用户名: 密码: 验证码:
环保型高强高韧端氨基聚醚—环氧树脂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧树脂是一种通用型热固性树脂,固化后的环氧树脂具有力学性能好、耐酸碱腐蚀、固化收缩率小和绝缘强度高等优点,但其脆性大、冲击强度不高的缺点限制了其应用范围,尤其是作为阻尼材料在低温和室温下的应用。而且环氧树脂难溶于水,只溶于芳香烃、酮类以及醇类等有机溶剂,因此传统环氧树脂的应用大多伴随着有机溶剂的使用。现在人们在追求涂料高性能的同时,对于节约资源、保护生态环境越来越重视,传统溶剂型涂料的污染问题已经引起了整个社会的高度重视,因此开发绿色环保型的水性环氧树脂已成为涂料工业发展的主要趋势,具有广阔的应用前景。本论文针对传统环氧树脂的增韧和水性环氧树脂制备工艺中存在的若干问题,提出了采用即含刚性结构单元又含柔性亲水聚醚链段的端氨基聚醚(ATPE)化合物用于环氧树脂增韧及其水性化制备技术,同时研究了端氨基聚醚增韧改性环氧树脂和非离子型水性环氧树脂的结构和性能。主要研究内容和结论如下:
     以聚乙二醇(PEG)和氯化亚砜等为原料成功合成了双端氯代聚乙二醇(PEGCl2),进而分别与对羟基苯胺、对羟基苄胺和对羟基苯乙胺在无溶剂条件下通过相转移催化剂四丁基溴化铵(TBAB)催化,合成了端氨基聚醚α,ω-对苯胺基聚乙二醇(BAPTPE)、α,ω-对苯甲胺基聚乙二醇(BAMPTPE)和α,ω-对苯乙胺基聚乙二醇(BAEPTPE),研究了反应条件对端氨基聚醚合成和BAMPTPE用量对BAMPTPE-DGEBA环氧树脂胶粘剂力学性能的影响规律。
     采用三种不同聚乙二醇(PEG)链段长度(MPE)的柔性端氨基聚醚(BAMPTPE)与双酚A环氧树脂(DGEBA)固化反应,制备了无微相分离的和耐冲击性能优良的AB交联型热固性环氧树脂。研究了MPE对环氧树脂固化产物微观结构和力学性能的影响规律。发现在环氧树脂固化网络中引入两端均能与DGEBA产生化学连接的PEG链段能有效避免其与DGEBA链段产生相分离结构,提高环氧树脂交联网络中的自由体积分数和缩短DGEBA链段的松弛时间,从而改善产物的力学性能。
     采用三种不同端氨基结构的端氨基聚醚(BAPTPE、BAMPTPE和BAEPTPE)与双酚A环氧树脂(DGEBA)固化反应,制备了无微相分离和低温下耐冲击性能优异的交联型热固性环氧树脂。发现ATPE化学结构(在氨苯基间引入Lalkyl)对环氧树脂固化特性和固化产物微观结构和力学性能均有显著的影响。在端氨基聚醚的苯环与氨基间引入-CH2-和-CH2CH2-, ATPE-DGEBA固化体系的反应活化能明显降低;固化产物交联网络中刚性基团间以σ-σ键链接,可通过σ-σ键的旋转改变构象,缩短交联网络中DGEBA链段的应力松弛时间,从而改善固化产物的力学性能。
     以不同结构的固化剂(BAMPTPE600、D400和二氨基二苯甲烷)和双酚A环氧树脂E-44为原料,通过叠层法制备了玻璃化转变温度范围最大可达180℃且力学性能优异的梯度聚合物材料。同时系统地研究了不同固化剂组份对制备的梯度交联聚合物材料结构、力学性能和阻尼性能的影响规律。
     将PEG链段以不同的方式引入到环氧树脂交联网络中制备了无微相分离的PEG接枝聚合物(PEGF51/m-XDA)和PEG交联聚合物(F51-BAMPTPE)。通过动态力学性能测试研究了聚醚链段长度以及聚醚链段在环氧树脂交联网络中的存在形式对聚合物动态力学性能的影响规律。发现PEG链段通过仲氨基与环氧树脂的环氧基加成反应以支链的方式引入环氧树脂交联网络结构中,在提高PEG链段与环氧树脂分子相容性的同时,PEGF51/m-XDA固化产物的阻尼性能得到明显改善。
     以对甲氧基聚乙二醇苯甲胺(p-MPEGBA)和双酚A环氧树脂为原料制备了分散相粒径为纳米级的非离子型自乳化水性环氧树脂。研究了MPE对水性环氧树脂(MPEGE44)水乳液分散相粒径和D230-MPEGE44固化产物力学性能和耐水性能的影响规律。发现在环氧树脂分子结构中引入通过化学连接的PEG链段使MPEGE44获得良好水分散性能的同时可提高交联网络的自由体积分数和缩短环氧树脂链段的松弛时间,从而改善D230-MPEGE44固化产物的耐冲击性。
     以-甲氧基-ω-N-异丙醇基-对苯甲胺基聚乙二醇改性多官能团的酚醛环氧树脂F51制备了非离子型活性环氧树脂乳化剂(PEGF51)。发现在环氧树脂分子结构中引入通过化学连接的PEG链段使PEGF51获得良好水分散性能的同时可提高环氧树脂交联网络中的自由体积分数和缩短环氧树脂链段的松弛时间,从而改善D230-PEGF51/F51固化产物的力学性能。PEGF51与F51摩尔比为1:3时可制备出同时具有优异的拉伸强度、模量、断裂应变、冲击性能和低吸水率的D230-PEGF51/F51环氧树脂。
Cured products of epoxy resins generally have high mechanical strength, low creep and curing shrinkage, strong anticorrosion, and good electrical properties, and are thus widely used in structural adhesives, composite materials, surface coatings and electrical laminates. However, these materials also have a main shortcoming of low toughness due to their high crosslinking density and are therefore prone to fracture at room temperature and low temperature. On the other hand, epoxy resins are insoluble in water and only soluble in aromatics, ketones, alcohols and other organic solvents. So the application of traditional epoxy resin is limited to the organic solvent systerms. Recentlly, the traditional solvent-based paint contamination problem has aroused great attention of the entire community. Therefore, environment-friendly water-based epoxy resin has been the main trend in the development of coatings industry. In this paper, a series of amino-terminated poly(ethylene glycol) compounds (ATPE) which including both regid phenyl and flexible poly(ethylene glycol) segment were synthesized and were used to reinforce or to prepare water-based epoxy resin. The structure and physical properties of the amino-terminated poly(ethylene glycol) compounds modified epoxy resin and nonionic water-based epoxy resin were studied.
     The main contents and conclusions are described as follows:
     Theα,ω-bischlorine end-capped polyethyleneglycol with different moleculer were synthesized by polyethyleneglycol and thionyl chloride. Three amino-terminated polyethers were prepared byα,ω-bischlorine end-capped polyethylene glycol and 4-aminophenol (4-hydroxybenzylamine and 4-hydroxyphenethylamine) in the condition of phase transfer catalysis. Effects of reaction condition on the purity of ATPE and effect ofα,ω-bisaminophenyl terminated poly(ethylene glycol) content on the mechanical properties of BAMPTPE-DGEBA epoxy resin adhesives were studied respectively.
     An advanced amorphous AB-type thermosetting resin without nanophase separation was synthesized by directly moulding diglycidyl ether of bisphenol A (DGEBA) andα,ω-bisaminophenyl terminated poly(ethylene glycol) (BAMPTPE). The stress-strain curves, dynamic mechanical thermal analysis and morphologies of impact fracture surfaces of the cured products were investigated as functions of flexible poly (ethylene glycol) segment length (MPE). The results show that the homogeneous epoxy resin without nanophase separation are available by incorporating poly (ethylene glycol) segments into epoxy crosslinked networks via chemically linked with DGEBA at both terminals, beneficial for increasing free volume fractions and strain relax rates.
     A high performance thermosetting epoxy resin crosslinkable at room temperature is obtained via directly moulding diglycidyl ether of bisphenol A (DGEBA) and flexibleα,ω-bisamino(n-alkylene)phenyl terminated poly(ethylene glycol). The influences of the n-alkylene inserted into amino phenyl of flexible amino-terminated polythers (ATPE) on the curing kinetics, mechanical properties and fractographs of the ATPE-DGEBA cured products were studied. The results show that the insertion of n-alkylene group into the aminophenyl group of the ATPE, on one hand, can remarkably enhance the reactivity of amine with epoxy, much accelerating the curing rate of the ATPE-DGEBA systems. On the other hand, it can significantly increase the strain relaxation rate and decrease glass transition temperature of the ATPE-DGEBA cured products, resulting in slight decrease of the Young's modulus and tensile strength, and significant increase of the toughness and elongation of the ATPE-DGEBA cured products.
     A facile approach to the preparation of a gradient polymer with a broad damping temperature has been synthesized using diglycidyl ether of bisphenyl A epoxy resin (E44) and three kind of curing agents, i.e. the amino terminated polyether (BAMPTPE600),4,4'-Diaminodiphenylmethane (DDM) and polyoxypropylene diamines (D400). The dynamic mechanical properties, morphology and mechanical behaviors of the three gradient polymers (BAMPTPE600-D400/E44, D400-DDM/ E44 and BAMPTPE600-DDM/E44) were investigated. The results show that the BAMPTPE600-DDM/E44 gradient polymer exhibits a wide transition range of over 180℃and excellent mechanical properties. The mechanism of forming the gradient structure is also discussed.
     Polyether amine grafting epoxy resins were prepared through propylene oxide modified p-methoxypolyethylene glycol benzylamine (PO-p-MPEGBA) reacting with the epoxy group of the polyfunctional group novolac epoxy resin(F51). The structure of PEG grafted epoxy resins (PEGF51) were characterized by using infrared spectroscopy. Dynamic mechanical properties, morphology, and damping behavior of the PEGF51 cured by m-xylene-diamine (m-XDA) were investigated as function of poly (ethylene glycol) segment length (MPE). The results show that the homogeneous polymers without nanophase separation are available by chemically incorporating poly (ethylene glycol) segments into epoxy resin crosslinked networks. When MPE is extended, the glass transition temperature of PEGF51/m-XDA cured product decreased. The as-obtained homogeneous polymer exhibits its potential as a material for damping application by a broad loss factor (tanδ)≥0.3 spanning a temperature range of approximately 52℃.
     A new kind of nonionic self-emulsified waterborne epoxy resin (MPEGE44) containing hydrophilic polyether segment was synthesized by using bisphenol A epoxy resin (E44) and p-methoxypolyethylene glycol benzylamine (p-MPEGBA). The impact mechanical properties and water absorption of the D230-MPEGE44 cured products were investigated as functions of flexible PEG chain length (MPE). The results show that waterborne epoxy resins are available by chemically incorporating PEG segment into epoxy resin molecular structure. It is beneficial to increase hydrophilicity of MPEGE44 and strain relaxtion rates of the D230-MPEGE44 crosslinked networks.
     A new kind of nonionic type active waterborne epoxy resin emulsifier containing hydrophilic polyether segment was prepared through reacting propylene oxide modified p-methoxypolyethylene glycol benzylamine (PO-p-MPEGBA) with the epoxy group of the polyfunctional group novolac epoxy resin (F51). The modified epoxy resins (PEGF51) have good emulsification to low molecular weight epoxy resin F51. The results show that the active epoxy resin emulsifiers are available by incorporating poly (ethylene glycol) segments into epoxy molecular structure via chemically linked with F51, beneficial for increasing hydrophilic and strain relax rates. The D230-PEGF51/F51 cured products which exhibit excellent tensile strength, modulus and impact strength at room temperature are obtained by the facile optimization of the concentration of the PEGF51/F51.
引文
[1]Ludovic V, Jean-Pierre P, Benoit M. Use of functional (meth)acrylic cross-linked polymer microparticles as toughening agents for epoxy/diamine thermosets. Macromol. Mater. Eng., 2003,288(11):867-874
    [2]Johnsen B B, Kinloch A J, Taylor A C. Toughness of syndiotactic polystyrene/epoxy polymer blends: microstructure and toughening mechanisms. Polymer,2005,46(18):7352-7369
    [3]Soo-Jin P, Hyun-Chel K. Thermal stability and toughening of epoxy resin with polysulfone resin. J. Polym. Sci., Part B:Polym. Phys.,2001,39(1):121-128
    [4]Wei C, Tan S T, Wang X Y, et al. Effects of liquid crystalline polyurethane on the structure and properties of epoxy. J. Mater. Sci. Lett.,2002,21(9):719-722
    [5]Sankarprasad B, Basudam A. Toughening of epoxy resins hydroxyl-terminated silicon-modified polyurethane oligomers. J. Appl. Polym. Sci.,2003,90(6):1497-1506
    [6]穆中国,王源升.梯度互穿网络聚合物增韧环氧树脂的研究.武汉理工大学学报,2006,28(12):45-47
    [7]孙曼灵.环氧树脂应用原理与技术.北京:机械工业出版社,2002.30-31
    [8]朱方,赵宝华,裘兆荣.环氧树脂水性化体系研究进展.高分子通报,2006,(1):53-57
    [9]Raghavan D, He J.Hunston D, et al. Strain rate dependence of fracture in a rubber-toughened epoxy system. J. Adhes.,2002,78(8):723-739
    [10]蔡浩鹏.柔性侧链环氧树脂的合成、结构与性能研究:[博士学位论文].武汉:武汉理工大学,2007
    [11]Zhang Z, Yu Z Y. Study on isotactic poly(phenyl glycidyl ether)-modified epoxy resins. II.Toughening of epoxy resins. J. Appl. Polym. Sci.,2002,84(6):1223-1232
    [12]Yoon T H, Mcgrath J E. Curing and toughening of a styrene-modified epoxy resin. J. Appl. Polym. Sci.,2001,80(9):1504-1513
    [13]Takahiro O, Mitsukazu O. Effect on the toughness and adhesion properties of epoxy resin modified with silyl-crosslinked urethane microsphere. Polymer,2002,43(3):721-730
    [14]Nam Ho K, Ho Sung K. Toughening method and mechanisms for thermosets. J. Appl. Polym. Sci.,2005,98(4):1663-1667
    [15]孙振华,罗辉阳,赵世琦.橡胶增韧环氧树脂的增韧力学模型综述.高分子材料科学与工程,2001,17(2):1-3
    [16]Blackman B R K, kinloch A J, Paraschi M. The determination of the mode Ⅱ adhesive fracture resistance, GⅡC, of structure adhesive joints:An effective crack length approach. Engineering Fracture Mechanics,2005,72 (6):877-897
    [17]Maria L A, Patricia M F, Roberto J J W. Analysis of the damage zone around the crack tip for two rubber-modified epoxy matrices exhibiting different toughenability. Polymer,2003, 44(5):1537-1546
    [18]Zubeldia A, Larranaga M, Remiro P, et al. Fracture toughening of epoxy matrices with blends of resins of different molecular weights and other modifiers. J. Polym. Sci., Pare B: Polym. Phys.,2004,42(21):3920-3933
    [19]Nam Ho K, Ho Sung K. Micro-void toughening of thermosets and its mechanism. J. Appl. Polym. Sci.,2005,98(3):1290-1295
    [20]Kunz D B. Model for the toughness of epoxy-rubber particulate composit. Mater. Sci.,1980, 15:1109-1123
    [21]Du J, Thouless M D, Yee A F. Effect of rate on crack growth in a rubber-modified epoxy. Acta Mater.,2000,48(13):3581-3592
    [22]Yee. Toughening mechanisms in elastmer-modified epoxy Part Ⅱ:Mechanical studies. Mater. Sci.,1986,21(7):2462-2474
    [23]Bacson J P. Acousitic emission from composite reinforced metals. Appl. Polym. Sci.,1975, 19(1):2545-2549
    [24]Kinloch A J, Shaw S J, Tod D A, et al. Defomatton and fracture behaviour of a rubber-toughened epoxy:l. Microstructure and fracture studies. Polymer,1983,24(10): 1341-1354
    [25]Bagheri R, Pearson R A. Role of particle cavitation in rubber-toughenened epoxies:Ⅱ. Inter-particle distance. Polymer,2000,41(1):269-276
    [26]孙以实,张增民,傅增力等.弹性体共混改性聚丙烯的增韧机理.高分子学报,1995,(1):82-87
    [27]王翔,刘韩星,欧阳世翕等.环氧树脂弹性体的制备及性能研究.武汉理工大学学报,2008,30(4):6-18
    [28]Samanta B C, Maity T, Dalai S. Mechanical properties of modified epoxy:effect of chain length. Pigment & Resin Techi.,2006,35(4):216-223
    [29]修玉英,汪青,罗钟瑜.聚氨酯柔性固化剂的合成及增韧环氧树脂的研究.中国胶粘剂, 2008,17(1):1-3
    [30]赵立英,马会茹,刘培等.室温固化端脂肪氨基聚醚/环氧树脂胶粘剂性能的研究.中国胶粘剂,2007,16(9):15-17
    [31]赵立英,马会茹,刘培等.端脂肪氨基聚醚/环氧树脂涂料的耐环境性能研究.中国涂料,2007,22(11):21-23
    [32]Park S J, Kim H C. Thermal stability and toughening of epoxy resin with polysulfone resin. J. Polym. Sci., Part B:Polym. Phys.,2001,39(1):121-128
    [33]宣英男,黄勇.环氧端基聚芳醚酮/环氧树脂复合体系的研究.高分子材料科学与工程,2002,18(3):134-137
    [34]胡兵,曾黎明,耿东兵.聚醚醚酮增韧改性环氧树脂.化工新型材料,2007,35(3):60-62
    [35]Hodgkin J H, Simon G P, Varley R J. Thermoplastic toughening of epoxy resins:a critical review. Polym. Adv. Technol.,1998,9(1):3-10
    [36]Siddhamalli S K, Kyu T. Toughening of thermoset/thermoplastic composites via reaction-induced phased separation: epoxy/phenoxy blends. J. Appl. Polym. Sci.,2000,77(6): 1257-1268
    [37]Huang Y Q, Liu Y X, Zhao C H. Morphology and properties of PET/PA-6/E-44 blends. J. Appl. Polym. Sci.,1998,69(8):1505-1515
    [38]Dai Q Z, Chen J M, Huang Y. Toughening of epoxy resin blended with thermotropic hydroxyethyl cellulose acetate. J. Appl. Polym. Sci.,1998,70(6):1159-1163
    [39]Vineeta N, Setua D K, Mathur G N. Failure analysis of rubber toughened epoxy resin. J. Appl. Polym. Sci.,2003,87(5):861-868
    [40]赵景丽,张广成,李河清等.环氧树脂增韧研究进展.塑料,2002,31(3):40-44
    [41]Pearce P J, Morris C E M, Ennis B C. Rubber toughening of practical tetraglycidyl methylenedianiline-piperidine adduct systems. Polymer,1996,37(7):1137-1150
    [42]Harani H, Fellahi S, Bakar M. Toughening of epoxy resin using synthesized polyurethane prepolymer based on hydroxyl-terminated polyesters. J. Appl. Polym. Sci.,1998,70(13): 2603-2618
    [43]Dai Q Z, Chen J M, Huang Y. Toughening epoxy resin blend with thermotropic hydroxyethyl cellulose acetate. J. Appl. Polym. Sci.,1998,70(6):1159-1163
    [44]Harani H, Fellahi S, Bakar M. Toughening of epoxy resin using hydroxyl-terminated polyesters. J. Appl. Polym. Sci.,1999,71(1):29-38
    [45]Kong J, Tang Y S, Zhang X J, et al. Synergic effect of acrylate liquid rubber and dbisphenol a on toughness of epoxy resins. Polym. Bull.,2008,60(2-3):229-236
    [46]Nigam V, Setua D K, Mathur G N. Failure analysis of rubber toughened epoxy resin. J. Appl. Polym. Sci.,2003,87 (4):861-868
    [47]Sritama K, Banthia A J. Use of acrylate-based liquid rubbers as toughening agents and adhesive property modifiers of epoxy resin. J. Appl. Polym. Sci.,2004,92 (6):3814-3821
    [48]Auad M L, Borrajo J, Aranguren M I. Morphology of rubber-modified vinyl ester resins cured at different temperatures. J. Appl. Polym. Sci.,2003,89(1):274-283
    [49]Lee W H. Polymer blends and alloys. New York: Academic Press,1992:163-193
    [50]Lin M S, Liu C C, Lee C T. Toughened interpenetrating polymer network materials baseded on unsaturated polyester and epoxy. J. Appl. Polym. Sci.,1999,72(4):585-592
    [51]游晓亮,夏修旸,王芳等.聚氨酯环氧树脂乳液互穿聚合物网络结构与性能研究.高分子学报,2009,(6):586-590
    [52]张玲,韦亚兵.环氧树脂胶粘剂的丙烯酸丁酯增韧研究.高等化学工程学报,2005,19(5):720-723
    [53]徐伟箭,俞霞,刘汉平等.二氧化双环戊二烯环氧树脂/聚氨酯互穿聚合物网络的制备与性能研究.涂料工业,2008,38(1):8-11
    [54]杨亚辉,刘竞超.聚氨酯脲增强增韧环氧树脂的研究.中国塑料,2000,14(6):30-33
    [55]颜正义,游长江,李瑶.环氧树脂增韧改性的研究进展.广州化学,2009,34(1):59-64
    [56]周佳麟,范和平.环氧树脂柔性固化剂研究综述.化学推进剂与高分子材料,2006,4(3):13-16
    [57]杨果,潘勤彦,潘皖江等.柔性胺改性剂对环氧树脂力学性能的影响.材料工程,2006,(5):16-20
    [58]Holman R. Olding polymer. Coat Paints,1998, (2):17-19
    [59]张保龙,唐广粮,由英才等.功能基化介晶高聚物增韧环氧树脂性能研究-材料断裂面形态结构与力学性能的关系.高分子学报,1999,(1):74-79
    [60]王雁冰,黄志雄,石敏先等.柔性环氧树脂复合材料的阻尼性能研究.2007,29(8):14-18
    [61]尚呈元,王翔,王均等.柔性侧链改性环氧树脂的低温增韧研究.武汉理工大学学报,2009,31(19):41-44
    [62]陈铤,施雪珍,顾国芳.双组分水性环氧树脂涂料.高分子通报,2002,(6):63-70
    [63]陶永忠,陈铤,顾国芳.Ⅰ型水性环氧树脂涂料的研制.胶体与聚合物,2001,19(2):19-22
    [64]顾国芳,陈铤,陶隽等.Ⅱ型水性环氧树脂涂料特性研究.化学建材,2001,(3):16-20
    [65]陈铤,顾国芳.Ⅱ型水性环氧树脂乳液及其固化过程研究.建筑材料学报,2001,4(4):356-361
    [66]曹诺,肖卫东.水性环氧树脂体系的制备及研究进展.上海涂料,2005,43(7-8):35-38
    [67]施雪珍,陈铤,顾国芳.相反转法制备水性环氧乳液.涂料工业,2002,(7):18-20
    [68]赵立英,马会茹,孙志刚,官建国.非离子型活性乳化剂及其水性环氧树脂的制备与性能.化学学报,2010,68(2):174-180
    [69]徐宝学,胡慧珠,倪寒秋.高稳定环氧树脂乳液的制备.中国胶粘剂,1998,7(2):13-15
    [70]杨振忠,赵得禄,许元泽等.环氧树脂相反转乳化过程相态发展研究.高等学校化学学报,1999,20(5):809-813
    [71]杨振忠,许元泽,赵得禄等。相反转技术制备环氧树脂水基体系-相反转过程的流变行为研究.高分子学报,1998,(1):78-82
    [72]张肇英,黄玉惠,廖兵.化学改性环氧树脂水基涂料的研究-涂膜性能.广州化学,2000,25(1):5-9
    [73]张肇英,黄玉惠,廖兵等.对-氨基苯甲酸改性环氧树脂的性能表征及乳化性质.高等学校化学学报,2002,23(5):974-978
    [74]Zhang Z Y, Hung Y H, Liao B, et al. Studies on particle size of waterborne emulsions derived from epoxy resin. Eur. Polym. J.,2001, (37):1207-1211
    [75]石磊,刘伟区,刘艳斌等.环氧树脂水性化方法及其涂料研制.化学建材,2006,22(3):1-3
    [76]马承银,郑文姬,胡慧萍等.水性环氧树脂的制备和固化机理的探讨.高分子通报,2006,(1):28-33
    [77]范一波,曹瑞军,范圣强.自乳化水性环氧树脂的合成.高分子材料科学与工程,2006,22(4):40-43
    [78]周继亮,张道洪,王坤.非离子型化学改性水性环氧树脂的合成.涂料工业,2009,39(2):30-33
    [79]周继亮,涂伟萍.室温固化柔韧性水性环氧固化剂的合成与性能.高分子材料科学与 工程,2006,22(1):52-55
    [80]任天斌,黄艳霞,范亚平等.自乳化水性环氧树脂固化剂的制备与性能.建筑材料学报,2006,9(3):317-322
    [81]包哈森.水性环氧树脂及其固化剂的合成与性能研究:[硕士学位论文].天津:天津大学,2008
    [82]Wegmann A. Chemical resistance of waterborne epoxy/amine coatings. Prog. Org.Coat,1997, 32(1):231-239
    [83]周继亮,涂伟萍,夏正斌.水性环氧固化剂的合成与性能.化工新型材料,2005,33(2):25-28
    [84]Shimp D A, Hick D D, Graver R B. Two Component aqueous coating composition based on an epoxy-polyamine adduct and a polyepoxide. US Patent,4246148,1981-01-20
    [85]Klein D H, Wessely H J. Water compatible amine terminated resin useful for curing epoxy resin. US Patent,5567748,1996-10-22
    [86]Tao Y Z, Chen T G. Room curing waterborne epoxy resin coating. Paint Coat,2001,31(1): 36-38
    [87]Stark D C J, Back G E, Elmore J D, et al. Epoxy resin curing agent reacting acid-terminated polyalkylene glycol with excess amine-terminated polyamine-epoxy resin adduct. US Patent, 6127459,2000-10-03
    [88]Elmore J D, Maksymowski V J, Henning J R W, et al. Process to prepare aqueous dispersions of epoxy resin. US Patent,6143809,2000-11-07
    [89]王丰.水性环氧树脂涂料固化剂的合成及性能研究:[硕士学位论文].长沙:湖南大学,2004
    [90]Klein D H, Joerg K C. In-situ emulsified reactive epoxy polymer compositions. US Patent, 6225376,2001-05-01
    [91]Miyamoto A, Sato K, Kurokama M. Novel polyamine. US Patent,4605765,1986-08-12
    [92]张翔宇,刘明辉,李荣光等.喷涂聚脲弹性体用端氨基聚醚的合成与表征.高分子材料科学与工程,2007,23(4):67-70
    [93]黄微波.喷涂聚脲弹性体技术.化学工业出版社,2005,31-36
    [94]郁维铭.端氨基聚醚.的合成方法及其应用.聚氨酯工业,2002,17(1):1-5
    [95]Guo Q P. Effect of curing agent on the phase behaviour of epoxy/phenoxy blends. Polymer, 1995,36(25):4753-4760
    [96]Tan C B, Sun H, Fung B M, et al. Properties of liquid crystal epoxy thermosets cured in a magnetic field. Macromolecules,2000,33(17):6249-6254
    [97]Nakamura Y, Yamaguchi M, Okubo M, et al. Effect of particle size on impact properties of epoxy resin filled with angular shaped angular shaped silica particles. Polymer,1991,32(16): 2976-2979
    [98]Lee J, Yee A F, Inorganic particle toughening II:toughening mechanisms of glass bead filled epoxies. Polymer,2001,42(2):589-597
    [99]Jansen B J P, Rastogi S, Meijer H E H, et al. Rubber-modified glassy amorphous polymers prepared via chemically induced phase separation. 4. Composition of semi- and full-IPNs, and copolymers of acrylate-aliphatic epoxy systems. Macromolecular,1999,32(19):6290-6297
    [100]Ratna D. Phased separation in liquid rubber modified epoxy mixture. Relationship between curing conditions, morphology and ultimate behavior. Polymer,2001,42(9):4209-4218
    [101]Frigione M E, Mascia L, Acierno D. Eur. Polym. J., Oligomeric and polymeric modifiers for toughening of epoxy resins.1995,31(11):1021-1029
    [102]Dean K, Cook W D. Effect of curing sequence on the photopolymerization and thermal curing kinetics of dimethacrylate/epoxy interpenetrating polymer networks. Macromolecules,2002,35(21):7942-7954
    [103]Zhang B L, Tang G L, Shi K Y, et al. A study on the properties of epoxy resin toughened by a liquid crystal-type oligomer. J. Appl. Polym. Sci.,1999,71(1):177-184
    [104]常鹏善,左瑞霖,王汝敏等.一种液晶环氧增韧环氧树脂的研究.高分子学报,2002,(5):682-684
    [105]Thio Y S, Wu J X, Bates F S. Epoxy toughening using low molecular weight poly(hexylene oxide)-poly(ethylene oxide) diblock copolymers. Macromolecules,2006,39(21):7187-7189
    [106]Dean J M, Verghese N E, Pham H Q, et al. Nanostructure toughened epoxy resin. Macromolecules,2003,36(25):9267-9270
    [107]Liu J, Sue H J, Thompson Z J, et al. Nanocavitation in self-assembled amphiphilic block copolymer-modified epoxy. Macromolecules,2008,41(20):7616-7624
    [108]Ruiz-Perez L, Royston G J, Fairclough J P A, et al. Toughening by nanostructure. Polymer, 2008,49(21):4475-4488
    [109]Balakrishnan S, Start P R, Raghavan D, et al. The influence of clay and elastomer concentration on the morphology and fracture energy of preformed acrylic rubber dispersed clay filled epoxy nanocomposites. Polymer,2005,46(25):11255-11262
    [110]孙涛,官建国,余剑英等.端氨基聚氨酯的合成及增韧环氧树脂的研究.高分子材料科学与工程,2005,21(1):117-120
    [111]Yang G, Fu S Y, Yang J P. Preparation and mechanical properties of modified epoxy resins with flexible diamines. Polymer,2007,48(1):302-310
    [112]Samanta B C, Maity T, Dalai S, et al. Amine-terminated poly(ethylene glycol) benzoate(ATPEGB)-modified epoxy: mechanical and thermal properties. J. Adhes. Sci. Technol.,2006,20(6):491-502
    [113]Guan J G, Yuan R Z, Xie H Q. Study on conductivity of two kinds of cross-linked polyether solid electrolytes and electrorheological properties of anhydrous suspensions based on them. Polymer,1998,39(22):5307-5314
    [114]Ma H R, Guan J G,Yuan R Z. Int. J. Mod. Phys. B, Self-assembly morphologies and electrorheological properties of polyaniline-poly(ethylene glycol)-polyaniline triblock copolymers.2007,21(28-29):4961-4966
    [115]Robeson L M, Hale W F, Merriam C N. Miscibility of the poly(hydroxy ether) of bisphenol A with water-soluble polyethers. Macromolecules,1981,14(6):1644-1650
    [116]官建国,马会茹,赵立英等.用作环氧树脂固化剂的α,ω-端氨基聚醚及其制备方法.中国发明专利,1803882,2006-07-19
    [117]Ramis X, Cadenato A, Morancho J M, et al. Curing of a thermosetting powder coating by means of DTMA, TMA and DSC. Polymer,2003,44(7):2067-2079
    [118]Hillmyer M A, Lipic P M, Hajduk D A, et al. Self-assembly and polymeization of epoxy resin-amphiphilic block copolymer nanocomposites. J. Am. Chem. Soc.,1997,119(11): 2749-2750
    [119]Lipic P M, Bates F S, Hillmyer M A. Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures. J. Am. Chem. Soc.,1998,120(35): 8963-8970
    [120]Jansen B J P, Rastogi S, Meijer H E H, et al. Rubber-modified glassy amorphous polymers prepared via chemically induced phase separation. 2. Mode of microscopic deformation studied by in-situ small-angle X-ray scattering during tensile deformation. Macromolecules, 2001,34(12):3998-4006
    [121]徐寿昌.有机化学.北京:高等教育出版社,1993.375-376
    [122]Chen J M, Gowayed Y, Moreira A, et al. Damping of polymer composite materials for flywheel applications. Polym. Compos.,2005,26(4):498-508
    [123]Hu R, Dimonie V L, Elasser M S, et al. Muticomponent latex IPN materials:2 damping and mechanical behavior. J. Polym. Sci. Part B:Polym. Phys.,1997,35(10):1501-1514
    [124]Chu H H, Lee C M, Huang W G. Damping of vinyl acetate-n-butyl acrylate copolymers. J. Appl. Polym. Sci.,2004,91(3):1396-1403
    [125]Xie X M, Matsuoka M, Takemura K. Formation of gradient phase structure during annealing of a polymer blend. Polymer,1992,33(9):1996-1998
    [126]Liao F S, Su A C, Hsu T C. Damping behaviour of dynamically cured butyl rubber/polypropylene blends. Polymer,1994,35(12):2579-2586
    [127]Yamada N, Shoji S, Sasaki H, et al. Developments of high performance vibration absorber from poly(vinyl chloride)/chlorinated polyethylene/epoxidized natural rubber blend. J. Appl. Polym. Sci.,1999,71(6):855-863
    [128]Manoj N R, Chandrasekhar L, Patri M, et al. Vibration damping materials based on interpenetrating polymer networks of carboxylated nitrile rubber and poly(methyl methacrylate) Polym. Adv. Technol.,2002,13(9):664-648
    [129]Qin C L, Cai W M, Cai J, et al. Damping properties and morphology of polyurethane/vinyl ester resin interpenetrating polymer network Mater. Chem. Phys.2004,85(2-3):402-409
    [130]刘学清.采用微波辐照技术制备热膨胀及玻璃化转变温度渐变的梯度聚合物材料的研究:[博士学位论文].成都:四川大学,2004
    [131]Horiuchi K, Suzuki M, Tanaka K. Functionally gradient silicone sheet made by treatment of swelling and polymerization with n-butyl methacrylate. J. Appl. Polym. Sci.,2002,83(18): 3152-3155
    [132]Liu J H, Liu H T, Cheng Y B. Preparation and characterization of gradient refractive index polymer optical rods. Polymer,1998,39(22):5549-5552
    [133]朱永彬,宁南英,孙阳等.聚合物功能梯度材料的研究现状与展望.高分子通报,2007,(6):24-31
    [134]Wen B Y, Wu G, Yu J. A flat polymeric gradient material: preparation, structure and property. Polymer,2004,45(10):3359-3365
    [135]温变英.聚合物梯度材料制备及材料结构与性能研究:[博士学位论文].北京:北京化工大学,2003
    [136]Wang Y Q, Wang Y, Zhang H F, et al. A Novel approach to prepare a gradient polymer with a wide damping temperature range by in-situ chemical modification of rubber during vulcanization. Macromol. Rapid Commun.,2006,27(14):1162-1167
    [137]Amirova L M, Andrianova K A. Gradient polymeric materials based on poorly compatible epoxy oligomers. J. Appl. Polym. Sci.,2006,102(1):96-103
    [138]Huang G S, Jiang L X, Li Q. Molecular design of damping rubber based on polyacrylate-containing silicone. J. Appl. Polym. Sci.,2002,85(4):746-751
    [139]Li C, Xu S A, Xiao F Y, et al. Dynamic mechanical properties of chlorinated butyl rubber blends. Eur. Polym. J.,2006,42(10):2507-2514
    [140]Huang G S, He X R, Wu J R, et al. Effect of miscibility and forced compatibility on damping properties of CIIR/Pac blend. J. Appl. Polym. Sci.,2006,102(4):3127-3133
    [141]Zhu Y B, Ning N Y, Sun Y, et al. A new technique for preparing a filled type of polymeric gradient material. Macromol. Mater. Eng.,2006,291(11):1388-1396
    [142]Kim J, Mok M M, Sandoval R W, et al. Uniquely broad glass transition temperatures of gradient copolymers relative to random and block copolymers containing repulsive comonomers. Macromolecules,2006,39(18):6152-6160
    [143]Qin C L, Zhao D Y, Bai X D, et al. Vibration damping properties of gradient polyurethane/ vinyl ester resin interpenetrating polymer network. Mater. Chem. Phys.,2006,97(2-3): 517-524
    [144]Chern Y C, Tseng S M, Hsieh K H. Damping properties of interpenetrating polymer networks of polyurethane-modified epoxy and polyurethanes. J. Appl. Polym. Sci.,1999, 74(2):328-335
    [145]Manoj N R, Ratna D, Dalvi V, et al. Interpenetrating polymer networks based on carboxyla-ted nitrile rubber and poly(alkyl methacrylate)s. Polym. Eng. Sci.,2002,42(8):1748-1755
    [146]Stadler F J, Auhl D, Munstedt H. Influence of the molecular structure of polyolefins on the damping function in shear. Macromolecules,2008,41(10):3720-3726
    [147]Lee J H, Driva P, Hadjichristidis N. Damping behavior of entangled comb polymer: experiment. Macromolecules,2009,42(4):1392-1399
    [148]Daniels D R, Mcleish T C B, Crosby B J, et al. Molecular rheology of comb polymer melts. .1. Linear viscoelastic response. Macromolecules,2001,34(20):7025-7033
    [149]Zhao X Y, Lu Y L, Xiao D L, et al. Thermoplastic ternary hybrids of polyurethane, hindered phenol and hindered amine with selective two-phase dispersion. Macro. Mater. Eng.,2009, 294(5):345-351
    [150]Ratna D, Manoj L, Chandrasekhar L, et al. Novel epoxy compositions for vibration damping applications. Polym. Adv. Technol.,2004,15(10):583-586
    [151]官建国,赵立英,马会茹等.自乳化水性环氧树脂涂料及其制备方法.中国发明专利,101220237,2008-07-16
    [152]何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,2000.357-359
    [153]Glass J E. Technology for Waterborne Coatings. Washington D C:American Chemical Society,1997.16-20
    [154]XuY Z, Wu Y Z, Yang J M. Hydrodynamic and thermodynamic effects in phase inversion emulsification process of epoxy resin in water. Chin. J. Polym. Sci.,2006,24(2):155-161.
    [155]Yang Z Z. Progress in phase inversion emulsification for epoxy resin waterborne dispersions. Chin. J. Polym. Sci.,2007,25(2):137-143
    [156]Zhang Z Y, Huang Y H, Liao B, et al. Studies on particle size of waterborne emulsions derived from epoxy resin. Eur. Polym. J.,2001,37(6):1207-1211
    [157]Pan G R, Wu L M, Zhang Z Q, et al. Synthesis and characterization of epoxy-acrylate composite latex. J. Appl. Polym. Sci.,2002,83(8):1736-1743
    [158]刘文艳,孙建中,周其云.有机硅改性水性环氧树脂的合成与表征.高等化学工程学报,2007,21(6):1044-1048
    [159]Deepti S, Kamani P K, Shukla M C. Prog. Org. Coat., Studies on synthesis of water-borne epoxy ester based on RBO fatty acids.2003,47(2):87-94
    [160]Elmore J D, Kincaid D S, Komar P C, et al. Waterborne epoxy protective coatings for metal. J. Coat. Technol.,2002,74(931):63-72
    [161]Hydro R M, Pearson R A. Epoxies toughened with triblock copolymers. J. Polym. Sci., Part B:Polym. phys,2007,45(12):1470-1481
    [162]陈永,杨树,袁金芳,等.非离子型水性环氧树脂乳化剂的合成及特性研究.应用化工,2006,35(10):785-788
    [163]Yang Z Z, Xu Y Z, Zhao D L, et al. Preparation of waterborne dispersitions of epoxy resin by the phase-inversion emulsification technique.2. Theoretical consideration of the phase- inversion process. Colloid Polym. Sci.,2000,278(11):1103-1108
    [164]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用.北京:化学工业出版社,2004.165
    [165]Ma C Y, Deng C Y, Zheng W J. Waterborne Epoxy Resin Modified by AMPS. J. Wuhan Univ. of Technol-Mater. Sci.2007,22(4):649-652
    [166]Kawahara H, Matsufuji S, Goto T. Epoxy resin/acrylic composite latexes:reactivity and stability of epoxy groups with carboxyl groups. Adv. Powder Technol.2001,12(4):521-532
    [167]Jahanzad F, Saha B, Sajjadi S, et al. Preparation of polymerizable hybrid miniemulsions by transitional phase inversion emulsification. Macromolecules,2007,40(12):4182-4189
    [168]舒武炳,刘朝阳,贠伦刚等,改性F-51/E-51环氧树脂水乳液研究.高分子材料科学与工程,2006,22(4):235-238
    [169]Spernath L, Regev O, Kalisman Y L, et al. Phase transition in O/W lauryl acrylate emulsions during phase inversion, studied by light microscopy and cryo-TEM. Colloids Surf. A.2009,332(1):19-25
    [170]Ee S L, Duan X M, Liew J, et al. Droplet size and stability of nano-emulsions produced by the temperature phase inversion method. Chem. Eng. J.2008,140(1-3):626-631
    [171]Yang Z Z, Zhao D L, Xu M, et al. Mechanistic investigation on the formation of epoxy resin multi-hollow spheres prepared by a phase inversion emulsification technique. Macromol. Rapid Commun.,2000,21(9):574-578
    [172]Aravand M A, Semsarzadeh M A. Particle formation by emulsion inversion method: Effect of the stirring speed on inversion and formation of spherical particles. Macromol. Symp. 2008,274(1):141-147
    [173]方华高,方治齐,李福.可聚合大分子乳化剂改性水基环氧树脂.热固性树脂,2005,20(3):20-22
    [174]陈平,刘胜平.环氧树脂.北京:化学工业出版社,1999,20-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700