用户名: 密码: 验证码:
泌阳凹陷北部斜坡带稠油成因及油源对比
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稠油及特稠油作为非常规油气资源,在石油工业中的地位和作用越来越重要。本文充分利用石油地质学和油气地球化学相关理论,系统分析泌阳凹陷北部斜坡带稠油特征,在此基础上查明泌阳凹陷北部斜坡带稠油成因并进行油源对比。为该地区及相似地区油气勘探开发提供一定的科学依据。
     本文将泌阳凹陷北部斜坡带分为杨楼-王集-新庄和古城-井楼两个地区,分别对各地区稠油地球化学特征进行研究,认为北部斜坡带稠油主要有两种类型:一类为以原生成因为主,兼有生物降解等次生变化影响的混合型稠油,主要为杨楼地区稠油;另一类是以生物降解作用变化为主要次生稠化因素形成的次生降解型稠油,新庄、古城和井楼地区均为此类型。根据原油遭受的生物降解程度结合稠油地化特征把泌阳凹陷北部斜坡带稠油划分为轻微降解稠油(相当于国外划分的1-3级)、中等降解稠油(相当于国外划分的4-5级)、严重降解稠油(相当于国外划分的6-7级)和非常严重降解稠油(相当于国外划分的8级以上)。
     轻微降解稠油(1-3级),该类稠油正构烷烃受到一定的生物降解,但正构烷烃以及链状类异戊二烯烃仍可辨析,饱和烃气相色谱图一般以甾烷、萜烷为主峰,β-胡萝卜烷含量也较高。这类稠油主要分布于泌阳凹陷北部斜坡带杨楼地区(泌276井、杨21218井、杨3515井和杨J3624井)。
     中等降解稠油(4-5级),该类稠油的正构烷烃基本上被生物降解消耗掉,从饱和烃气相色谱图上仅能大致看出链状类异戊二烯烃,但甾烷和萜烷类仍然保存完整,基本上以它们为主峰,β-胡萝卜烷含量也显得非常高,未能检测到25-降藿烷。这类稠油主要分布于北部斜坡带的杨楼地区(杨50714井)、新庄地区(新浅25井和新5005井)、古城地区(古412井)和井楼地区(楼3917井)。
     严重降解稠油(6-7级):该类稠油中检测到25-降藿烷,规则甾烷开始受到影响,部分规则甾烷和甲基甾烷未检测到。这类稠油主要分布于泌阳凹陷北部斜坡带新庄地区(E新8井和新6164井)及井楼地区(楼1131井、楼2111井和楼J1520井)。
     非常严重降解稠油(8级),这类稠油整个饱和烃色谱图中,以β-胡萝卜烷为主峰,正构烷烃无法辨认,甚至连规则甾烷、甲基甾烷和25-降藿烷都未能检测到,C30藿烷明显降低。这类稠油主要分布于北部斜坡带杨楼地区(杨1900井)、新庄地区(新5005井)、古城地区(古574井、古580井)和井楼地区(楼3913井)。
     由于泌阳凹陷北部斜坡带稠油遭受不同程度生物降解作用的特征,其部分生物标志化合物参数将不能准确反映原始地球化学信息(部分原油生物标志化合物受到降解破坏影响)。通过对国内其他凹陷和地区259个正常原油和烃源岩样品萜烷中C29藿烷与C30藿烷比值研究后,拟采用新伽马蜡烷指数[C30伽马蜡烷/(2×C29藿烷)]替代原来常用的伽马蜡烷指数(C30伽马蜡烷/C30藿烷),该参数可有效地用于生物降解稠油与正常原油间的油源对比。同时,采用(2×C24四环萜烷)/C26长链三环萜烷和C30伽马蜡烷/(2×C29藿烷)比值相关关系图版有效地区分不同地区不同层段的稠油。通过油源对比研究,得出以下结论:杨楼地区稠油为邻近地区核三下段未熟—低熟烃源岩生成的原油或混入部分深凹区成熟原油。王集和新庄地区核三上段稠油来自深凹区核三上段烃源岩,新庄地区稠油是原油经王集运移所至。王集和新庄地区核二段稠油主要为核三上段原油,但可能有深凹区核二段低熟原油的混入。古城、井楼地区核三下段稠油主要来自深凹区核三下段油源,但不排除邻近地区核三下段烃源岩的来源。古城地区核三上段稠油自南向北成熟度变低,且同时具有核三上段和核三下段油源的生标特征,为混源油,只是不同区块混入比例不同而已,自南向北核三下段混入量增多。井楼地区核三上段稠油主要为核三上段来源的成熟油,也有一定量的核三下段原油混入。
As unconventional oil and gas resources in the oil industry, heavy and extra heavy oil has being played more and more important position and role. Sufficiently useing the theory of petroleum geology and geochemistry, in this dissertation I have systematically analysised the characteristics of heavy oil samples in the North Slope of the Biyang Depression. Based on the identification of these characteristics, can we carry out heavy oil-oil and oil-source correlation. The results might provide a scientific basis for oil and gas exploration and development both in the region and similar areas.
     In this article, the North Slope of Biyang Depression has been divides into two zones to study, including Yanglou-Wangji-Xinzhuang zone and Gucheng-Jinglou zone. We have researched the regionally geochemical characteristics of heavy oil samples which collected from two regions. The consequence, originated from respectively geochemical characteristics of heavy oil samples, illuminated that there are two main types of heavy oil the North Slope.One type was the mixed heavy oil that was basically created by the original changes, which mixed with both biodegradable and other secondary changes. This kind of heavy oil mainly distributed in Yanglou zone. The other type was densified secondary factors, particularly biological degradation. This biological degraded type appeared in the Xinzhuang zone, Gucheng zone and Jinglou zone. According to the biodegraded degree, combined with the geochemical characteristics, the heavy oil samples were classified for four groups:slightly biodegraded heavy oil (1~3 grade), moderately biodegraded heavy oil (4~5 grade), severely biodegraded heavy oil (6~7 grade), extremely biodegraded heavy oil (8 grade).
     Slightly biodegraded heavy oil (1~3 grade). N-alkanes in such heavy oil was subject to certain biodegradation, but the chain n-alkanes and isoprenoid hydrocarbons can be recognized. Steranes and terpane constituted the main peak of gas chromatogram. The content of (3-carotane was also high. This type of heavy oil mainly distributed in Biyang Yanglou zone of the northern slope (Bi 276 well, Yang 21218 well, Yang J3624 well and Yang 3515 well).
     Moderately biodegraded heavy oil (4~5 grade). N-alkanes in such heavy oil have been essentially degraded. The gas chromatogram roughly showed the chain of isoprenoids. But the series of steranes and terpane were remainly intact. They basically composed the main peak of gas chromatogram.β-carotane was visibly high.25-norhopane did not be detected. This type of heavy oil mainly distributed in Yanglou zone (Yang 50714 well), Xinzhuang zone (Xinqian 25 well and Xin 5005 well), Gucheng zone (Gu 412 well) and Jinglou zone (Lou 3917 well).
     Severely biodegraded heavy oil (6~7 grade). N-alkanes in such heavy oil almost disappeared.25-norhopane was detected markedly. The series of steranes and terpane began to be affected. Some of steranes and methyl steranes were not able to be detected. This type of heavy oil mainly distributed in Xinzhuang zone (E Xin 8 well and Xin 6164 well) and Jinglou zong (Jing 1131 well, Jing2111 wells and Jing J1520 well).
     Extremely biodegraded heavy oil (8 grade). In these heavy oilsβ-carotane structured the main peak of the saturated hydrocarbon chromatograms. N-alkanes could not be identified. Even steranes, methyl-steranes and 25- norhopane were not detected. The content of C3o-hopane were significantly reduced. This type of heavy oil mainly distributed in Yanglou zone (Yang 1900 well), Gucheng zone (Gu 574 well, Gu 580 well) and Jinglou (Lou 3913 well).
     Due to the influtency of varying degrees of biodegradation, the characters might not reflect the originally geochemical information that contained in heavy oil from the northern slope in Biyang Depression. (Some biomarkers in crude oil were destroyed by biodegradation). We have researched ratio of C29-hopane and C3o-hopane in 259 samples of normal crude oil and source rocks, which were collected from other domestic depressions. Basis on the results, we proposed the new gammacerane index [C30-gammacerane/(2xC29-hopane)] to replace the former gammacerane index (C30-gammacerane/C30-hopane). Using the new gammacerane index, we efficiently identified the oil-source correlation between the biodegraded heavy oil and normal crude oil. At the same time, we have designed a related diagram, which consisted of (2x C24 tetracyclic terpane)/C26-long-chain tricyclic terpane ratio as X axis and C30-Gammacerane/(2x C29-hopane) ratio as Y axis.The related plates accurately distinguished the heavy oil created from different layers in different regions. Through the oil-source correlation studies, it draw the following conclusions:the heavy oil of Yanglouzone derived from the immature to low-mature source rocks of lower Eh3 section in near area or mixed with some of mature crude oil from deep- depression district. The heavy oil of upper Eh3 section in Wangji and Xinzhuang zone derived from source rocks of upper Eh3 section in deep- depression district, and Xinzhuang migrated from Wangji zone. The heavy oil of Eh2 section in Wangji and Xinzhuang zone derived from this area's source rocks of upper Eh3 section, and it may mixed with some of Eh2 low-mature crude oil from deep-depression district. The heavy oil of lower Eh3 section in Gucheng and Jinglou zone derived from the source rocks of lower Eh3 section in deep-depression district, but it could not exclude the contribution of source rocks from lower Eh3 section in near area. The maturity of upper Eh3 heavy oil decreased from south to north in Gucheng zone.It was the mixed oil that shew the characters of source rocks from the upper and lower Eh3.But the proportion was different in different area. The amount of lower Eh3, mixed into Gucheng zone, increased from the south to north. Heavy oil wells on the floor, mainly for the nuclear three-three on the origin of nuclear mature oil, but also a certain amount of crude oil mixed with the nuclear three. The heavy oil of upper Eh3 section in Jinglou zone generally derived from this area's mature source rocks of upper Eh3 section, and it also mixed with some crude oil from lower Eh3 source rocks.
引文
[1]Peters K E, Walters C C, Moldowan J M. The biomarker guide:Biomarkers and Isotopes in Petroleum Systems and Earth History [M]. Cambridge University Press:Cambridge,2005
    [2]王启军,陈建渝.油气地球化学[M].武汉:中国地质大学出版社,1988
    [3]胡守志,张冬梅,唐静.稠油成因综述[J].地质科技情报,2009,28(2):94-97
    [4]李丕龙,张林晔,陈致林,等.《陆相断陷盆地油气地质与勘探》卷三·陆相断陷盆地油气生成与资源评价[M].石油工业出版社/地质出版社,2003.84-99
    [5]朱芳冰,肖伶俐,唐小云.辽河盆地西部凹陷稠油成因类型及其油源分析[J].地质科技情报,2004,23(4):55-58
    [6]马安来,张水昌,张大江,等.塔里木盆地塔东2井稠油地球化学研究[J].地质科技情报,2004,23(4):59-63
    [7]I.Rubinstein, O.P.Stuause, C.Spycherelle, et al. The origin of oil sand bitumens of Alberta. Geochim Cosmochim Acta,1977,41:1341-1353
    [8]牛嘉玉,洪峰.我国非常规油气资源的勘探前景[J].石油勘探与开发,2002,29(5):5-7
    [9]胡见义,牛嘉玉.中国重油沥青资源的形成与分布[J].石油与天然气地质,1994,15(2):105-112.
    [10]牛嘉玉,翁维瑾,徐树宝.辽河西部凹陷重油聚集条件与原油稠变特征[J].石油学报,1990,11(4):17-24
    [11]胡见义,徐树宝,程克明.中国重质油藏的地质和地球化学成因[J].石油学报,1989,10(1):1-10
    [12]卢松年,郜建军,陈义贤,等.生物降解作用与辽河“稠油”的形成[J].石油学报,1986,7(3):1-9
    [13]陈建渝,李水福,田波,等.垦西罗家油区稠油成因[J].石油与天然气地质,1998,19(3):248-253.
    [14]李素梅,庞雄奇,高先志,等.辽河西部凹陷稠油成因机制[J].中国科学D辑:地球科学,2008,38(增刊Ⅰ):138-149
    [15]袁清秋.辽河盆地西部凹陷稠油形成条件分析[J].特种油气藏,2004,11(1):31-46
    [16]张守昌.辽河油区原油稠变的影响因素分析[J].特种油气藏,2004,11(5):24-26
    [17]Peng Luo and Yongan Gu. Characterization of a heavy oil-propane system in the presence or absence of asphaltene precipitation[J]. Fluid Phase Equilibria,2009,277(1):1-8
    [18]朱芳冰,肖伶俐.降解混合型稠油物化性质研究—以辽河盆地西部凹陷为例[J].断块油气田,2004,11(1):37-40
    [19]刘华,蒋有录,龚永杰,等.东营凹陷新立村油田稠油成因[J].新疆石油地质,2008,29(2):179-181
    [20]关德师,牛嘉玉,等.中国非常规油气地质[M].北京:石油工业出版社,1995:30-60
    [21]苏传国.吐哈盆地鲁克沁构造带稠油降解特征及稠变机制[J].特种油气藏,2004,11(2):3-6
    [22]秦建中,李志明,刘宝泉,等.海相优质烃源岩形成重质油与固体沥青潜力分析[J].石油实验地质,2007,29(3):280-285
    [23]J.Connan. Biodegradation of crude oils in reservoirs [M]//Anon. Advances in petroleum geochemistry. London:Academic Press,1984:299-335。
    [24]D.K. Olsen and Edwin B. Ramzel. Heavy oil refining and transportation:effect on the feasibility of increasing domestic heavy oil production. Fuel,1992,71(12):1391-1401
    [25]M. Ikegami, G. Xua, K. Ikeda, S. Honma, H. Nagaishi, D. L. Dietrich and Y. Takeshita. Distinctive combustion stages of single heavy oil droplet under microgravity[J]. Fuel,2003, 82(3):293-304
    [26]霍进,吴运强,赵增义,等.准噶尔盆地风城地区稠油特征及其成因探讨[J].特种油气藏,2008,15(2):25-27
    [27]向才富,陆友明,李军虹.松辽盆地西部斜坡带稠油特征及其成因探讨[J].地质学报,2007,81(4):255-260
    [28]冯子辉,廖广志,方伟,等.松辽盆地北部西斜坡区稠油成因与油源关系[J].石油勘探与开发,2003,30(4):25-27
    [29]王屿涛,丁安娜,惠荣耀.准噶尔盆地西北缘二叠系稠油地化特征及成因探讨[J].石油与天然气地质,1997,19(2):158-163
    [30]Peters K E, Moldowan J M. Effect of source, thermal maturity and biodegradation on the distribution and isomerization of homohopanes in petroleum [J]. Organic Geochemistry, 1991,17(1):47~61.
    [31]Carolyn M, Aitken D M, Jones S R. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs [J]. Nature,2004,431:291-294
    [32]邱桂强,李素梅,庞雄奇,等.东营凹陷北部陡坡带稠油地球化学特征与成因[J].地质学报,2004,78(6):854-862
    [33]邹才能,王兆云,徐冠军等.松辽盆地西部斜坡稠油特征及成因[J].沉积学报,2004,22(4):700-705
    [34]常俊合,黄元湖,李琚洲.达尔其油田稠油生物降解有机地化特征[J].特种油气藏,1998,5(3):8-11
    [35]王政军.稠油降解气的形成机理与控制因素—以准噶尔盆地西北缘为例[D].北京:石油大学,2007
    [36]Zengler K, Richnow H H, Rossello-Mora R, et al, Methane formation from long-chain alkanes by anaerobic microorganisms[J]. Nature,1999,401:266-269
    [37]Ruter P, Rabus R, Wilkes H, et al. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate reducing bacteria [J]. Nature,1994,372:455-458
    [38]Carolyn M, Aitken D M, Jones S R. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs [J]. Nature,2004,431:291-294
    [39]谢文彦,李晓光,陈振岩.辽河油区稠油及高凝油勘探开发技术综述[J].石油学报,2007,28(4):145-150
    [40]Hunt J M. Petroleum geochemistry and geology[M].胡伯良(译),北京:石油工业出版社,1986
    [41]Moldowan J M, Albrecht P, Philp R P J, eds. Biological Markers in Sediments and Petroleum. Englewoog Cliffs:Prentice Hall,1992,320—349
    [42]Sun Y G, Chen Z Y, Xu S P, et al. Stable carbon and hydrocarbon isotopic fractionation of individual n-alkanes accompanying biodegradation:evidence from a group of pregrassively biodegraded oils. Org Geochem,2005,36(2):225—238
    [43]熊永强,耿安松,刘得光.克拉玛依油田稠油中萜类化合物单体碳同位素组成.科学通报,1998,12:1312-1315
    [44]宋一涛等.陆相石油地质文集·孤东油田生物降解原油的特征及油源勘探[M].石油工业出版社(北京),1995
    [45]刘宝柱,孙万军.松辽盆地南部的西部斜坡重油特征与油源探讨[J].石油勘探与开发,2002,2:45-48
    [46]窦立荣,徐树宝,祝玉衡等.二连盆地重质稠油藏成因及地化特征[J].石油学报,1995,2:1-7
    [47]卢鸿,彭平安,徐兴友等.济阳拗陷特殊生物降解油的初步研究[J].沉积学报,2004,22(4):694-699
    [48]K.E.Peters, J.M.Moldowan. The biomarkers guide:interpreting molecular fossils in petroleum and ancient sediments [M]. New York:Prentice Hall,1995:178-187
    [49]P.A. Sutton, C.A. Lewis, and S.J. Rowland. Isolation of individual hydrocarbons from the unresolved complex hydrocarbon mixture of a biodegraded crude oil using preparative capillary gas chromatography[J]. Organic Geochemistry,2005,36(6):963-970
    [50]Christine A. Hughey, Samantha A. Galasso and John E. Zumberge. Detailed compositional comparison of acidic NSO compounds in biodegraded reservoir and surface crude oils by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Fuel,2007,86(5-6):758-768
    [51]Muhammad Asif, Kliti Grice, and Tahira Fazeelat. Assessment of petroleum biodegradation using stable hydrogen isotopes of individual saturated hydrocarbon and polycyclic aromatic hydrocarbon distributions in oils from the Upper Indus Basin, Pakistan[J]. Organic Geochemistry,2009,40(3):301-311
    [52]刘华,蒋有录,杨万琴.东营凹陷中央隆起带油—源特征分析[J].石油与天然气地质,2004,25(1):39-43
    [53]Nils Telnaes and Brian S. Cooper. Oil-source rock correlation using biological markers, Norwegian continental shelf[J]. Marine and Petroleum Geology,1991,8(3):302-310
    [54]J.A. Curiale. Oil-source rock correlations — Limitations and recommendations[J]. Organic Geochemistry,2008,39(8):1150-1161
    [55]I.C. Scotchman, C.E. Griffith, A.J. Holmes and D.M. Jones. The Jurassic petroleum system north and west of Britain:a geochemical oil-source correlation study[J]. Organic Geochemistry,1998,29(1-3):671-700
    [56]Ksenija Stojanovic, Branimir Jovancicevic, Dragomir Vitorovic, Julia Golovko, Galina Pevneva and Anatoly Golovko. Hierarchy of maturation parameters in oil-source rock correlations. Case study:Drmno depression, Southeastern Pannonian Basin, Serbia and Montenegro[J]. Journal of Petroleum Science and Engineering,2007,55(3-4):237-251
    [57]蔡勋育,朱扬明.川东南官渡构造中侏罗统原油地球化学特征及油源[J].石油实验地质,2006,28(4):380-385
    [58]黄光辉,王铁冠,钟宁宁,等.北票盆地侏罗系原油组成特征与油源对比[J].江汉石油学院学报,1993,15(1):21-28
    [59]梁文华.八面河地区古潜山原油特征及油源对比[J].石油天然气学报(江汉石油学院学报),2007,29(3):357-359
    [60]梅玲,张枝焕,王旭东,等.渤海湾盆地南堡凹陷原油地球化学特征及油源对比[J].中国石油大学学报(自然科学版),2008,32(6):40-46
    [61]苏惠,张金川,曲丽萍.东濮凹陷西斜坡油藏地球化学特征与油气源对比[J].石油天然气学报(江汉石油学院学报),2005,27(6):711-716
    [62]杨少勇,曹剑,刘云田,等.柴达木盆地北缘侏罗系两类不同有机质丰度泥岩的生物标志物特征对比研究[J].沉积学报,2008,26(4):689-697
    [63]倪春华,包建平,王鹏辉.生物降解原油的油源对比研究新进展[J].新疆石油地质,2005,26(6):711-714
    [64]林卫东.查干凹陷原油地球化学特征与油源对比[J].石油与天然气地质,2000,21(3):249-251
    [65]李美俊,任平,胡礼国,等.碳同位素类型曲线在辽河盆地油源对比中的应用[J].特种油气藏,2000,7(2):11-12
    [66]郭艳琴,李文厚,陈全红.鄂尔多斯盆地安塞—富县地区延长组—延安组原油地球化学特征及油源对比[J].石油与天然气地质,2006,27(2):218-226
    [67]韩霞,吴拓,徐冠军等.生物降解稠油油源对比新方法及其应用[J].特种油气藏,2007,14(5):98-101
    [68]S. D. Killopsa and M. A. H. A. Al-Jubooria. Characterisation of the unresolved complex mixture (UCM) in the gas chromatograms of biodegraded petroleums. Organic Geochemistry Volume 15, Issue 2,1990, Pages 147-160
    [69]P.A.Sutton, C.A. Lewis, and S.J. Rowland. Isolation of individual hydrocarbons from the unresolved complex hydrocarbon mixture of a biodegraded crude oil using preparative capillary gas chromatography[J]. Organic Geochemistry,2005,36(6):963-970
    [70]M.L.Nievas, M.G. Commendatore, J.L. Esteves and V. Bucala. Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium[J]. Journal of Hazardous Materials,2008,154(1-3):96-104
    [71]D. Mao, H. Van De Weghe, R. Lookman, G. Vanermen, N. De Brucker and L. Diels. Resolving the unresolved complex mixture in motor oils using high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography. Fuel, 2009,88(2):312-318
    [72]南阳油田石油地质志编写组.中国石油地质志(卷七)·南阳油田[M].北京:石油工业出版社,1992:59-61
    [73]钟俊义,郭广立,徐相涛.泌阳凹陷鼻状构造与油气成藏研究[J].石油天然气学报(江汉石油学院学报),2005,27(4):550-551
    [74]汪本善,张丽洁,邢福健,等.泌阳盆地西北坡重油特征及其成因初探[J].沉积学报,1991,9(增刊):103-111
    [75]杨道庆,林社卿,朱景修,等.泌阳凹陷北部斜坡石油成藏组合特征[J].石油天然气学报(江汉石油学院学报),2005,27(1):14-17
    [76]夏东领.泌阳凹陷复杂断块群油气分布控制因素[J].河南石油,2003,17(5):10-12。
    [77]林社卿.泌阳凹陷复杂断块群油藏特征及勘探技术[J].河南石油,2002,16(3):12-14
    [78]曾光明.泌阳凹陷油气成藏组合体及其劫探预侧[J].江汉石油学院学报,2003,25(2):21-22
    [79]邱荣华.泌阳富油凹陷北部斜坡带浅层复杂断块群油气勘探[J].石油与天然气地质,2006,27(6):813-819
    [80]汪本善,张丽洁,邢福健,等.泌阳盆地西北坡重油特征及其成因初探[J].沉积学报,1991,9(增刊):103-111
    [81]王荣新,陈磊,刘丽明.泌阳凹陷古城、新庄油田稠油稠变程度对比分析[J].河南油田,2006,20(3):8-11
    [82]孙冲,任玉林,吴官生,等.泌阳凹陷北部斜坡复杂断块群油气成藏主控因素[J]。石油天然气学报(江汉石油学院学报),2008,30(3):
    [83]石油勘探开发研究院地质研究所.中国陆相油气生成[M].石油工业出版社,1982,114-129
    [84]马军,李水福,胡守志,等.芳烃化合物组成及其在油气地球化学中的应用[J].地质科技情报,2010,29(6):73-79
    [85]李水福,何生.原油芳烃中三芴系列化合物的环境指示作用[J].地球化学,2008,37,(1):45-50
    [86]张刚庆,李水福,何生,等.板桥凹陷原油芳烃组成特征及地球化学意义[J].沉积学报,2009,27(2):367-371
    [87]Schoenmakers P J, Oomen J L M M, Blomberg J. et al. Comparison of comprehensive two-dimensional gas chromatography and gas chromatography-mass spectrometry for the characterization of complex hydrocarbon mixtures[J]. Journal of Chromatography A, 2000,892:29—46
    [88]蒋启贵,王强,马媛媛,等.全二维色谱飞行时间质谱在石油地质样品分析中的应用[J].石油实验地质,2009,31(6):627-632
    [89]Frysinger G S, Gaines R B, Li Xu, et al. Resolving the unresolved complex mixture in petroleum-contaminated sediments[J]. Environmental Science & Technology,2003,37(8): 1653 — 1662
    [90]李水福,胡守志,何生,等.原油中常见化合物的全二维气相色谱一飞行时间质谱分析[J].地质科技情报,2010,29(5):46-50,55
    [91]Venturea G T, Kenig F, Reddy C M, et al. Analysis of unresolved complex mixtures of hydrocarbons extracted from Late Archean sediments by comprehensive two-dimensional gas chromatography(GC×GC)[J]. Organic Geochemistry,2008.39: 846 — 867
    [92]Heguzi A H, E I-Gayar M Sh. Geochemical characterization of a biodegraded crude oil Assrun Field Central Gulf of SUEZ[J]. Journal of Peltroleurn Geology,2009,32(4):343 — 355
    [93]胡守志,李水福,何生,等.泌阳四陷西部原油芳烃组成特征及意义[J].西南石油大学学报(自然科学版),2010,32(3):30-36
    [94]李水福,胡守志,何生,等.泌阳凹陷北部斜坡带生物降解油的油源对比[J].石油学报,2010,31(6):946-951
    [95]胡守志,李水福,何生,等.南襄盆地泌阳凹陷西部稠油地化特征及意义[J].石油实验地质,2010,32(4):387-392

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700