用户名: 密码: 验证码:
基于断裂和损伤力学的无砟轨道静动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无砟轨道以其高平顺、高稳定和少维修等一系列优点成为高速铁路的主要轨道结构型式。由钢筋混凝土组成的无砟轨道主体结构受列车荷载及温度等因素的影响,开裂难以避免,而采用理想弹性梁或板来模拟轨道主体结构不能完全反映其实际受力状态。本文在国内外无砟轨道静、动力学研究的基础上,将断裂力学、轮轨系统动力学、损伤力学和有限单元法相结合,对含裂纹的无砟轨道静、动力特性进行探索性研究。主要研究工作如下:
     (1)无砟轨道主体结构损伤类型分析
     对我国首条无砟轨道试验段进行了现场跟踪调查,分别对单元板式、双块式和纵连板式轨道主体结构损伤进行了分类,总结了无砟轨道主体结构损伤的主要特征和规律,并对裂纹损伤产生的原因进行分析。
     (2)初步建立基于断裂力学的无砟轨道空间有限元分析方法
     根据无砟轨道的结构特征,基于线弹性断裂力学理论,采用有限单元法建立了含裂纹的无砟轨道空间有限元模型。其中钢轨以Euler梁模拟,道床混凝土以20节点六面体等参元模拟,道床钢筋以杆单元模拟,同时考虑了钢筋对道床裂纹张开的约束,构造20节点六面体奇异等参单元反映裂纹尖端奇异。给出了模型的实现方法,编制了计算程序,并结合已有的结果对计算方法进行了验证。
     (3)列车荷载下含裂纹无砟轨道受力
     首先给出了列车荷载下无裂纹无砟轨道的受力,然后计算了相同条件下道床底面20mm等深裂纹尖端的应力场、应力强度因子、裂纹张开量、裂纹处钢筋应力;分析了裂纹深度、裂纹位置和列车荷载位置对裂纹特征参数的影响;最后,根据混凝土断裂韧度,对常规列车荷载下道床裂纹稳定度进行评价。结果表明,道床裂纹对无砟轨道整体受力与变形影响不大,钢筋对裂纹扩展有明显限制作用,道床裂纹因常规列车荷载明显扩展的可能性不大,裂纹处道床下层纵向钢筋应力发生突变且随裂纹深度的增大快速增加,道床中部裂纹对其受力最为不利,列车荷载作用下的道床底面等深裂纹基本属于张开型裂纹。
     (4)温度梯度下含裂纹无砟轨道受力
     对具有道床顶面等深裂纹的双块式轨道在温度梯度作用下的受力进行了分析,给出了裂纹尖端的应力强度因子、裂纹张开量、裂纹处钢筋应力;分析了裂纹深度、裂纹位置及温度梯度大小等因素对裂纹特征参数的影响;最后,对负温度梯度作用下道床顶面裂纹稳定度进行了评价。结果表明,温度梯度作用下道床钢筋对裂纹扩展的限制作用不明显,道床裂纹因温度梯度影响存在明显扩展的可能性,裂纹处道床上层钢筋应力出现突变,且随温度梯度和裂纹深度的增大而快速增加,裂纹出现在道床中部时对其受力最为不利。
     (5)考虑裂纹的无砟轨道动力分析
     根据双块式轨道道床裂纹特点,引入损伤函数描述道床裂纹,基于轮轨系统动力学理论,建立考虑道床裂纹的“车辆-无砟轨道”耦合振动分析方法,给出了考虑道床裂纹的无砟轨道振动响应,分析了车辆速度及裂纹位置对无砟轨道振动响应的影响。结果表明,道床裂纹对车辆和钢轨的动力响应影响很小,而对道床本身及其下部结构有一定影响;道床动弯应力和路基面动应力随车辆速度的增大而增大,道床中部裂纹对道床动弯应力和路基面动应力的影响更为明显。
Ballastless track has become the main type of high-speed railway infrastructure due to its advantages such as high smoothness, high stability and low maintenance. However, damaged cracks of the main concrete structure of the ballastless track was unavoidable taking into account a variety of factors such as the vehicular load or temperature influences, and using elastic beam or slab to simulate the track could not reflect its actural state. In this thesis, on the basis of study at home and abroad, static and dynamic property of ballastless track with damaged cracks was researched by the theory of fracture mechanics, wheel-rail system dynamics, damage mechanics and finite element method. The research work and main conclusion were divided into following areas:
     (1) Classify the damage of ballastless track main stucture
     The damage of track main structure of China's first ballastless track experimental section was investigated; the damage of slab, bi-block and continuous ballastless track were classified respectively. The characteristics and rules of the damage of track main structure were summarized, and the reason of the damaged cracks was analyzed.
     (2) Establish the spatial finite element method of ballastless track preliminarily based on fracture mechanics
     According to the structural characters of ballastless track, a spatial finite element method of ballastless track with damaged cracks was established with finite element method based on the theory of elastic fracture mechanics. Rail was simulated by Euler beam. Concrete and longitudinal bars of track bed were simulated as 20-node hexahedron isoparameteric element and truss element, respectively. Constraint of the crack's opening by bars was also considered. The singularity of crack tip was simulated by 20-node hexahedron isoparameteric singular element. A calculating program of the method was coded and verified by some known results.
     (3) The mechanical analysis of ballastless track with damaged cracks under vehicular load
     Firstly, the mechanics of ballastless track without crack under vehicular load was given, and then for the same track but with full-depth crack of 20mm at the track bed bottom face, some cracking parameters at the crack tip such as the concrete stress, stress intensity factor (SIF), crack opening displacement (COD) and bar stress were calculated. The effects of crack depth, crack location and vehicular location on the cracking parameters were studied. Finally, the crack stability was evaluated according to the fracture toughness of concrete. The results show that the crack has little effect on the global stress and deformation of the track, and the constraint of the crack's opening by bars is significant. The crack is not likely to propagate by general vehicular load. The bar stress at the crack has a sudden increase, and increase with crack length increasing. The most unfavorable crack for the track mechanics is that at the middle of the track bed, and the crack belongs to opening mode crack.
     (4) The mechanical analysis of ballastless track with damaged cracks under temperature gradient
     The mechanics of bi-block track with full-depth crack at the track bed top face under minus temperature gradient were calculated, and SIF, COD and bar stress at the crack tip were also given. The effects of crack depth, crack location and temperature gradient magnitude on the cracking parameters were studied, and the crack stability was also evaluated. The results show that the constraint of the crack's opening by bars under temperature gradient is not significant. The crack is likely to propagate cause of temperature gradient. The bar stress at the crack has a sudden increase, and it increase with crack length and temperature gradient magnitude increasing. The most unfavorable crack for the track mechanics is that at the middle of the track bed.
     (5) Dynamic analysis of ballastless track with damaged cracks
     According to the crack characters of the bi-block track bed, a damagefunction was introduced to simulate deterioration of the bending stiffness, the dynamic coupling analysis method of vehicle and bi-block ballastless track with cracks was established. The dynamic responses of track were given, and the effects of vehicle velocity and crack location on the track dynamic responses were also studied. The results show that crack has little influence on the vehicle and rail vibration responses, while more on the track bed and substructure. Dynamic bending stress of track bed and dynamic stress of subgrade increase obviously with the increase of vehicle velocity. The crack at the middle of the track bed has more effect on dynamic bending stress of track bed and dynamic stress of subgrade than crack at other location.
引文
[1]钱立新.世界高速铁路技术[M].北京:中国铁道出版社,2003
    [2]华茂岜.中国铁路提速之路[M].北京:中国铁道出版社,2002
    [3]中华人民共和国铁道部.中长期铁路网规划(2008年调整)[EB/OL].http://www.china-mor.gov.cn/tllwjs/tlwgh_6.html
    [4]Vogel W.Earthwork structures for new railway lines slab track--principles and suggestions for realization[J].Railway Technical Review,1995(1):29-36
    [5]de Man I A P,Esveld C.Requirements for rail fastenings on slab track[J].Rail Engineering International.2001,30(2):9,11-12
    [6]Henn W.D.System comparison:ballasted track-slab track[J].Rail Engineering International,1993,22(2):6-9
    [7]朱颖.致力打造具有中国自主知识产权的高速铁路-遂渝线无砟轨道综合试验段总体设计[J].中国勘察设计,2007(10):58-61
    [8]何华武.京津铁路科技创新[J].中国铁路,2009(01):12-18
    [9]Esveld C.Recent Developments in Slab Track[J].European Railway Review,2003(2),81-85
    [10]UIC Infrastructure Commission Civil Engineering Support Group.Feasibility study "ballastless track"[R].2002
    [11]王其昌,韩启孟.板式轨道设计与施工[M].成都:西南交通大学出版社,2002
    [12]冈田宏.日本新干线的现状和未来的发展[J].中国铁道科学.2002,23(2):23-25
    [13]Ando K,Sunaga M,Aoki H,et al.Development of Slab Tracks for Hokuriku Shinkansen Line[J].Quarterly Report of RTRI,2001,41(01):35-41
    [14]Ando K,Sunaga M,Sekine E,Aoki H,Yonezawa T,Okamoto T.Practical Use of Slab Track Structure with Reinforced Concrete Bed on Earthworks[J],RTRI REPORT,1999,13(5):5-10
    [15]任静.板式轨道的发展及应用前景[J].世界铁路,1994(2):14-16
    [16]张庆.日本铁路九州新干线板式无碴轨道介绍[J].中国铁路,2002(4):60-61
    [17]Sato Y.Development of vibration-decreasing slab track of type G and its practical use[J].Quarterly Reports of RTRI,1988,29(2):51-55
    [18]Ando K.Twenty years' experience on slab track[J].Quarterly Reports of RTRI,1994,35(1):7-14
    [19]Ando K.Present status on slab track and environmental countermeasure[J].Quarterly Reports of RTRI,1996,37(4):204-209
    [20]何华武.无碴轨道技术[M].北京:中国铁道出版社,2005:33-39
    [21]Bernhard Lichtberger.Track Compendium[M].Hamburg:Eurailpress,2005: 309-332
    [22]Dubsky W.Weichen auf Feste Fahrbahn[J].Der Eisenbahningenieur,1995,46(6):420
    [23]Bachmann H.The Rheda Slab Track System-30 Years of Development Innovation for Railway Track[J].Promain No.1,Fraunhofer Institute IITB,2001,Nov
    [24]Darr.Edgar Qualitaet and Bestaendigkeit der Gleislage von Festen Fahrbahnen[J].Eisenbahningenieur,1997,48(1):26-32
    [25]Johannes Rohlmann,JosefHep.New Standard for Turnouts and Rail Expansion Joints for Traffic-Installation in a High-speed Track in Taiwan[J].Railway Technical Review,2006(special):52-59
    [26]Ger Maas,Tanja Margarete Rickes.Productivity in Rail Construction Lessons Learned From the Development of the RHEDA 2000 Track Construction System[C].ISARC2006:246-251
    [27]Detandt H,Urban M.Slabs under Railway Tracks Founded on Piles for the Passage of Compressible Valleys by High-speed Trains[C].IABSE Symposium,Antwerp,Belgium,2003,August
    [28]Jakob Kunz.Dependable System for High Speeds[J].Hilti Magazine,2005,Fall/Winter:20-23
    [29]Kristein A,Wendrich J.The Settlement Free Slab of the High Speed Line in the Netherlands[C].IABSE Symposium,Antwerp,Belgium,2003,August
    [30]Winfried Bosterling,Dirk Vorderbruck.Innovative Elastic Rail Fastening Systems by Vossloh[J].Railway Technical Review,2006,special:60-63
    [31]DB Systemtechnik-Oberbautechnik.AKFF4-2002,Requirements Catalog for the Construction of the Slab Track 4th Revised Edition[S].Frankfurt:DB Netz AG NST-Produktmanagement Technik
    [32]Moelter T M.Closed and Open Joints at Bridges on High Speed Lines[C].IABSE Symposium,Antwerp,Belgium,2003,August
    [33]Viktor Enoekl,Konrad N(u|¨)bel.On the Track with Z(u|¨)blin[J].Railway Technical Review,2006,special:43-46
    [34]王先龙,李兵选.旭普林无碴轨道技术引进与国产化道路初探[J].铁道标准设计,2006(增刊):38-40
    [35]Bogl S.Slab Track System-FF Bogl[J].Railway Technical Review,2006(special):32-35
    [36]Antlauf W.Feste Fahrbahn Bogl:Einsatz bei der Neubaustrecke N(u|¨)rnberg-Ingolstadt [J].Der Eisenbahningenieur,2004,55(9):64-67
    [37]UIC Infrastructure Commission Civil Engineering Support Group.Feasibility study "ballastless track"[R].2002
    [38]Freudenstein S,Silbermann T.Renewal of the Brandleite Tunnel with Getrac Ballastless Track System on Asphalt[J].Railway Technical Review,2007,special:57-61
    [39]Freudenstein S.Innovative L(o|¨)sungen f(u|¨)r die Feste Fahrbahn GETRAC auf Asphalt[J].Der Eisenbahningenieur,2005,56(08):28-32
    [40]Arnhold G.New Hannover-Berlin HS line has rigid track bed[J].International Railway Journal,1998,38(9):15-16,19
    [41]Ando K,HORIIKE T,MOMOYA Y,EMOTO M.Performance Tests and Basic Design on Solid-Bed Track on Asphalt Pavement[J].RTRI Report,2000,14(4):19-24
    [42]Esveld C.Slab Track:A Competitive Solution[J].Rail International,Schienen der Welt,1999,June
    [43]Daniels L E.Embedded Track Design and Performance[C].9th National Light Rail Transit Conference,2003,Portland,American.
    [44]Markine V L,de Man A P,Jovanovic S,Esveld C.Optimum Design of Embedded Rail Stucture for High-Speed Lines[C].Proceedings of the 3~(rd)International Conference on Railway Enginnering,Edinburgh,2002,July
    [45]Penny Ch.Balfour Beatty embedded track system[C].Proceddings of Rail-Tech Europe 2003 Conference,2003,Jaarbeurs Utrecht,Netherland
    [46]Markine V L,de Man A P,Jovanovic S,Esveld C.Multicriteria Optimisation of Railway Track for High-Speed Lines[C].Proceedings of the 2~(nd) ASMO UK/ISSMO Conference on Engineering Design Optimization,Swansea,UK,2000
    [47]V.L.Markine,C.Esveld,A.W.M.Kok,A.P.de Man.Optimization of a High-Speed Railway Track Using Multipoint Approximation Method[J].American Institute of Aeronautics and Austronautics:1-5
    [48]KIYOSHI ASANUMA.Ladder Track Structure and Performance[J].Railway Technology Avalanche,2004(6):35
    [49]Okuda H,Asanuma K,Matsumoto N,et al.Environmental Performance Improvement of Railway Structural System Using Ladder Track[C].IABSE Symposium,2003,August,Antwerp,Belgium
    [50]Cope D L.Concrete Support for Railway Track:Precast and in Situ Slabs[C].Proceedings of the Institution of Civil Engineers(London),1982,72(8):375-392
    [51]Jackson Bertie.Ballastless Track:A Rapid Transit Wave of the Future[J]Railway Track and Structures,1984,80(4):37-39
    [52]Schilder R.Ballastless track application in existing tunnels-experience gained on Austrian Federal Railways[J].Rail Engineering International,1993,22(04):7-10
    [53]姚明初,邵立新.铁路新型轨下基础[M].北京:中国铁道出版社,1986:57-91
    [54]范佳,林之珉,赵曦,江成.高速铁路减振型无碴轨道减振技术的研究[J].中国铁道科学,1998(12):57-63
    [55]江成,林之珉.高速铁路无碴轨道结构的试验研究[J].中国铁路,2000(7):22-24
    [56]张庆,张立国,冉蕾,胡金培,赵廷俭.秦沈客运专线板式无碴轨道结构设计[J].铁道标准设计,2002(6):9-12
    [57]左景奇,姜其斌,傅代正.板式轨道弹性垫层CA砂浆的研究[J].铁道建筑,2005.9:96-98
    [58]徐伟建,王智勇.抗冻性CA砂浆性能研究[J].铁道建筑,2003(12):66-67
    [59]周宇,许玉德,李海锋.梯子式轨道结构系统[J].城市轨道交通研究,2002,5(01):21-23
    [60]王继军.无碴型预制混凝土纵梁新型轨道结构的研究[J].铁道建筑,2004(11):62-65
    [61]王其昌,陆银根.铁路新型轨下基础应力计算[M]北京:中国铁道出版社,1987:15-45
    [62]Esveld,C.Modern Railway Track 2nd Edition[M].Zaltbommel:MRT Productions,2001
    [63]刘玉详,陈秀方.板式轨道结构分析计算的两种方法[J].城市轨道交通研究,2007(06):32-34,66
    [64]齐春雨.土质路基板式轨道结构强度计算研究[J],铁道标准设计,2006(2):26-28
    [65]孙立.武广客运专线双块式轨道设计[J].铁道标准设计,2006(增刊):155-158
    [66]高江宁.整体道床计算方法与设计参数研究[D].成都,西南交通大学,2004:52-59
    [67]岳渠德,姜福香,李向国.区间轨道结构双层叠合交叉梁系力学模型研究[J],铁道标准设计,2002(12):1-4
    [68]李锁全,段树金,王军文,石现峰.轨道结构的弹性支承交叉梁系模型[J].工程力学,2001(增刊):508-513
    [69]王军文,段树金,李锁全.高速铁路板式轨道结构静力分析[J].工程力学,2002(增刊):290-293
    [70]赵坪锐.客运专线无碴轨道设计理论与方法研究[D].成都,西南交通大学,2008
    [71]赵坪锐,刘学毅.板式轨道动力特性分析及参数研究[J].铁道建筑,2004(05):48-50
    [72]佐藤吉彦,徐涌(译).新轨道力学[M].北京,中国铁道出版社,2001:238-240
    [73]任静.板式轨道研究与设计初探[J].铁道标准设计,1996(06):25-28
    [74]Eisenmann J,Leykauf G.Feste Fahrbahn f(u|¨)r Schienenbahnen[M].Betonkalender,2000:10-15
    [75]管吉波.德国Rheda2000无碴轨道系统路基地段的力学计算简介[J],铁道标准设计,2006(增刊):182-185
    [76]范俊杰.现代铁路轨道[M].北京:中国铁道出版社,2000:43-51
    [77]刘成轩,翟婉明.轨道板强度问题的有限元分析初探[J].铁道工程学报,2001(1):24-26
    [78]高亮,马鸣楠,王冬梅.直线电机运载系统桥上无碴轨道结构力学特性的研究[J].铁道标准设计,2007(7):5-7
    [79]李春霞.土路基上板式轨道力学分析[D].成都,西南交通大学,2005:24-31
    [80]Rail.One GnmH.Rheda 2000 Crack width calculation according to DIN 1045-1[R].Ingolstaedter,2005,6
    [81]Lechner B.Der Temperaturgradient als Bemessungsgr(o|¨)sse bei der Dimensionierung von Dicken Betondecken[D].M(u|¨)nchen,Technische Universit(a|¨)t M(u|¨)nchen,1996
    [82]Eisenmann J,Leykauf G.Beton-fahrbahnen[M].Munchen:Ernst&Sohn, 2003:22-59
    [83]#12
    [84]日本铁道建设公团盛冈支社.东北干、RC路基工程详细设计等RC路基工程、t=300设计计算书[R].1999
    [85]谈至明,姚祖康.非线性温度场下的水泥混凝土路面温度应力[J].中国公路学报,1993,6(4)
    [86]张红波.贫混凝土基层水泥混凝土路面温度应力分析[D].硕士学位论文,长沙理工大学,2005.4
    [87]姚祖康.水泥混凝土路面设计[M].合肥:安徽科学技术出版社,1999:77-79,83-84,110-113
    [88]曹东伟,胡长顺.连续配筋混凝土路面温度应力分析[J].西安公路交通大学学报,2001,21(02):1-5
    [89]曹东伟,胡长顺.CRCP混凝土温度松驰应力分析[J].中国公路学报,2001,14(01):1-4
    [90]周永磊,寒冷地区连续配筋混凝土路面温度应力分析与配筋设计[D].长春:吉林大学硕士学位论文,2006
    [91]邓学均,陈荣生.刚性路面设计(第二版)[M].北京:人民交通出版社,2004:423-430
    [92]王森荣.板式无碴轨道温度力研究[D].成都:西南交通大学硕士学位论文,2007
    [93]车晓娟.轨道板配筋对温度裂缝的影响分析[D].成都:西南交通大学硕士学位论文.2007
    [94]赵伟.单元板式无碴轨道伤损及纵向受力分析[D].成都:西南交通大学硕士学位论文,2008
    [95]朱颖.大跨桥上纵连板式轨道结构受力分析与试验研究[D].成都:西南交通大学硕士学位论文,2007
    [96]邓存宥.大跨桥上纵连板式无碴轨道结构分析及参数研究[D].成都:西南交通大学硕士学位论文,2007
    [97]Lyon D.The calculation of track forces due to dipped rail joints,wheel flats and rail welds.The Second ORE Colloquium on Technical Computer Programs,May 1972
    [98]Jenkins H H,et al.The effect of track and vehicle parameters on wheel/rail vertical dynamic forces.Railway Engineering Journal,1974,3(1):2-16
    [99]Newton S G,Clark R A.An investigation into the dynamic effects on the track of wheel flats on railway vehicles.Journal of Mechanical Engineering Science,1979,21(4):287-297
    [100]Clark R A,Dean P A,Elkins J A&Newton S G.An investigation into the dynamic effects of railway vehicle running on corrugated rails.Journal of Mechanical Engineering Science,1982,24(2):65-76
    [101]Ahlbeck D R,et al.The development of analytical models for railroad track dynamics.Railroad Track Mechanics&Technology,Pergamon Press,1978
    [102]佐藤裕著,卢肇英译,轨道力学.北京:中国铁道出版社,1981
    [103]李定清.轮轨垂向相互动力作用及其动力响应.铁道学报,1987,9(1):1-8
    [104]许实儒,徐维杰,仲延禧.钢轨接头处轮轨冲击力的模拟分析.铁道学报,工务工程专集,1989
    [105]王澜.轨道结构随机振动理论及其在轨道结构减振中的应用.铁道科学研究院博士学位论文,北京,1988
    [106]李成辉.轨道结构振动理论及应用研究[D].成都:西南交通大学博士学位论文,1996
    [107]翟婉明.车辆-轨道垂向耦合动力学[D].成都:西南交通大学博士学位论文,1991
    [108]Ripke B,Knothe K.Simulation of High Frequency Vehicle-track Interactions[J].Vehicle System Dynamics,1995,24(Supp 1.):72-85.
    [109]Oscarsson J,Dahlberg T.Dynamic Train/Track/Ballast Interaction computer
    [110]Models and Full-scale Experiments[J].Vehicle System Dynamics,1998,28(Supp 1.):73-84
    [111]Oscarsson J.Dynamic Train-track-ballast Interaction with Unevenly Di(?)tributed Track Properties[C].17th IAVSD Symposium on Dynamics of Vehicles on Roads and on Tracks,Lyngby,Denmark,2001
    [112]胡用生,谭复兴,陆正刚.TBDS轮轨耦合模型的仿真验证及其应用[J].铁道学报,1996,18(3).
    [113]李德建,曾庆元.列车-直线轨道空间耦合时变系统振动分析[J].铁道学报,1997,19(1):101-107
    [114]刘学毅,印洪.钢轨波形磨耗的影响因素及减缓措施[J].西南交通大学学报,2002,37(5):483-487.
    [115]王平.道岔区轮轨系统动力学的研究[D].成都:西南交通大学博士学位论文,1997.
    [116]陈果.车辆-轨道耦合系统随机振动分析[D].成都:西南交通大学博士学位论文,2000.
    [117]王开云,翟婉明,蔡成标.车辆在弹性轨道结构上的横向稳定性分析[J].铁道车辆,2001(7):1-4.
    [118]王其昌,蔡成标,罗强,蔡英.高速铁路路桥过渡段轨道折角限值分析[J].铁道学报,1998,20(3):109-113
    [119]蔡成标.高速铁路列车-线路-桥梁耦合振动理论及其研究[D].西南交通大学博士学位论文,2004
    [120]晋智斌.车-线-桥耦合系统及车桥随机振动[D].西南交通大学博士学位论文,2007
    [121]翟婉明,韩卫军,蔡成标.高速铁路板式轨道动力特性研究[J].铁道学报,1999,21(06):64-69
    [122]娄平,曾庆元.移动荷载作用下板式轨道的有限元分析[J].交通运输工程学报,2004,4(01):29-33
    [123]蔡成标,翟婉明,王其昌.高速列车与高架桥上无碴轨道相互作用研究[J].铁道工程学报,2000(03):29.32
    [124]赫丹,向俊,郭高杰,孔凡兵,曾庆元.砂浆刚度和阻尼对高速列车-板式轨道时变系统竖向振动的影响[J].铁道科学与工程学报,2006,3:26-30
    [125]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999
    [126]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1997
    [127]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005
    [128]朱伯龙,董振祥.钢筋混凝土非线性分析[M].上海:同济大学出版社,1985
    [129]徐世娘,赵国藩.混凝土结构裂缝扩展的双K断裂准则.土木工程学报,1992,25(2):32-38
    [130]Hillerborg A.Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements.Cement and Concrete Research,1976,(06):773-782
    [131]Xu Shilang and Reinhardt H W.Determination of double-K criterion for crack propagation in quasi-brittle fracture,Part Ⅱ:Analytical evaluating and practical measuring methods for thress-point bending notched beams.International Journal of Fracture,1999,98:151-177
    [132]G.V.Guinea,J.Y.Pastor,J.Planas and M.Elices,Stress intensity factor,compliance and CMOD for a general three-point-bend beam.Inter.J.Fracture,1998,39:103-116
    [133]Jenq Y S and Shah S R,Two parameter fracture model for concrete,J.Engin.Mech.(ASCE),1985,111:773-782
    [134]彭妙娟,张登良,夏永旭.半刚性基层沥青路面的断裂力学计算方法和应用[J],中国公路学报,Vol.11 No.2,April.1998
    [135]周志刚,张起森,郑建龙.交通荷载作用下土工格栅防止沥青路面开裂的桥联效应[J].中国公路学报,Vol.12 No.3,July 1999
    [136]周志刚,张起森,郑建龙.加筋材料阻止沥青路面反射裂缝的桥联增韧的有限元分析[J].土木工程学报,Vol.33 No.1,Feb 2000
    [137]符冠华,杨军,陆庆,陈荣生.夹层防裂作用的深入分析[J].公路交通科技,Vol.17 No.4.Aug.2000
    [138]梁乃兴,萧赓.水泥粉煤灰碎石基层力学性能对路面结构的影响分析[J].中国公路学报,Vol.16 No.3,July 2003
    [139]武键民,李晓军.沥青混合料小梁疲劳试验的有限元模拟[J].长安大学学报(自然科学版),Vol.24 No.1 Jan.2004
    [140]王金昌,朱向荣.软土地基上含反射裂缝沥青道路的动力响应分析[J].中国公路学报.Vol.17 No.1 Jan 2004
    [141]毛成,邱延峻,李云鹏.沥青路面表面裂纹扩展模拟及影响因素分析[J],西南交通大学学报,Vol.39 No.4,Aug 2004
    [142]岳福青,杨春风.断裂力学理论在道路疲劳寿命预测中的应用[J].昆明理 工大学学报(理工版),Vol.28 No.6,Dec.2003
    [143]罗睿等.基层对层间连续路面应力强度因子影响的研究[J].东南大学学报(自然科学版),Vol.31 No.3,May.2001
    [144]罗睿,黄晓明.利用权函数计算沥青路面层间部分约束的面层底裂缝应力强度因子[J].岩土工程学报,Vol.23 No.5,Sept.2001
    [145]罗睿.黄晓明.沥青路面表面裂缝应力强度因子计算方法研究[J].公路交通科技.2002.19(1):12-15
    [146]吴赣昌,张涂生.沥青路面温缩裂缝的应力强度分析[J].中国公路学报,Vol.9 No.1,Mar.1996
    [147]林广平.基于断裂力学的钢桥面铺装层疲劳寿命研究[D].东南大学博士学位论文,2006
    [148]王继军.遂渝线无砟轨道结构及轨道电路参数的试验研究[R].北京:铁道科学研究院,2008.
    [149]田春香,颜华,赵坪锐,王平.无碴轨道道岔区轨下基础受力分析[J].铁道工程学报,2006(5).48-50
    [150]沈成康.断裂力学.上海:同济大学出版社,1996:8-181
    [151]李灏,陈树坚.断裂理论基础.四川:四川人民出版社,1983:37-109
    [152]Hussain,M.A.,S.L.Pu,and J.Underwood.Strain-Energy-Release Rate for a Crack under Combined Mode Ⅰand Mode Ⅱ.ASTM-STP_560,1974:2-28
    [153]赵经文,王宏钰.结构有限元分析(第二版)[M].北京:科学出版社,2001
    [154]Hibbitt H D.Some Properties of Singular Isoparametric Elements.Int.J.Num.Meth.Eng.,1977,11:180-184
    [155]黄卫,钱振东.高等级沥青路面设计理论与方法[M].北京:科学出版社,2001.8
    [156]田明伦,黄松梅,刘恩锡,等;混凝土的断裂韧度[J];水利学报;1982.06
    [157]于骁中.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社,1988
    [158]潘自力,姚力.遂渝线无砟轨道设计[J].铁道工程学报,2007.12增刊
    [159]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002
    [160]易伟建,刘霞.弹性地基梁损伤诊断研究[J].计算力学学报,2003,20(4):467-471
    [161]Abdel Wahab MM,De Roeck G,Peeters B.Parameterization of Damage in Reinforced Concrete Structures using Model Updating[J].Journal of Sound and Vibration,1999,228(4):717-730
    [162]S S Law,X Q Zhu.Dynamic Behavior of Damaged Concrete Bridge Structures under Moving Vehicular Loads[J].Engineering Structures,2004(26):1279-1293
    [163]陈小平.板式轨道轮轨滚动噪声研究[D].成都:西南交通大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700