用户名: 密码: 验证码:
路堤工程抗震设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土工合成材料加筋路堤在地震荷载下的计算分析是一个非常复杂的问题,涉及到填料、加筋材料、路堤类型、填料与加筋的相互作用等等。加筋格宾挡墙更是国内新近才开始研究并在工程现场运用的新型结构,对于挡墙的动力特性及作用机理的研究都非常有限。本文利用岩土专用软件Geo-Studio结合工程现场对相关一般路堤及加筋格宾挡墙进行了拟静力及有限元动力分析,提出了一般路堤的加筋优化方法及加筋格宾挡墙的作用机理、动力特性,为加筋路堤和加筋格宾挡墙的施工及推广提供参考。
     本文主要研究内容和结论有:
     (1)通过拟静力法研究发现,汽车荷载对路堤在地震荷载下的整体稳定性影响不大。4米-20米的标准路堤在九度地震荷载下濒临危险状态,需要加强措施,在七度、八度地震荷载作用下,标准路堤基本能保持稳定。放坡及设置平台能有效地提高路堤整体的抗震稳定性,特别是对于高路堤,设置平台能将长大边坡转换成几个一般边坡,有效的减小危险滑坡的滑动范围,提高路堤边坡的整体稳定性。路堤加筋对于提高路堤整体稳定性及减少路堤在地震作用下的位移,都具有重要的作用,是提高路堤抗震稳定性的有效手段。
     (2)提出一般加筋路堤优化方案,一般经过放坡及设置平台的路堤,路堤顶部至上部第一级平台处是最危险的部位,需要重点加强,对于不同高度的路堤,可根据情况在中上部适当以短筋加强。具体来说,对于低于20m的标准路堤及斜坡路堤,一般在顶部至上部第一个平台间满铺土工格栅,上部适当铺设短筋即可;对于20m-30m的标准路堤及斜坡路堤,在顶部至第一个平台间满铺土工格栅,上部按0.5-1m的间隔铺设短筋即可。
     (3)加筋格宾挡墙具有良好的抗震性能,尤其对于大震,效果明显。挡墙在地震荷载作用下,顶部动土压力值最大,底部次之,中间最小,顶部和中部的加速度放大系数较底部的大。格宾挡墙在大震作用下其破坏形式为顶部的拉裂及撞击变形破坏,加筋格宾挡墙后0.45H(H为墙高)至墙顶的范围是需要重点加强的部分。
     (4)加筋格宾挡墙在地震荷载作用下挡墙起主要作用,格宾加筋也能提高路堤整体的稳定性,并在一定程度上提高格宾挡墙的抗震效果,格宾挡墙由于本身的刚度及重度均比路堤大,其在地震作用下有效的约束了路堤本体的位移,减少了路堤的整体变形。如加筋格宾挡墙需要加强,可在挡墙顶部后方需满铺土工格栅,中上部适当加短筋。
Geosynthetic reinforced embankment under seismic load calculation and analysis is a very complex issue, involving fillers, reinforcing materials, embankment type, filler and reinforcement of the interaction and so on. Gabion retaining walls is only recently began to study China and the use of the new structure of the project site, the retaining wall of mechanism and the dynamic characteristics of the research are very limited. In this paper, Geotechnical special software Geo-Studio, combined with the general project site embankment and gabion retaining walls, the quasi static and dynamic finite element analysis, Reinforced embankment proposed a general optimization method, the mechanism of gabion retaining walls and the dynamic characteristics, the reinforced embankment and gabion retaining walls for the construction and promotion of reference.
     The content and results of this study are as follows:
     (1) Static method through the study found that vehicle load on the embankment in the overall stability under seismic loading has little effect.4 m-20 m minimum security standards for Embankment in September near the dangerous state under the standard required measures to strengthen, in seven degrees, eight seismic loads, the standard embankment basically stable. Grading and installation of platform can effectively improve the seismic stability of the embankment as a whole, especially for high embankment, the slope of platform can grow up into several general slope, effectively reduce the risk of landslides sliding range, improve the embankment the overall stability of the slope. For improving the overall stability of reinforced embankment and reduce the embankment under earthquake displacement, have an important role, is to improve the seismic stability of embankment effective means.
     (2) General summary of reinforced embankment optimization program, usually after grading and setting the platform embankment, embankment at the top of the upper platform at the first level is the most dangerous parts, need to focus on strengthening the embankment for different heights, according to the situation in the upper due to the short ribs strengthened. Specifically, less than the 20m standard embankment and embankment slopes in the upper top of the first platform, the general shop for geogrid, the laying of the short ribs to the upper right,20m-30m of standard embankment and embankment slopes, in the to the top of a platform, the full shop and grille and the upper part of the interval by 0.5-1m short ribs can be laid.
     (3) Gabion retaining walls with good seismic performance, especially for large earthquakes, the effect is obvious, retaining walls under earthquake loading, the maximum pressure at the top of the ground-breaking, bottom of the smaller, intermediate minimum, top and middle of the acceleration amplification factor greater than the bottom, under the action of the earthquake, the damage in the form of gabion retaining wall crack and impact the top of the deformation. After the reinforced gabion retaining wall 0.45H (H is wall height) to the top of the wall of the range, is the need to focus on strengthening the parts.
     (4) Gabion retaining walls under earthquake loading, wall play a major role. Gabion embankment reinforcement can improve the overall stability, and to some extent, improve the gabion retaining wall of the seismic effect. Gabion retaining wall because of their stiffness and severe than embankment large earthquake under the constraint of the effective displacement of embankment, reducing the overall deformation of the embankment. Gabion retaining walls such as reinforced by the strengthening of the back in the top of the geogrid to be paved, in the upper part of the short ribs need to be properly added.
引文
[1]杨乃彬,龙浪波.新型绿色加筋格宾挡墙的特点及其应用[J].四川建筑.2010
    [2]王维,彭勇登,杜勇立,黄向京.加筋格宾组合结构新技术工程应用研究[J].中外公路.2009
    [3]黄向京,王祥,王维,刘泽.双绞合六边形金属网加筋格宾挡墙地震动力特性试验研究[J].公路工程.34(5).2009
    [4]Maccaferri, Maccaferri Gabions. Maccaferri Gabions South Pacific.New South Wales. Australia 1990
    [5]Maccaferri, Maccaferri Case History. Reinforced Earth Solution for Albanian Motorway Project. Albania Reps 2007
    [6]Maccaferri, Maccaferri Case History, Reinforced Soil Structure at MB Road. Derabassi Punjab India 2008
    [7]Maccaferri, Maccaferri Case History:Reinforcement and Protection of a Slope nearby the Italian Embassy in Addis Abeba. Addis Abeba Ethiopia 2009
    [8]Maccaferri, Maccaferri Case History, Perilago Road. Potrerillos. Mendoza, Argentina 2009
    [9]王维,彭勇登,杜勇立等.加筋格宾组合结构新技术工程应用研究[J].中外公路.2009,29(5):18-22
    [10]黄向京,王维,杨果林.告诉公路新型加筋土结构应用研究与推广探讨[J].地质灾害与环境保护(增刊).2007,18(67):32-35
    [11]Tseng K. H. and J. J. Fu, A Stability Analysis of Soil Gabion Retaining Wall on Riverbank. Proceedings of the Nineteenth International Offshore and Polar Engineering Conference. Osaka, Japan. June 21-26,2009
    [12]Bergado D. T. and C. Teerawattanasuk., Analytical Models for Predicting the Pullout Capacity and Interaction between Hexagonal Wire Mesh and Silty Sand Backfill. Tamkang Journal of Science and Engineering.2001,4(4):227-238
    [13]黄培敏.土工格栅加筋土特性实验与抗震技术研究[D].西南交通大学硕士研究生论文.2009
    [14]Po rbaha A, Goodings D J. Centrifuge modeling of geo textile2reinfo reed steep clay slopes Can Geotech J.1996 33 696-703.
    [15]张师德,杜鸿梁.土工织物加筋土路肩挡墙离心试验研究[J].路基工程.1993,41-45
    [16]章卫民,赖忠中,徐光明.加筋挡土墙离心模型实验研究[J].土木工程学报.2000
    [17]程火焰,周亦唐,钟国强.加筋土挡土墙地震动力特性研究[J].公路交通科技.2004年09月:16-20
    [18]刘华北,Ling H I.土工格栅加筋土挡土墙设计参数的弹塑性有限元研究[J].岩土工程学.2003.26(5):668-673
    [19]栾茂田,肖成志,杨庆,李敬峰,上官云龙,裴建军.考虑蠕变性土工格栅加筋挡土墙应力与变形有限元分析[J].岩土力学.27(6):857-863
    [20]吴景海.土工合成材料加筋的试验研究和有限元分析[D].天津大学博士研究生论文.2002
    [21]王祥,周顺华,顾湘生,陈明德,李燕君.路堤式加筋土挡墙的试验研究[J].土木工程学报.38(10):119-128
    [22]刑良.土工合成材料加筋的实验研究和有线元分析[D].天津大学博士研究生论文.2002
    [23]陈华.塑料土工格栅加筋土挡墙动力有限元分析[D].昆明理工大学硕士研究生论文.2002
    [24]马学宁,杨有海.土工格栅与土界面特性的试验研究[J].兰州交通大学学报.22(4):88-90
    [25]施有志.土工合成材料界面直剪摩擦试验研究[J].中外公路.26(3): 255-258
    [26]施有志.土工合成材料的拉拔试验研究[J].岩土工程界.6(10):75-78
    [27]陶连金,张印涛,邹祖银,王法.黄土加筋路堤的数值模拟及性能分析[J].公路交通科技.23(12):32-36
    [28]张志清,苏燕,金江.黄土加筋路堤试验路段应力变形分析[J].铁道建筑.2007:58-61
    [29]胡江碧,费雪良,何欢.高填方路堤最佳加筋方案的确定及稳定性分析[J].北京理工大学学报.2007,27(9):793-796
    [30]Lysmer J, Kulemeyer RL, Finite dynamic model for infinite media[J] Journal of Engineering Mechanics.ASCE 1969 95:759-877
    [31]Deeks AJ, Randolph MF. Axisymmetric time-domain transmitting boundaries [J] Journal of Engineering Mechanics.1994 120(1):25-42
    [32]廖振鹏.工程波动理论导论(第二版)[M].北京:科学出版社,2002
    [33]赵建锋,杜修力,韩强,李立云.外源波动问题数值模拟的一种实现方式[J].工程力学.2007 24(4):52-58
    [34]倪汉根,金崇磐.大坝抗震特性与抗震计算[M].大连理工大学出版社,1994
    [35]Newmark N M, Effects of earthquakes on dams and embankments [J]. Geotechnique, 1965 15(2):139~160
    [36]谢定义,土动力学[M].西安:西安交通大学,1988
    [37]Seed. H. B. Stability of earth and rockfill dams during earthquakes in Embankment-Dam Engrg [J]. Casagrande Vol (Eds Hirschfeld and Poulos). John Wiley.1973
    [38]交通部公路规划设计院,公路工程抗震设计规范(JTJ004-89)[S].北京:人民交通出版社,1990
    [39]刘汉龙,费康,高玉峰.边坡地震稳定性时程分析方法[J].岩土力学.2003:553-556
    [40]马芳芳.基于地震动力时程反应的—有限元边坡稳定性分析[D].大连理工大学硕士学位论文.2005:18-51
    [41]吴兆营,薄景山,刘红帅,丁仁杰,齐文浩,刘德东.岩体边坡地震稳定性动安全系数分析方法[J].防灾减灾工程学报.2004,24(3):237-241
    [42]刘红帅,薄景山,刘德东.岩土边坡地震稳定性分析研究评述[J].地震工程与工程振动.2005,25(1):164-171
    [43]罗志强.填海造陆区路基工程的设计与施工[J].公路.2001:124-1281
    [44]高翔,石名磊,刘松玉.加粘性土筋土界面剪切特性的试验研究[J].公路交通科技2002:80-101
    [45]戴莹.加筋土基础分析与设计[J].公路.2005
    [46]赵维炳,雷国辉,陈永辉.土工织物加筋与塑料板排水联合加固软基的计算方法研究[J].岩土工程学报.1998,20(3):61-651
    [47]方磊,朱中卫.软土路基侧向变形影响因素研究[J].公路交通科技.2005,22(11):34-381
    [48]GB50290098,土工合成材料应用技术规范[S]
    [49]ROWE R K, SODERMAN KLIAn, approximate method for estimating the stability of geotextile Oreinforced embankments [J] 1Canadian Geotechnical Journal 1985 22 (3) 392-3981
    [50]WOODS R I, JEWELL R A1A, computer design method for reinforced soil structures [J] 1Geotextiles and Geomembranes 1990 9 (3) 233-2601
    [51]BERGADO D T, LONG P V, LEE C H, et allPerformance of reinforced embankment on soft Bangkok clay with highOstrength geotextile reinforce2 ment [J] 1Geotextiles and Geomembranes 1994 40 3-4201
    [52]PALMEIRA EM, PEREIRAJ H F, SILVA D1, Backanalyses of geosyn2 thetic reinforced embankments on soft soils [J] 1Geotextiles and Geomembranes 273-2921
    [53]朱湘,黄晓明,邓学钧.土工格栅加筋路堤机理研究[J].公路交通科技.2000,17(1):1-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700