2005, 14(8): 1501-1506
    [23]齐共金,杨盛良,白书欣等.二维正方点阵液态声子晶体的带隙计算.国防科技大学学报, 2003, 25(1): 103-106
    [24] F. G. Wu, Z. Y. Liu, Y. Y. Liu. Acoustic band gaps in 2D liquid phononic crystals of rectangular structure. Journal of Physics D, 2002, 35(2): 162-165
    [25]黄飞,何锃.二维声子晶体的弹性波禁带及其影响因素.华中科技大学学报(自然科学版), 2006, 34(10): 104-107
    [26] X. Zhang, Y. Y. Liu, F. G. Wu et al. Large two-dimensional band gaps in three- component phononic crystals. Physics Letters A, 2003, 317(1-2): 144-149
    [27]张舒,程建春.二维三元周期复合结构的声带隙.自然科学进展, 2003, 13(10): 1095-1098
    [28]赵宏刚,刘耀宗,温激鸿等.单元结构尺寸对不锈钢/空气二维声子晶体声波禁带的影响.功能材料, 2004, 35(6): 793-795
    [29] M. S. Kushawaha, B. Djafari-Rouhani. Sonic stop-bands for periodic arrays of metallic rods: honeycomb structure. Journal of Sound and Vibration, 1998, 218(4): 697-709
    [30] D. L. Yu, Y. Z. Liu, J. Qiu et al. Complete flexural vibration band gaps in membrane-like lattice structures. Physics Letters A, 2006, 357(2): 154-158
    [31] M. Kafesaki, M. M. Sigals, E. N. Economou. Elastic wave band gaps in 3-D periodic polymer matrix composites. Solid State Communications, 1995, 96(5): 285-289
    [32] X. Zhang, Z. Y. Liu, Y. Y. Liu et al. Elastic wave band gaps for three-dimensional phononic crystals with two structural units. Physics Letters A, 2003, 313(5-6): 455-460
    [33] Z. L. Hou, X. J. Fu, Y. Y. Liu. Singularity of the Bloch theorem in the fluid/solid phononic crystal. Physical Review B, 2006, 73(2): 24304-1-24304-5
    [34] M. M. Sigalas. Elastic wave band gaps and defect states in two-dimensional composites. The Journal of the Acoustical Society of America, 1997, 101(3): 1256-1261
    [35] Z. H. Huang, T. T. Wu. Analysis of wave propagation in phononic crystals with channel using the plane-wave expansion and supercell techniques. IEEE Ultrasonics Symposium, 2005, 1(18-21): 77-80
    [36] X. C. Li, Z. Y. Liu. Bending and branching of acoustic waves in two-dimensional phononic crystals with linear defects. Physics Letters A, 2005, 338(3-5): 413-419
    [37] Y. J. Cao, Z. L. Hou, Y. Y .Liu. Convergence problem of plane-wave expansion method for phononic crystals. Physics Letters A, 2004, 327(2-3): 247-253
    [38] R. E. Camly, B. Djafari-Rouhani, L. Dobrzynski. Transverse elastic waves in periodically layered infinite and semi-infinite media. Physical Review B, 1993, 27(12): 7318-7325
    [39] M. M. Sigalas, C. M. Soukoulis. Elastic-wave propagation through disorder and/or absorptive layered systems. Physical Review B, 1995, 51(5): 2780-2789
    [40] A. K. Vashishth, P. Khurana. Waves in stratified anisotropic poroelastic media: a transfer matrix approach. Journal of Sound and Vibration, 2004, 277(1-2): 239-275
    [41] D. L. Yu, Y. Z. Liu, H. G. Zhao et al. Flexural vibration band gaps in Euler- Bernoulli beams with locally resonant structures with two degrees of freedom. Physical Review B, 2006, 73(6): 064301-1-064301-5
    [42] D. L. Yu, Y. Z. Liu, G. Wang et al. Flexural vibration band gaps in Timoshenko beams with locally resonant structures. Journal of Applied Physics, 2006, 100(12): 124901-1-124901-5
    [43] D. L. Yu, Y. Z. Liu, G. Wang et al. Low frequency torsional vibration gaps in the shaft with locally resonant structures. Physics Letters A, 2006, 348(3-6): 410-415
    [44] G. Wang, D. L. Yu, J. H. Wen et al. One-dimensional phononic crystals with locally resonant structures. Physics Letters A, 2004, 327(5-6): 512-521
    [45] G. Wang, X. S. Wen, J. H. Wen et al. Quasi-one-dimensional periodic structure with locally resonant band gap. Journal of Applied Mechanics, 2006, 73(1): 167-170
    [46] J. H. Sun, T. T. Wu. Analysis of acoustic wave propagation in phononic crystals waveguides using FDTD method. IEEE Ultrasonics Symposium, 2005, 1(18-21): 73-76
    [47]王刚,赵宏刚,温激鸿等.二维周期钢管阵列带隙特性计算中的时域有限差分算法.国防科技大学学报, 2004, 26(4): 72-76
    [48]王刚,温激鸿,韩小云等.二维声子晶体带隙计算中的时域有限差分方法.物理学报, 2003, 52(8): 1942-1947
    [49] A. Khelif, B. Aoubiza, S. Mohammadi. Hypersonic band gaps in two-dimensional piezoelectric phononic crystal slabs. IEEE Ultrasonics Symposium, 2005, 1(18-21): 65-68
    [50] Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur et al. Acoustic channel drop tunneling in a phononic crystal. Applied Physics Letters, 2005, 87(26): 261912-1-261912-3
    [51] Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur et al. Channel drop process of elastic wave in a two dimensional phononic crystals. IEEE Ultrasonics Symposium, 2005, 1(18-21): 69-72
    [52] C. Goffaux, J. Sanchez-Dehesa, P. Lambin. Comparison of the sound attenuation efficiency of locally resonant materials and elastic band-gap structures. Physical Review B, 2004, 70(18): 184302-1-184302-6
    [53] M. Kafesaki, M. M. Sigalas, N. Garcia. Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials. Physical Review Letters, 2000, 85(19): 4044-4047
    [54] J. O. Vasseur, A. Deymier, A. Khelif et al. Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: a theoretical and experimental study. Physical Review E, 2002, 65(5): 056608-1-056608-6
    [55] M. M. Sigalas, N. Garcia. Importance of coupling between longitudinal and transverse components for the creation of acoustic band gaps: the aluminum in mercury case. Applied Physics Letters, 2000, 76(16): 2307-2309
    [56] J. H. Sun, T. T. Wu. Propagation of surface acoustic waves through sharply bent two-dimensional phononic crystal waveguides using a finite-difference time- domain method. Physical Review B, 2006, 74(17): 174305-1-174305-5
    [57] A. Khelif, B. Djafari-Rouhani, J. O. Vasseur et al. Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials. Physical Review B, 2003, 68(2): 24302-1-24302-8
    [58] Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur et al. Transmission and dispersion modes in phononic crystals with hollow cylinders: application to waveguide structure. Physica Status Solidi C, 2004, 1(11): 2711-2715
    [59] J. O. Vasseur, M. Beaugeois, B. Djafari-Rouhani et al. Transmission of acoustic waves through waveguide structures in two-dimensional phononic crystals. Physica Status Solidi C, 2004, 1(11): 2720-2724
    [60] M. Kafesaki, M. M. Sigalas, N. Garcia. Wave guides in two-dimensional elastic wave band-gap marerials. Physica B, 2001, 296: 190-194
    [61] Y. A. Kosevich, C. Goffaux, J. Sanchez-Dehesa et al. Fano-like resonance phenomena by flexural shell modes in sound transmission through two-dimensional periodic arrays of thin-walled hollow cylinders. Physical Review B, 2006, 74(1): 012301-1-012301-4
    [62] C. Goffaux, J. Sanchez-Dehesa, A. L. Yeyati et al. Evidence of fano-like interference phenomena in locally resonant materials. Physical Review Letters, 2002, 88(22): 225502-1-225502-4
    [63] P. F. Hsieh, T. T. Wu, J. H. Sun. Three-dimensional phononic band gap calculations using the FDTD method and a PC cluster system. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53(1): 148-158
    [64] M. M. Sigalas, N. Garcia. Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method. Journal of Applied Physics, 2000, 87(6): 3122-3125
    [65] J. S. Jensen. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures. Journal of Sound and Vibration, 2003, 266(5): 1053-1078
    [66] G. Wang, J. H. Wen, X. S. Wen. Quasi-one-dimensional phononic crystals studied using the improved lumped-mass method: application to locally resonant beams with flexural wave band gap. Physical Review B, 2005, 71(10): 104302-1- 104302-5
    [67]温激鸿,王刚,刘耀宗等.基于集中质量法的一维声子晶体弹性波带隙计算.物理学报, 2004, 53(10): 3385-3389
    [68]王刚,温激鸿,刘耀宗等.大弹性常数差二维声子晶体带隙计算中的集中质量法.物理学报, 2005, 54(3): 1247-1252
    [69] G. Wang, Y. Z. Liu, J. H. Wen et al. Formation mechanism of the low-frequency locally resonant band gap in the two-dimensional ternary phononic crystals. Chinese Physics, 2006, 15(2): 407-411
    [70] G. Wang, X. S. Wen, J. H. Wen et al. Two-dimensional locally resonant phononic crystals with binary structures. Physical Review Letters, 2004, 93(15): 154302-1- 154302-4
    [71] H. G. Zhao, Y. Z. Liu, G. Wang et al. Resonance modes and gap formation in a two-dimensional solid phononic crystal. Physical Review B, 2005, 72(1): 12301-1-12301-4
    [72] G. Wang, L. H. Shao, Y. Z. Liu et al. Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals. Chinese Physics, 2006, 15(8): 1843- 1848
    [73] V. Romero-Garcis, E. Fuster, L. M. Garcia-Raffi et al. Band gap creation using quasiordered structures based on sonic crystals. Applied Physics Letters, 2006,88(17): 174104-1174104-3
    [74] L. Cai, X. Y. Han, X. S. Wen. Band-structure results for elastic waves interpreted with multiple-scattering theory. Physical Review B, 2006, 74(15): 153101-1-153101-4
    [75] R. Saindou, N. Stefanou. Guided and quasiguided elastic waves in phononic crystal slabs. Physical Review B, 2006, 73(18): 184301-1-184301-7
    [76] Y. Lai, Z. Q. Zhang. Large band gaps in elastic phononic crystals with air inclusions. Applied Physics Letters, 2003, 83(19): 3900-3902
    [77] P. Sheng, X. X. Zhang, Z. Y. Liu et al. Locally resonant sonic materials. Physica B, 2003, 338(1-4):201-205
    [78] J. Mei, Z. Y. Liu, C. Y. Qiu. Multiple-scattering theory for out-of-plane propagation of elastic waves in two-dimensional phononic crystals. Journal of Physics: Condensed Matter, 2005, 17(25): 3735-3757
    [79]蔡力,韩小云.二维声子晶体带结构的多散射分析及解耦模式.物理学报, 2006, 55(11): 5866-5871
    [80] Z. Y. Liu, C. T. Chan, P. Sheng. Three-component elastic wave band-gap material. Physical Review B, 2002, 65(16): 165116-1-165116-6
    [81] X. Zhang, Z. Y. Liu, Y. Y. Liu. The optimum elastic wave band gaps in three dimensional phononic crystals with local resonance. European Physical Journal B, 2004, 42(4): 477-482
    [82] R. Sainidou, B. Djafari-Rouhani, Y. Pennec et al. Locally resonant phononic crystals made of hollow spheres or cylinders. Physical Review B, 2006, 73(2): 24302-1-24302-7
    [83] Z. Y. Liu, C. T. Chan, P. Sheng et al. Elastic wave scattering by periodic structures of spherical objects: theory and experiment. Physical Review B, 2000, 62(4): 2446- 2457
    [84] I. E. Psarobas, M. M. Sigalas. Elastic band gaps in a fcc lattice of mercury sphere in aluminum. Physical Review B, 2002, 66(5): 052302-1-052302-3
    [85] M. Kafesaki, E. N. Economou. Multiple-scattering theory for three-dimensional periodic acoustic composites. Physical Review B, 2000, 60(17): 11993-12001
    [86] C. Goffaux, J. Sanchez-Dehesa. Two-dimensional phononic crystals studied using a variational method: application to lattices of locally resonant materials. Physical Review B, 2003, 67(14): 144301-1-144301-10
    [87] J. V. Sanchez-Perez, D. Caballero, R. Martinez-Sala et al. Sound attenuation by a two-dimensional array of rigid cylinders. Physical Review Letters, 1998, 80(24): 5325-5328
    [88] Z. L. Hou, X. J. Fu, Y. Y. Liu. Calculational method to study the transmission properties of phononic crystals. Physical Review B, 2004, 70(1): 14304-1-14304-7
    [89] Z. L. Hou, F. G. Wu, X. J. Fu et al. Effective elastic parameters of the two-dimensional phononic crystal. Physical Review E, 2005, 71(3): 037604-1-037604-4
    [90] S. Robert, J. Conoir, H. Franklin. Propagation of elastic waves through two- dimensional lattices of cylindrical empty or water-filled inclusions in an aluminum matrix. Ultrasonics, 2006, 45(1-4): 178-187
    [91] C. Y. Qiu, Z. Y. Liu, J. Mei et al. The layer multiple-scattering method for calculating transmission coefficients of 2D phononic crystals. Solid State Communications, 2005, 134(11): 765-770
    [92] R. Sainidou, N. Stefanou, I. E. Psarobas et al. A layer-multiple-scattering method for phononic crystals and heterostructures of such. Computer Physics Communications, 2005 166(3): 197-240
    [93] M. Hirsekorn, P. P. Delsanto, A. C. Leung et al. Elastic wave propagation in locally sonic material: comparison between local interaction simulation approach and modal analysis. Journal of Applied Physics, 2006, 99(12): 124912-1-124912-8
    [94]郁殿龙,刘耀宗,王刚等.二维声子晶体薄板的振动特性.机械工程学报, 2006, 42(2): 150-154
    [95] R. Sainidou, N. Stefanou, A. Modinos. Green's function formalism for phononic crystals. Physical Review B, 2004, 69(6): 64301-1-64301-17
    [96] Z. Z. Yan, Y. S. Wang. Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals. Physical Review B, 2006, 74(22): 224303-1-224303-9
    [97] X. D. Zhang, Z. Y. Liu. Negative refraction of acoustic waves in two-dimensional phononic crystals. Applied Physics Letters, 2004, 85(2): 341-343
    [98] M. Seiji. Phonon propagation through a superlattice-solid interface: localized vibrational modes and resonant transmission. Physica E, 2003, (17): 318-319
    [99]郁殿龙,刘耀宗,邱静.表面局域态对一维声子晶体中水平剪切波传输特性的影响.人工晶体学报, 2005, 34(3): 425-431
    [100]郁殿龙,刘耀宗,王刚等.一维杆状声子晶体振动中的表面局域态研究.机械工程学报, 2005, 41(6): 35-38
    [101] M. Seiji, T. Shin-Ichiro. Anomalous delay of phonons reflected from the surface of a superlattice. Applied Surface Science, 2002, 190(1-4): 200-204
    [102] S. X. Yang, J. H. Page, Z. Y. Liu et al. Ultrasound tunneling through 3D phononic crystals. Physical Review Letters, 2002, 88(10): 104301-1-104301-4
    [103]王文刚,刘正猷,赵德刚等.声波在一维声子晶体中共振隧穿的研究.物理学报, 2006, 55(9): 4744-4747
    [104]温激鸿,王刚,刘耀宗等.金属/丁腈橡胶杆状结构声子晶体振动带隙研究.振动工程学报, 2005, 18(1): 1-7
    [105] F. Kobayashi, S. Biwa, N. Ohno. Wave transmission characteristics in periodic media of finite length: multilayers and fiber arrays. International Journal of Solids and Structures, 2004, 41(26): 7361-7375
    [106]温激鸿,郁殿龙,王刚等.周期结构细直梁弯曲振动中的振动带隙.机械工程学报, 2005, 41(4): 1-6
    [107]王刚,温激鸿,温熙森等.细直梁弯曲振动中的局域共振带隙.机械工程学报, 2005, 41(10): 107-110
    [108] P. G. Luan, Z. Ye. Acoustic wave propagation in a one-dimensional layered system. Physical Review E, 2001, 63(6): 066611-1-066611-8
    [109] Z. L. Hou, F. G. Wu, Y. Y. Liu. Acoustic wave propagating in one-dimensional Fibonacci binary composite systems. Physica B, 2004, 344(1-4): 391-397
    [110] A. Bousfia, E. H. EI Boudouti, B. Djafari-Rouhani et al. Omnidirectional phononic reflection and selective transmission in one-dimensional acoustic layered structures. Surface Science, 2001, 482-485(1): 1175-1180
    [111] D. Bria, B. Djafari-Rouhani. Omnidirectional elastic band gap in finite lamellar structures. Physical Review E, 2002, 66(5): 056609-1-056609-8
    [112] O. S. Tarasenko, S. V. Tarasenko, V. M. Yurchenko. Effect of negative acoustic refraction in a one-dimensional phononic crystal. Letters to Jounal of Experimental and Theoretical Physics, 2004, 80(7): 551-554
    [113] R. Min, F. G. Wu, L. H. Zhong et al. Extreme acoustic band gaps obtained under high symmetry in 2D phononic crystals. Journal of Physics D, 2006, 39(10): 2272-2276
    [114]黄飞,何锃.椭圆柱体二维液态声子晶体声波禁带的研究.动力学与控制学报, 2005, 3(4): 86-92
    [115]颜琳,赵鹤平,王小云等.二维声子晶体带结构研究.应用声学, 2006, 25(4): 212-215
    [116] M. M. Sigalas, E. N. Economou. Elastic waves in plates with periodically placed inclusions. Journal of Applied Physics, 1994, 75(6): 2845-2850
    [117]李晓春,易秀英,伍晓赞.方柱转动情况下二维声子晶体的声波带隙结构.中南大学学报(自然科学版), 2006, 37(2): 269-273
    [118] W. M. Kuang, Z. L. Hou, Y. Y. Liu. The effects of shapes and symmetries of scatterers on the phononic band gap in 2D phononic crystals. Physics Letters A, 2004, 332(5-6): 481-490
    [119] Z. L. Hou, W. M. Kuang, Y. Y. Liu. Transmission property analysis of a two-dimensional phononic crystal. Physics Letters A, 2004, 333(1-2): 172-180
    [120]赵宏刚,刘耀宗,韩小云等.空气中正方形排列的大声阻抗柱体阵列的声波禁带.国防科技大学学报, 2004, 26(4): 77-81
    [121] L. H. Zhong, F. G. Wu, X. Zhang et al. Effects of orientation and symmetry of rods on the complete acoustic band gap in two-dimensional periodic solid/gas systems. Physics Letters A, 2005, 339(1-2): 164-170
    [122] Z. G. Huang, T. T. Wu. Temperature effect on the band gaps of surface and bulk acoustic waves in two-dimensional phononic crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(3): 365-370
    [123] L. Z. Hou, F. G. Wu, Y. Y. Liu. Phononic crystals containing piezoelectric material.Solid State Communications, 2004, 130: 745–749
    [124]赵芳,苑立波.二维复式格子声子晶体带隙结构特性.物理学报, 2005, 54(10): 4511-4516
    [125]钟会林,吴福根,姚立宁.遗传算法在二维声子晶体带隙优化中的应用.物理学报, 2006, 55(1): 275-230
    [126] D. L. Yu, G. Wang, Y. Z. Liu et al. Flexural vibration band gaps in thin plates with two-dimensional binary locally resonant structures. Chinese Physics, 2006; 15(2): 266-271
    [127] J. J. Chen, B. Qiu, J. C. Chun. Complete band gaps for lamb waves in cubic thin plates with periodically placed inclusions. Chinese Physics Letters, 2005, 22(7): 1706-1708
    [128] D. L. Yu, Y. Z. Liu, J. Qiu et al. Experimental and theoretical research on the vibrational gaps in two-dimensional three-component composite thin plates. Chinese Physics Letters, 2005, 22(8): 1958-1960
    [129] C. G. Poulton, A. B. Movchan, R. C. McPhedran et al. Eigenvalue problems for doubly periodic elastic structures and phononic band gaps. Proceedings of the Royal Society of London, Series A, 2000, 456(2002): 2543-2559
    [130] V. V. Zalipaev, A. B. Movchan, C. G. Poulton et al. Elastic waves and homogenization in oblique periodic structures. Proceedings of the Royal Society of London, Series A, 2002, 458(2024): 1887-1912
    [131] S. B. Platts, N. V. Movchan, R. C. Mcphedran et al. Two-dimensional phononic crystals and scattering of elastic waves by an array of voids. Proceedings of the Royal Society of London, Series A, 2002, 458(2026): 2327-2247
    [132] W. M. Kuang, Z. L. Hou, Y. Y. Liu et al. The band gaps of cubic phononic crystals with different shapes of scatterers. Journal of Physics D, 2006, 39(10): 2067-2071
    [133] I. E. Psarobas. Viscoelastic response of sonic band-gap materials. Physical Review B, 2001, 64(1): 012303-1-012303-4
    [134] M. S. Kushwaha, B. Djafari-Rouhani. Complete acoustic stop bands for cubic arrays of spherical liquid balloons. Journal of Applied Physics, 1996, 80(6): 3191-3195
    [135] Z. Ye, A. Alvarez, C. Li. Acoustic localization in bubbly liquid media. Physical Review letters, 1998, 80(16): 3503-3506
    [136] M. S. Kushwaha, P. Halevi. Stop bands for cubic arrays of spherical balloons. The Journal of Acoustical Society of America, 1997, 101(1): 619-622
    [137] K. M. Ho, C. K. Cheng, Z. Yang et al. Broadband locally resonant sonic shields. Applied Physics Letters, 2003, 83(26): 5566-5568
    [138] K. M. Ho, Z. Yang, X. X. Zhang et al. Measurements of sound transmission through panels of locally resonant materials between impedance tubes. Applied Acoustics, 2005; 66(7): 751-765
    [139]朱敏,方云团,沈廷根.一维声子晶体缺陷态的研究.人工晶体学报, 2005, 34(3): 536-541
    [140] J. N. Munday, C. B. Bennett, W. M. Robertson. Band gaps and defect modes in periodically structured waveguides. The Journal of the Acoustical Society of America, 2002, 12(4): 1353-1658
    [141] F. G. Wu, Z. L. Hou, Z. Y. Liu et al. Point defect states in two-dimensional phononic crystals. Physics Letters A, 2001, 292(3): 198-202
    [142] F. G. Wu, Z. Y. Liu, Y. Y. Liu. Splitting and tuning characteristics of the point defect modes in two-dimensional phononic crystals. Physical Review E, 2004, 69(6): 066609-1-066609-4
    [143]李晓春,易秀英,肖清武等.三组元声子晶体中的缺陷态.物理学报, 2006, 55(5): 2300-2305
    [144] M. M. Sigalas. Defect states of acoustic waves in a two-dimensional lattice of solid cylinders. Journal of Applied Physics, 1998, 84(6): 3026-3030
    [145] A. Khelif, A. Choujaa, R. Laihem et al. Experimental study of band gaps and defect modes in a two-dimensional ultrasonic crystal. IEEE Ultrasonics Symposium, 2003, 1(5-8): 377-380
    [146] A. Khelif, A. Choujaa, S. Benchabane et al. Guiding and filtering acoustic waves in a two-dimensional phononic crystal. IEEE Ultrasonics Symposium, 2004, 1(23-27): 654-657
    [147] A. Khelif, M. Wilm, V. Laude et al. Guided elastic waves along a rod defect of atwo-dimensional phononic crystal. Physical Review E, 2004, 69(6): 067601-1- 067601-4
    [148]赵芳,苑立波.二维声子晶体同质位错结缺陷态特性.物理学报, 2006, 55(2): 517-520
    [149] Z. D. Yuan, J. C. Cheng. Elastic wave propagation in two-dimensional ordered and weakly disordered phononic crystals. Chinese Physics Letters, 2005, 22(4): 889-891
    [150] H. Chandra, P. A. Deymier, J. O. Vasseur. Elastic wave propagation along waveguides in three-dimensional phononic crystals. Physical Review B, 2004, 70 (5): 054302-1-054302-6
    [151] I. E. Psarobas, N. Stefanou, A. Modinos. Phononic crystals with planar defects. Physical Review B, 2006, 62(9): 5536-5540
    [152] R. Sainidou, N. Stefanou, A. Modinos. Linear chain of weakly coupled defects in a three-dimensional phononic crystal: a model acoustic waveguide. Physical Review B, 2006, 74(17): 172302-1-172302-4
    [153] L. M. Brekhovskikh. Waves in layered media. New York: Academic Press, 1980
    [154] D. J. Mead. Wave propagation in continuous periodic structures: research contributions from Southampton, 1964-1995. Journal of Sound and Vibration, 1996, 190(3): 495-524
    [155] L. Cremer, M. Heckl, E. E. Ungar. Structure-borne sound. Berlin: Springer, 1987
    [156]方俊鑫,陆栋.固体物理学.上海:上海科学技术出版社, 1980
    [157] M. P.诺顿.工程噪声和振动分析基础.北京:航空工业出版社, 1993
    [158] W. Soedel. Vibrations of shells and plates. New York: M. Dekker; 1981
    [159] M. S. Kushwaha, P. Halevi, G. Martinez. Theory of acoustic band structure of periodic elastic composites. Physical review B, 1994; 49(4): 2313-2321
    [160]程祖依.弹性动力学基础.武汉:中国地质大学出版社, 1989
    [161] K. T. Chan, X. Q. Wang, R. M. C. So et al. Superposed standing waves in a Timoshenko beam. Proceedings of the Royal Society of London, Series A, 2002, 458(2017): 83-108
    [162] M. O. M. Carvalho, M. Zindeluk. Active control of waves in a Timoshenko beam. International Journal of Solids and Structures, 2001, 38(10-13): 1749-1764
    [163]程远胜,韩彬,张维衡.基于动力吸振器的结构声传递抑制.噪声与振动控制, 2005, (1): 1-4
    [164]金咸定,成学明.舰船的艉部振动与动力吸振器减振.上海交通大学学报, 1997, 31(2): 38-41
    [165]闫孝伟,王彦琴,盛美萍等.基于功率流的宽带复式动力吸振器优化设计.船舶力学, 2003, 7(6): 130-138
    [166] Y. M. Huang, C. R. Fuller. The effects of dynamic absorbers on the forced vibration of a cylindrical shell and its coupled interior sound field. Journal of Sound and Vibration, 1997, 200(4): 401-418
    [167]傅雅琴,倪庆清,姚跃飞等.玻璃纤维织物/聚氯乙烯复合材料隔声性能.复合材料学报, 2005, 22(5): 94-99
    [168]肖山宏,傅雅琴,姚跃飞等.铅纤维/聚氯乙烯复合材料隔声性能研究.浙江工程学院学报, 2004, 21(4): 275-278
    [169]王宏伟,赵德有.含流体夹层阻尼复合板隔声性能研究.大连理工大学学报, 2000, 40(4): 395-398
    [170]梁基照,蒋兴华.聚合物/无机粒子复合材料的隔声理论模型.华南理工大学学报(自然科学版), 2004, 32(10): 6-9
    [171]孙曜,汪鸿振.双层板声透射性能计算分析.振动与冲击, 2003, 22(4): 94-97
    [172]盛美萍,王敏庆,孙进才.噪声与振动控制技术基础.北京:科学技术出版社, 2001
    [173] M. B. Xu, G. Song. Adaptive control of vibration wave propagation in cylindrical shells using SMA wall joint. Journal of Sound and Vibration, 2004, 278(1-2): 307-326
    [174] S. V. Sorokin, O. A. Ershova. Plane wave propagation and frequency band gaps in periodic plates and cylindrical shells with and without heavy fluid loading. Journal of Sound and Vibration, 2004, 278(3): 501-526
    [175] S. V. Sorokin, O. A. Ershova. Analysis of the energy transmission in compound cylindrical shells with and without internal heavy fluid loading by boundary integral equations and by Floquet theory. Journal of Sound and Vibration, 2006, 291(1-2): 81-99
    [176] W. Flügge. Stress in shells. Berlin: Springer, 1973
    [177] X. M. Zhang, G. R. Liu, K. Y. Lam. Vibration analysis of thin cylindrical shells using wave propagation approach. Journal of Sound and Vibration, 2001, 239(3): 397-403
    [178] M. B. Xu, X. M. Zhang, W. H. Zhang. The effect of wall joint on the vibratoinal power flow propagation in a fluid filled shell. Journal of Sound and Vibration, 1999, 224(3): 395-410
    [179] S. M. Ivansson. Sound absorption by viscoelastic coatings with periodically distributed cavities. The Journal of the Acoustical Society of America, 2006, 119(6): 3558-3567

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700