用户名: 密码: 验证码:
南堡凹陷柳赞区块岩性—地层油气藏预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩性-地层油气藏勘探是国内未来石油增储的主要方向,目前的岩性-地层油气藏预测理论与方法比较成熟,但对于我国东部大多数陆相断陷盆地中沉积和构造运动均复杂的凸起边缘地区进行岩性油藏预测,尚需要深入研究。论文针对近源大小扇体多期叠置与镶嵌、多期复杂的构造运动引起的断裂破碎与剥蚀频繁等所导致的地震反射连续性差、井间可对比性差问题,从地层格架入手,通过沉积体系约束下的储层反演实现研究区的精细储层预测。
     针对横向对比困难的特点,利用井震融合技术结合传统层序地层序分析方法,坚持大尺度上由地震信息控制,小尺度上由精细的井信息对比控制的原则。实现了研究区等时地层划分对比,对古近纪地层划分了3个二级层序和7个三级层序。
     通过时空演化构造解释认为:柳赞构造是被断层复杂化的滚动背斜构造,不同于前人差异压实作用所致的同沉积背斜认识。盆缘柏各庄断层沙三、沙一时期活动的不均衡性控制了构造的形成,沙三、沙一时期两次差异沉陷,夹持在柏各庄和高柳断层之间的地层向东倾滑是柳赞构造形成的主要原因,明化镇期东部高柳断裂侧向撕裂作用进一步复杂了柳赞背斜构造。
     通过对主要层序沉积体系研究,得出近源-陡坡型盆地边缘的研究区,主要以冲积扇、扇三角洲和水下扇沉积体系为主。在SQ2低位域期主要发育水下扇体系,水进至高位域沉积期,主要发育陡坡型扇三角洲体系,多物源供给,扇体朵叶状明显。在SQ4沉积期过渡为冲积扇体系。SQ5沉积时期再次演化为扇三角洲沉积体系,且规模较大。
     在研究区储层分析的基础上,针对目的层段砂泥岩波阻抗值域范围重叠较多的地质现象,利用电阻率曲线拟合声波反演波阻抗后进行储层参数随机模拟反演。反演中通过地震属性、沉积规律约束测井曲线标准化处理,实现相控储层横向预测。从反演的结果分析,反演体的剖面与平面信息均与沉积规律及测井吻合很好。
     通过层序地层、沉积体系、构造格架与油气分布规律研究,精确预测岩性油藏潜力目标。SQ2、SQ3、SQ4层序柳西坡折处发育小型扇三角洲、低位扇,该区总体勘探程度较低,且柳9井在SQ4层序底部获得工业油流,是寻找岩性油气藏的最大潜力区;SQ5层序内主要在柳中背斜带南端有深断裂沟通油源区域寻找分流河道岩性油气藏。
Exploration on lithology-stratigraphy oil-gas pools is the main direction of reserve increasing in the future. Theories and techniques of the prediction of subtle reservoirs are mature. To most continental rift-subsidence basins in east China, sedimentary and structural movements are complex in heave margin areas and prediction of lithologic oil-gas pools still need lucubrate. Seismic continuity is dispatch and well contrasting is difficult in this area. The paper established the stratigraphic frameworks, studied depositional systems and then predicted reservoirs finely by reservoir inverse.
     Aimed at the difficulty in well contrasting, the paper used well-seismic combined classification demarcation technique in stratigraphy division. Seismics controlled the large scale contrasting and wells controlled the small scale contrasting. Sequence stratigraphy frameworks were established by dividing 3 second-order sequences, 7 third-order sequences.
     Space time evolvement seismic interpretation showed the Liuzan structure was a roll anticline complicated by faults. The anticline formed between two different subsidences in Sha 3 and Sha1 periods. The anticline was nipped in Bogezhuang fault and Gaoliu fault. In the east, Gaoliu fault’s side avulsion during Minghua period further complicated the Liuzan anticline. Different subsidences in this area were controlled by Bogezhuang fault’s imbalance activity. The imbalance activities also controlled the structural configuration and fault characters. North north bend normal faults developed in Liuxi and Liuzhong areas and south bend faults developed in Liudong area.
     Sedimentary systems were identified and main sedimentary facies were established in Liuzan area including brim fans of steep slope, shallow lake, half-deep lake and fore-delta turbidic fan of low-lying of middle part and braided fluvial delta-coastal shallow lake of southern gentle slope. Distribution of depositional systems was studied. Liuzan area was on the deep slope margin and the main depositional systems were fan delta and sublacustrine fan and lacustrine system. Lacustrine system was developed in LST of SQ2 and fan deltas were developed in TST and HST. There developed multi-sources, so the lobation shape of fan delta was evident. Alluvion was the main depositional systems of SQ4 and fan deltas were main depositional systems of SQ5.
     On the basis of reservoir analysis, resistance logging was used in impedance inverse. In inverse, analysis of seismic attribute and processing of sedimentary rule inhibiting in log standardization helped in realizing of facies controlling reservoir horizontal prediction. Inversion result showed profile and plane information inosculated well with sedimentary rules and drilling results.
     Analysis of sequence stratigraphy, depositional systems and structure frameworks and oil and gas distribution rules predicted potential reservoir targets finely. SQ2, SQ3 and SQ4 developed lower fans in the Liuxi slope break. Total exploration degree was relatively low and Liu 9 gained industrial oil in SQ4 sequence. So Liuxi area was the best potential area of lithology reservoirs. SQ5 in Liuzhong area was favorable area in finding fluvial lithology reservoirs.
引文
[1]. 贾承造,赵文智,邹才能.岩性地层油气藏勘探研究的两项核心技术[J].石油勘探与开发,2004,31(3):3~9
    [2]. 李思田,断陷湖盆隐蔽油藏预测及勘探的关键技术,地球科学—中国地质大学学报,2002,Vol.27/No.5, 593-598
    [3]. 陈启林,杨占龙.岩性油气藏勘探方法与技术[J].天然气地球科学,2006,17(5):622~626
    [4]. 李丕龙,庞雄奇等著.陆相断陷盆地隐蔽油气藏形成-以济阳坳陷为例[M].北京:石油工业出版社,2004
    [5]. 王焕弟等.隐蔽油气藏勘探现状与对策分析[J].石油地球物理勘探, 2004,39(6):739~744
    [6]. 胡见义. 隐蔽油气藏形成机理与勘探实践. 北京:石油工业出版社,2003
    [7]. 蔡希源,李思田等. 陆相盆地高精度层序地层学—隐蔽油气藏勘探基础、方法与实践(基础理论篇)[M].北京:地质出版社,2004,1~30
    [8]. 张善文,王英明,李群.应用坡折带理论寻找隐蔽油气藏[J].石油勘探与开发,2003,30(7):5~7
    [9]. 林畅松,潘元林,肖建新等.“构造坡折带”—断陷盆地层序分析和油气预测的重要概念[J].地球科学—中国地质大学学报,2000,25(3):260~266
    [10]. 马丽娟.东营凹陷古近系岩性圈闭识别方法研究[J].地质科技情报,2004,23(3):71~77
    [11]. 顾家裕,邓宏文,朱筱敏等.层序地层学及其在油气勘探开发中的应用论文集[M].北京:石油工业出版社,1997
    [12]. 顾家裕等.陆相层序地层学进展与在油气勘探开发中的应用[J]. 石油与天然气地质,2004,25(5):484~490
    [13]. 吴因业等. 含油气盆地地层层序解释技术与应用[M].北京:石油工业出版社,2000
    [14]. 纪友亮,张世奇等.层序地层学原理及层序成因机制模式[M].北京:地质出版社,1998
    [15]. 贾承造,刘德来,赵文智,层序地层学研究新进展[J].石油勘探与开发, 2002,Vol29, No 5:1~4
    [16]. 李思田. 论沉积盆地分析系统. 地球科学,1992,17(增刊):31~39
    [17]. 李思田,解习农,王华,等. 沉积盆地分析基础和应用. 北京:高等教育出版社,2004
    [18]. Mitchum, R.M. Seismic stratigraphy and global changer of sea level.Prat 1: Glossary of terms used of in seismic stratigraphy, in C.E.Payton,ed., Seismic stratigraphy -applications to hydrocarbon exploration: AAPG Menoir,1977,26,p.205~212
    [19]. Mitchum Jr R M and Van Wagoner J C. High frequency eustatic cycles: Sedimentary Geology, 1991. Vol. 70. 131~160
    [20]. Vail,P.R.,Hardenbol, and R.G.Todd, Jurassic unconformities, chronostratigraphy andsea-level changes from seismic stratigraphy and biostratigraphy, in J.S.Schlee, ed.,Inter-regional unconformities and hydrocarbon accumulation: AAPG Memoir 36, 1984,p.129~144
    [21]. Vail P R.Seismic stratigraphy interpretation using sequence stratigraphy. Part 1: seismic stratigraphy interpretation procedure. In: Bally A W, ed. Atlas of seismic stratigraphy. American Association of Petroleum Geologists, Studies in Geology, 1987.27:1~10
    [22]. Van Wagoner J C. Siliciclastic sequence stratigraphy in welllogs, cores and outcrops: concepts for high-resolution correlation of time and facies[J]. AAPG, Methods in Exploration Series7, 1990,55: 1~240
    [23]. Galloway,W.E. Genetic stratigraphic sequences in basin analysis I: architecture and genesis of flooding-surface bounded depositional units:AAPG Bulltion, 1989 a,v,73,p.125~142
    [24]. Galloway, W.E. . Genetic stratigraphic sequences in basin analysis II: architecture and genesis of flooding-surface bounded depositional units:AAPG Bulltion, 1989b,v,73,p.143~154
    [25]. Cross T A.Controls on coal distribution in transgressive-regressive cycles,Upper Cretaceous, Western Interior, U.S.A.In;Wilgaus C K et al. Sea-level changes: An integrated approach. SEPM Special Publication,42,1988,371~380
    [26]. Cross T A.Stratigraphic contrals on reservoir attributes in continental strata, Earth Science Frontiers. 2000,Vol. 7, No. 4, 322~350
    [27]. Cross T A , Baker M R, Chapin M A, et al . Application of High resolution sequence stratigraphy to reservoir analysis. In: Eschard R and Doligez B ,Subsurface reservoir characterization from outcrop observation ,Editions Technip, Pairs , 1994.11~33
    [28]. 邓宏文,王洪亮,李熙喆等.层序地层基准面的识别、对比技术及应用[J] .石油与天然气地质,1996,17(3):177~183
    [29]. 邓宏文,王洪亮,宁宁等.沉积物体积分配原理—高分辨率层序地层学的理论基础[J].地学前缘,2000,7(4):305~313
    [30]. 邓宏文,Cross T A.等.高分辨率层序学—原理及应用[M].北京:地质出版社,2002
    [31]. 解习农,李思田.陆相盆地层序地层研究特点[J].地质科技情报,1993,12(1):22~26
    [32]. 解习农,程守田,陆永潮.陆相盆地幕式构造旋回与层序构成[J].地球科学,1996,21(1):27~33
    [33]. 解习农. 松辽盆地梨树凹陷深部断陷沉积体系及层序地层特征. 石油实验地质. 1994,16(2):144~150
    [34]. 纪友亮,张世奇等.陆相断陷湖盆层序地层学[M].北京:石油工业出版社,1996
    [35]. 冯有良,李思田,解习农. 陆相断陷盆地层序形成动力学及层序地层模式. 地学前缘,2000,7(3):119~132
    [36]. 冯友良,周海民,李思田等. 陆相断陷盆地层序类型与构造特征. 地质论评. 2004,50(1):43~49
    [37]. 林畅松,刘景彦,张英志等.构造活动盆地的层序地层与构造地层分析-以中国中、新生代构造活动湖盆分析为例[J].地学前缘,2004,12(4):365~374
    [38]. 任建业,陆永潮,张青林. 断陷盆地构造坡折带形成机制及其对层序发育样式的控制. 地球科学,2004,29(5):27~33
    [39]. 邹才能,池英柳,李明等.陆相层序地层学分析技术[M].北京:石油工业出版社,2004
    [40]. Van Wagoner J. C., Posamentier H. W., Mitchum R. M., et al. 层序地层学基础综述和定义. 见:徐怀大,魏魁生,洪卫东,等译. 层序地层学原理—海平面变化综合分析. 北京:石油工业出版社,1993
    [41]. Lin Changsong, Liu Jingyan, Cai Shixiang, et al. Depositional architecture and developing settings of large-scale incised valley and submarine gravity flow systems in the Yinggehai and Qiongdongnan basins, South China Sea. Chinese Science Bulletin, 2001, 46(8):690~693
    [42]. Alves Tiago M., Moita Carlos, Sandnes Frode, et al. Mesozoic–Cenozoic evolution of North Atlantic continental-slope basins: The Peniche basin, western Iberian margin. AAPG Bulletin, 2006, 90: 31~60
    [43]. Avramidis Pavlos and Abraham Zelilidis. The nature of deep-marine sedimentation and palaeocurrent trends as evidence of Pindos foreland basin fill conditions. Episodes, 2001, 24(4):252~256
    [44]. Berger R. Capillary pressures in stratigraphic traps. AAPG Bulletin, 1975, 59(5): 939~956
    [45]. David Jennette, et al. Traps and Turbidite reservoir characteristics from a complex and evolving tectonic setting, Veraeruz Basin, Southeastrtn Mexico. AAPG Bulletin, 2003, 87(10): 1599~1622
    [46]. Demaison G, Huizinga B J. Genetic classification of petroleum system. AAPG Bulletin, 1991, 75 (10):1626~1643
    [47]. Doglionia C., Agostinob N. D., and Mariottia G. Normal faulting vs regional subsidence and sedimentation rate. Marine and Petroleum Geology , 1998, 15
    [48]. Kerr D., Budkewitsch P., Bryan D., et al. Surficial geology, spectral-reflectance characteristics, and their influence on hyperspectral imaging as a drift-prospectingtechnique for kimberlite in the Diavik diamond mine area, Northwest Territories Current Research. Geological Survey of Canada, 2002, C4:10
    [49]. LinChangsong, Wang Qinghua, Xiao Jianxin, et al. Depositional sequence architecture and filling response model of the Cretaceous in the Kuqa depression,the Tarim basin. Science in China (D), 2004, 47(2):86~96
    [50]. Shanley K W. Perspectives on the sequence stratigraphy of continental strata. AAPG, 1994, 78(4): 544~568
    [51]. Vail P R, Bowman S A, Eisner P N, et al. The stratigraphic signatures of tectonics , eustasy and sedimentology-an overview, In Einsele et al.(eds.): Cycles and events in stratigraphy, Springer-Verlag Berlin Heidelberg, 1991, 617~659
    [52]. Van Dijk J P. Neogene kinematics of intra-arc oblique shear zones:The petilia-rizzuto fault zone (Calabria Arc, Central Mediterranean) Tectonics, 1994, 13 (5): 1201~1230
    [53]. Vendeville B C, Jackson M P A. The rise of diapers during thin-skinned extension. Marine and Petroleum Geology,1992, 9 (4): 331~353
    [54]. Wohletz Kenneth H. The physics of explosive volcanic eruptions. American Mineralogist, 2000, 85: 267 ~268
    [55]. Wood L. J. Chronostratigraphy and Tectonostratigraphy of the Columbus Basin, Eastern Offshore Trinidad. AAPG Bulletin. 2000, 84: 1905~1928
    [56]. 邵龙义,张鹏飞,田宝霖等. 黔西织纳地区晚二叠世含煤系层序地层及海平面变化. 地学探索. 1993,8(1):1~11
    [57]. 金振奎,邹元荣,蒋春雷. 大港探区奥陶系岩溶储层发育分布控制因素. 沉积学报. 2001,19(4):530~535
    [58]. 胡宗全. 层序地层研究的新思路——构造—层序地层研究. 现代地质. 2004,18(4):549~554
    [59]. 林畅松,张燕梅. 盆地的形成和充填过程模拟-以拉伸盆地为例. 地学前缘,1999,6(增刊):139~146
    [60]. 林畅松,郑和荣,任建业等.渤海湾盆地东营、沾化凹陷早第三纪同沉积断裂作用对沉积充填的控制[J].中国科学(D 辑),2003,33(11):1025~1036
    [61]. 田景春.箕状断陷湖盆陡坡带砂体特征、演化及控制因素―以胜利油区东营凹陷北带沙河街组为例[J].矿物岩石,2001,21(3):56~63
    [62]. 辛仁臣,王英民.松辽盆地北部青山口—姚家组西部坡折带成因及演化[J].地球科学—中国地质大学学报,2004,29(5):621~624
    [63]. 赵立,孙卉.大民屯凹陷西陡坡古近系岩性地层油气藏勘探[J].石油勘探与开发,2006,33(3):309~314
    [64]. Richard G. Hoy and Kenneth D.Ridgway,Sedimentlogy and sequence stratigraphy of fan-delta and river-deltaa deposystems, Pennsylvanian Minturn Formation, Colorado. AAPG. Bull. Voi(87)2003,no.7 1169~1191
    [65]. S.H. Yoon, S.K. Chough, S.J. Park, Sequence model and its application to a Miocene shelf–slope system in the tectonically active Ulleung Basin margin, East Sea (Sea of Japan), Marine and Petroleum Geology, 20 (2003) :1089~1103
    [66]. Ecker C. Seismic Characterization of Methane Hydrate Structures[D]. California: Stanford University,2001
    [67]. Castagna J. and Sun S.,Instantaneous spectral analysis: Dectection of low frequency shadows associated with hydrocarbons,The Leading Edge. 2003(Vol.22):120~127
    [68]. Goodway W, Chen T, Downton J. Improved AVO fluid detection and lithology discrimination using Lame. petrophysical parameters:“KQ0”, “LQ0”,“0K/L fluid stack”.,from P and S inversions[J]. 68th Ann. Int. SEG M tg.,1997,183~186
    [69]. 周锦明,熊翥等.地震数据精细处理.北京:石油工业出版社,2003.8
    [70]. 胡光义,王加瑞,武士尧.利用地震分频处理技术预测河流相储层[J].中国海上油气,2005,17(4):237-241
    [71]. 刘彦君,国洪伟,马朋善,宋炜.地震数据体的频率信息在岩性预测中的应用[J].天然气地球科学,2008,19(2):266~271
    [72]. 刘彦君,刘喜武,刘大猛等. 地球物理技术在天然气水合物分布区预测中的应用[J].石油勘探与开发, 2007, 34(5):366~573
    [73]. 苑书金,于常青.地震弹性属性的解释和应用[J].勘探地球物理进展, 2005, 28(4):234~238
    [74]. 张永刚.地震波阻抗反演技术的现状和发展[J].石油物探,2002,41(4):385-389
    [75]. 姚逢昌,甘利灯. 地震反演的应用与限制[J].石油勘探与开发,2000,27(2):53~56
    [76]. 刘喜武,年静波,吴海波. 地震波阻抗反演方法之比较与应用分析[J].世界地质,2005,24(3):270~275
    [77]. 王延光.储层地震反演方法以及应用中的关键问题和与对策[J].石油物探,2002,41(3):299~304
    [78]. 李庆忠. 论地震约束反演的策略[J].石油地球物理勘探,1998,33(4):423~438
    [79]. 敬荣中, 鲍光淑, 陈绍裘. 地球物理联合反演研究综述, 地球物理学进展,2003,18(3):535~540
    [80]. 李子顺,郭学斌,穆剑东.宽频带地震储层横向预测方法研究[J].大庆石油地质与开发,2006, 25(2):89~90
    [81]. 王家映. 蒙特卡洛法,工程地球物理学报,2007,4(2):81~85
    [82]. 王家映. 地球物理反演问题概述,工程地球物理学报,2007,4(1):1~3
    [83]. 孙卫涛, 董 渊. 波动方程反演的全局优化方法研究.地球物理学进展,2007,22(3):797~803
    [84]. 姜亮,黄捍东,魏修成等,地震道的非线性约束反演,石油地球物理勘探,2003,38(4):435~438
    [85]. 刘彦君,刘大猛,年静波等. 沉积规律控制下的测井约束波阻抗反演及其应用[J].大庆石油地质与开发, 2007, 26(5):133~137
    [86]. 刘百红,李建华.测井和地震资料宽带约束反演的应用[J].石油物探, 2004,43(1):76~80
    [87]. 陈刚,曲志浩,赵圣亮.综合约束反演技术及其在高阳三维探区储层横向预测中的应用[J].石油地球物理勘探,2000,35(4):527~531
    [88]. 年静波,张尔华,刘喜武,等. 复杂断块区三维地震资料反演与储层预测[J].2005, 新疆石油地质,2006,27(2):184~187
    [89]. 刘成斋等. 稀疏脉冲和基于模型反演在王家岗沙四段砂岩油藏精细勘探中的应用.石油地球物理勘探,2002,37(4):403~406
    [90]. 李方明,计智锋,赵国良等. 地质统计反演之随机地震反演方法--以苏丹M盆地P油田为例[J].石油勘探与开发,2007,34(4):451~455
    [91]. 张超英,周小鹰,董宁.盆地大牛地气田中的应用.地球物理学进展.2004,19(4):909-917
    [92]. 苑书金, 叠前地震反演技术的进展及其在岩性油气藏勘探中的应用[J],地球物理学进展,2007,22(3):879~886
    [93]. 苑书金,董宁,于常青等.叠前联合反演 P 波阻抗和 S 波阻抗的研究和应用[J].石油地球物理勘探,2005,40(3):337~342
    [94]. 胡中平,张山,郑宏喜等联合应用高分辨率和转换波地展资料进行储层预测.石油地球物理勘探.1998,33(增刊 2):70~77
    [95]. 刘国萍,陈小宏,李景叶.弹性波阻抗在时移地震中的应用分析[J].地球物理学进展,2006, 21(2):559~563
    [96]. Shuey R T A. simplification of the Zoeppritz equations[J]. Geophysics, 1985,50:609~614
    [97]. Fatti J L, et al. Detection of gas in sandstone reservoirs using AVO analysis: A 3-Dseismic case history using the Geostack technique[J]. Geophysics, 1994, 50:1362~1376.
    [98]. [17] Verm R, Hilterman F. Lithology color-coded seismic sections: The calibration of AVO crossplotting to rockproperties[J]. TheLeadingEdge, 1995, 14:847~853
    [99]. Smith G C, Gidlow P M. Weighted stacking for rock property estimation and detection of gas[J]. Geophys.Prosp.,1987,35:993~1014
    [100]. Cambois G. Can P-wave AVO be quantitative?[J]. The Leading Edge, 2000, 19:1246~1251
    [101]. Cambois G. AVO attribute sand noise:Pitfalls of crossplotting[J]. SEG Expanded Abstracts, 1998:244~247
    [102]. Hilterman F,Van S C,Shar M. AVO examples of long-off-set 2-D data in the Golf of Mexico[J]. The Leading Edge, 2000, 19:1200~1213
    [103]. Gluck S,Juve E,Lafet Y.High-resolution impedance layering through 3-D stratigraphic inversion of the poststack seismic data[J]. The Leading Edge, 1997, 16:1309~1315
    [104]. Marcelo Benabentos and Subhashis Mallick. Seismic reservoir description using hybrid seismic inversion. A 3D case study from the María Inés Oeste Field, Argentina[J].The Leading Edge, 2002, 21(10):1002~1008
    [105]. Subhashis Mallick. Prestack waveform inversion using a genetic algorithm-the present and thefuture[J].CSEG Recorder,2001:78~84
    [106]. Mallick S. Some practical aspects of prestack waveform inversion using a genetic algorithm: and example from the east Texas Woodbine gas sand[J].Geophysics,1999,64:326~336
    [107]. Sams M S, Atkins D, Said N, et al. Stochastic inversion for high resolution reservoir characterization in the Central Sumatra Basin[A].SPE 57260, 2004
    [108]. Whitcombe D N. Elastic Impedance Normalization[J]. Geophysics,2002,58:60~62.
    [109]. Connolly P. Elastic impedance[J]. The Leading Edge,1999,18:438~452
    [110]. SUBHASHIS M,XURI H,JEFFREY L,et al.Hybrid seismic inversion:A reconnaissance tool for deepwater exploration[J].The Leading Edge,2000,19(11):1230~1237
    [111]. 周海民,董月霞,谢占安等,断陷盆地精细勘探—渤海湾盆地南堡凹陷精细勘探实践与认识[M].北京:石油工业出版社,2004
    [112]. Fisher W L and McGowen J H.1969.Depositional systems in Wilcox Group of Texas and Their relation occurrence of oil and gas, Bull Am.Ass.Petrol.,Geol.,53,30~54
    [113]. Walker R G, and James N P. 1992.Facies models-response to sea level change. First press. Canada; Geoogical Association of Canada,15~23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700