用户名: 密码: 验证码:
渤海湾营养盐对浮游生态动力学特性影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渤海湾位于渤海的西部,属典型的缓坡淤泥质半封闭浅水海湾,与外海的水交换能力较弱。近年来,随着沿岸经济的快速发展,大量污染物通过陆源排放进入渤海湾,不仅增大了渤海湾营养盐的负荷也干扰了各种营养盐的比例。填海等海岸带开发工程影响了滨海湿地的生态功能、改变了近岸的局部流场,进一步影响了水体的交换能力。综合考虑这些内外因素,深入研究渤海湾营养盐对于浮游生态动力学特性的影响,揭示其控制机理,预测生态系统对不同营养盐状况的响应,对于制定相关对策、控制该海域的富营养化状况、促进渤海湾水生态环境的改善,推行海域的可持续发展具有重要意义。本文的主要工作是对渤海湾营养盐对浮游植物生长的影响进行较系统的研究。
     首先,对渤海湾西南部典型站位表层水进行了模拟现场的营养盐加富培养实验。结果表明,磷酸盐的添加对于水样中浮游植物生长的促进作用最显著;浮游植物的增长在总体上随着氮磷比的降低而增大,增长最显著的氮磷比在5-15左右,略低于常用的Redfield比16;硝酸盐的连续性添加比一次性添加更有利于浮游植物的生长,相对于高浓度冲击性污染,低浓度持续性无机氮污染可能会产生更严重的生态影响。
     然后,本文建立了一个沿水深积分的二维生态-水动力学耦合模型,模拟渤海湾近岸海域氮磷营养盐和浮游植物的动态变化。利用该模型对于渤海湾和渤海湾赤潮监控区2005的情况进行了数值模拟和模型验证,结果表明计算结果与监测结果基本符合。在上述培养实验的基础上,综合考虑水动力学、水温、光照等其他因素,利用生态水动力学模型,模拟了原型时空尺度下渤海湾天津近岸海域浮游植物生长与营养盐负荷变化间的响应关系,并以此为基础探讨营养盐排放的削减策略。结果表明在控制氮磷陆源排放的基础上,进一步控制沉积物中磷的释放是控制渤海湾富营养化状况的重要途径。
     最后,通过分析渤海湾叶绿素a浓度的空间分布趋势、营养盐限制的空间差异与渤海湾水交换时间尺度的空间分布特性之间的关系,对营养盐驻留情况的生态影响进行了间接的分析。结果表明,营养盐限制的空间差异可能主要受到陆源排污的影响,而浮游植物的生物量除受到源强的影响外,与营养盐的驻留情况也有关,叶绿素a浓度分布与海水平均交换时间分布具有显著的相关关系,这表明在研究营养盐对浮游植物生长的调控作用时必须充分考虑水交换能力的影响。
Located in the western Bohai Sea, Bohai Bay is a large scale, semi-enclosed sea bay with mild slope muddy beach and shallow water. The water exchange between Bohai Bay and the central area of Bohai Sea is weak. In recent years, with the rapid economic development in the coastal region, large ammounts of pollutants were discharged into Bohai Bay through land-based sources, which not only increased the nutrient load to the bay but also changed the compsition of the nutrients. Reclamation project in the coastal region affected the ecological functions of the wetlands, changed the local flow field near the shore, which further affected the water exchange capacity. Considering these internal and external factors, to conduct intensive studies on the effects of nutrients on the phytoplankton dynamics of Bohai Bay, to reveal the control mechanisms and to predict the ecosystem responses to different nutrient status is of great significance for the control of the coastal eutrophication and the environmental remediation of this area. This work is a systematic study on the effects of nutrients on the growth of phytoplankton in Bohai Bay, which could provide important information for the sustainable development of the related areas.
     Firstly, surface water of a monitoring station was sampled during a cruise in October 2010 and incubated in lab to study the effects of nutrients on the growth of phytoplankton. The results showed that the addition of phosphate into the sample could increase the growth of phytoplankton most significantly and in general the growth decreased as the N/P ratio increased. The N/P ratios favorable for the growth of phytoplankton range from 5 to 15, which are slightly lower than the Redfield ratio. A further study on the effects of nutrient addition method was conducted on nitrate, which demonstrated that the continuous addition method provided more favorable conditions for the growth of phytoplankton compared with the ordinary addition method. The results may imply the significant impact of low level continuous pollution load compared with high level discontinuous pollution load.
     Then, a coupled depth-integrated two dimensional eco-hydrodynamic model was set up to simulate the dynamics of four basic ecological compartments under advection, dispersion and ecological forces. By using this model, the dynamics of these compartments in 2005 in Bohai Bay and the red tide monitoring area of Bohai Bay in particular were simulated and compared with monitoring data, which showed good agreement. As a second step, a series of numerical experiments based on this model were conducted through manipulating the model input conditions to investigate the responses of phytoplankton growth to changes in nutrient load in this area. The numerical experiments were guided by the results of the lab incubation experiments. The advantage of numerical experiments is featured by their ability to take factors other than nutrient levels (like the hydrodynamic characters) into account when investigating the responses of phytoplankton growth to changes of nutrient load and the study could be carried out on a prototype scale. Strategies for the control of the castal eutrophication problem of Bohai Bay were analyzed based on these numerical experiments. The results showed that, besides measures to reduce the land-based nutrient loads, measures to reduce the sediment-based load of phosphorus are critical for the control of the eutrophication of Bohai Bay.
     Finally, the ecological impacts of nutrient retention were studied indirectly through comparison studies on the relationships of the spatial variations of the water exchange time scales and the spatial variations of the chlorophyll-a concentrations and on the relationships of the spatial variations of the water exchange time scales and the spatial variations of the nutrient limitation status. The results indicated that the spatial variations of nutrient limitation status might be affected mainly by the land-based nutrient discharge while the spatial variations of phytoplankton biomass might be affected not only by the land-based nutrient discharge but also by the water exchange time scales. Significant correlations were identified between the chlorophyll-a concentration distributions and the distributions of the average age of the sea water.
引文
[1] Howarth R W, Sharpley A, Walker D. Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals[J]. Estuaries and Coasts, 2002, 25(4): 656-676.
    [2] Lassig J, Lepp?nen J M, Niemi A, et al. Phytoplankton primary production in the Gulf of Bothnia in 1972-1975 as compared with other parts of the Baltic Sea[J]. Finnish Marine Research, 1978, 244: 101-115.
    [3] Cadée G C. Increased phytoplankton primary production in the Marsdiep area (western Dutch Wadden Sea)[J]. Netherlands Journal of Sea Research, 1986, 20: 285-290.
    [4] Yanagi T. Preserving the inland sea[J]. Marine Pollution Bulletin, 1988, 19: 51-53.
    [5] Lam C W Y, Ho K C. Red tides in Tolo Harbour, Hong Kong[A]. In: Okaichi T, Anderson D M, Nemoto T. Red Tides: Biology, Environmental Science and Toxicology[C]. New York: Elsevier, 1989. 49-52.
    [6] Smith V H, Tilman G D, Nekola J C. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems[J]. Environmental Pollution, 1999, 100(1-3):179-196.
    [7] Anderson D M, Glibert P M, Burkholder J M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences[J]. Estuaries and Coasts, 2002, 25(4): 704-726.
    [8] Anderson D M. Red tides[J]. Scientific American, 1994, 271: 62-68.
    [9] Dean F M, Barbara B M. Red tide, red terror. Effects of red tide and related toxins[J]. Journal of Chemical Education, 1976, 53 (10): 614.
    [10] Shumway S E. A review of the effects of algal blooms on shellfish and aquaculture[J]. Journal of the World Aquaculture Society, 1990, 21: 65-104.
    [11] Hoagland P, Scatasta S. The economic effects of harmful algal blooms[A]. In: Graneli E and Turner J. Ecology of Harmful Algae (Ecology Studies)[C]. Berlin: Springer-Verlag, 2006. 391-401.
    [12] Imai I, Yamaguchi M, Hori Y. Eutrophication and occurrences of harmful algal blooms in the Seto Inland Sea, Japan[J]. Plankton and Benthos Research, 2006, 1(2): 71-84.
    [13]杨东方,于子江,张柯,等.营养盐硅在全球海域中限制浮游植物的生长[J].海洋环境科学, 2008, 27(5): 547-553.
    [14]唐启升,苏纪兰.中国海洋生态系统动力学研究I.关键科学问题与研究发展战略[M].北京:科学出版社, 2000.
    [15] OSPAR Commission. Implementation of PARCOM Recommendations 88/2 and 89/4[Z]. London: OSPAR Commission, 2003.
    [16] Vermaat J E, McQuatters-Gollop A, Eleveld M A, et al. Past, present and future nutrient loads of the North Sea: Causes and consequences[J]. Estuarine, Coastal and Shelf Science, 2008, 80: 53-59.
    [17] Claussen U, Zevenboom W, Brockmann U, et al. Assessment of the eutrophication status of transitional, coastal and marine waters within OSPAR[J]. Hydrobiologia, 2009, 629, 49-58.
    [18] Lenhart H J, Radach G, Ruardij P. The effects of river input on the ecosystem dynamics in the continental coastal zone of the North Sea using ERSEM[J]. Journal of Sea Research, 1997, 38:249-274.
    [19] Lenhart H J. Effects of river nutrient load reduction on the eutrophication of the North Sea simulated with the ecosystem model ERSEM[A]. In: Kr?ncke I, Türkay M, Sündermann J. Burning issues of North Sea ecology, Proceedings of the 14th international Senckenberg Conference“North Sea 2000”[C]. Stuttgart: Senckenbergiana maritima, 2001. 299-311.
    [20] Skogen M D, S?iland H, Svendsen E. Effects of changing nutrient loads to the North Sea[J]. Journal of Marine Systems, 2004, 46:23-38.
    [21] Lacroix G, Ruddick K, Gypens N, et al. Modelling the relative impact of rivers (Scheldt/Rhine/Seine) and channel water on the nutrient and diatoms/Phaeocystis distributions in Belgian waters (Southern North Sea)[J]. Continental Shelf Research, 2007, 27: 1422-1446.
    [22] Lancelot C, Lacroix G, Gypens N, et al. Ecological modelling as a scientific tool for assessing eutrophication and mitigation strategies for Belgian coastal waters[A]. In: Rousseau V, Lancelot C, Cox D. Current status of Eutrophication in the Belgian Coastal Zone[C]. Bruxelles: Presses Universitaires de Bruxelles, 2008. 91-110.
    [23] Skogen M D, Mathisen L R. Long term effects of reduced nutrient inputs to the North Sea[J]. Estuarine Coastal and Shelf Science, 2009, 82: 433-442.
    [24] Lenhart H J, Mills D K, Baretta-Bekker H, et al. Predicting the consequences of nutrient reduction on the eutrophication status of the North Sea[J]. Journal of Marine Systems, 2010, 81: 148-170.
    [25] Lancelot C, Staneva J, Van Eeckhout D, et al. Modelling the Danube-influenced north-western continental shelf of the Black Sea II: Ecosystem response to changes in nutrient delivery by the Danube River after its damming in 1972[J]. Estuarine, Coastal and Shelf Science, 2002, 54: 473-499.
    [26] Neumann T, Schernewski G. An ecological model evaluation of two nutrient abatement strategies for the Baltic Sea[J]. Journal of Marine Systems, 2005, 56: 195-206.
    [27] Korpinen P, Kiirikki M, Koponen J, et al. Evaluation and control of eutrophication in Helsinki sea area with the help of a nested 3D-ecohydrodynamic model[J]. Journal of Marine Systems, 2004, 45: 255-265.
    [28] Salvetti R, Azzellino A, Vismara R. Diffuse source apportionment of the Po River eutrophying load to the Adriatic Sea: Assessment of Lombardy contribution to Po River nutrient load apportionment by means of an integrated modelling approach[J]. Chemosphere, 2006, 652: 168-2177.
    [29] Justic D, Rabalais N N, Turner R E. Modeling the impacts of decadal changes in riverine nutrient fluxes on coastal eutrophication near the Mississippi River Delta[J]. Ecological Modelling, 2002, 152(1): 33-46.
    [30] Howarth R W, Marino R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades[J]. Limnology and Oceanography, 2006, 51(1): 364-376.
    [31] Philippart C J M, Cadée G C, van Raaphorst W, et al. Long-term phytoplankton-nutrient interactions in a shallow coastal sea: Algal community structure, nutrient budgets, and denitrification potential[J]. Limnology and Oceanography, 2000, 45(1): 131-144.
    [32]中华人民共和国环境保护部,中华人民共和国交通部,中华人民共和国农业部. 2008年中国近岸海域环境质量公报[EB/OL]. http://jcs.mep.gov.cn/hjzl/jagb /2008jagb/, 2010-04-14.
    [33] Tao J, Mu D. Numerical simulation of aquatic Eco-environment of Bohai bay[C]. //Proceedings of the World Environmental and Water Resources Congress 2008. Honolulu, USA, 2008: 34-42.
    [34]国家海洋局北海分局. 2008年渤海海洋环境质量公报[EB/OL]. http://www.soa.gov.cn/soa/hygb/hq/webinfo/2009/08/1281687829459497.htm, 2009-08-12.
    [35]朱琳.渤海湾的生态环境压力与管理对策研究[D].天津:天津大学环境科学与工程学院, 2006.
    [36]孟伟.海岸带生境退化诊断技术——渤海典型海岸带[M].北京:科学出版社, 2009.
    [37] Yuan D, Tao J. Hydrodynamic characters of the coastal area of Bohai Bay[C]. // Asian and pacific coasts 2003: proceedings of the 2nd international conference. Makuhari, Japan, 2004: 89-90.
    [38]平仲良.从ERTS图象上观测渤海湾表层流[J].海洋与湖沼, 1983, 14(3): 297-304.
    [39]赵保仁,庄国文,曹德明.渤海的环流、潮余流及其对沉积物分布的影响[J].海洋与湖沼, 1995, 26(5): 466-473.
    [40] Sun T, Tao J. Numerical simulation of pollutant transport acted by wave for a shallow water sea bay[J]. International Journal for Numerical Methods in Fluids, 2006, 51(5): 469-487.
    [41]孙涛,陶建华.波浪作用下渤海湾近岸海域污染物的输移扩散规律[J].海洋与湖沼, 2004, 35(2): 110-119.
    [42]孙涛,陶建华.波浪作用下缓坡近岸海域沿岸流分布影响因素分析[J].水动力学研究与进展(A), 2004, 19(4): 558-564.
    [43]天津市统计局,国家统计局天津调查总队.天津市统计年鉴2010[M].北京:中国统计出版社, 2010.
    [44]王静,徐敏,张益民,等.围填海的滨海湿地生态服务功能价值损失的评估——以海门市滨海新区围填海为例[J].南京师大学报:自然科学版, 2009, 32(4): 134-138.
    [45]国家海洋局. 2009年国家海洋环境质量公报[EB/OL]. http://www.soa.gov.cn/ soa/hygb/hjgb/webinfo/2010/06/1297643967120831.htm, 2010-06-10.
    [46]周怀东,彭文启.水污染与水环境修复[M].北京:化学工业出版社, 2005.
    [47]邓华建.渤海湾沉积物——水界面营养盐交换通量的研究[D].天津:天津大学环境科学与工程学院, 2004.
    [48]张洁帆,陶建华,李清雪,等.渤海湾沉积物和水界面间营养盐交换通量及影响因素[J].海洋环境科学, 2009, 28(5): 492-496.
    [49] Zou J, Dong L, Qin B. Preliminary studies on eutrophication and red tide problems in Bohai Bay[J]. Hydrobiologia, 1985, 127: 27-30.
    [50]沈志良.渤海湾及其东部水域的水化学要素.海洋科学集刊[J],1999,41: 51-59.
    [51]张洁帆,陶建华,李清雪,等.渤海湾氮磷营养盐年际变化规律研究[J].安徽农业科学, 2007, 35(7): 2063-2064, 2107.
    [52]阚文静,张秋丰,石海明,等.近年来渤海湾营养盐变化趋势研究[J].海洋环境科学, 2010, 29(2): 238-241.
    [53]石海明,尹翠玲,张秋丰,等.近年来渤海湾赤潮监控区营养盐变化[J].海洋环境科学, 2010, 29(2):246-249.
    [54]安斐.渤海湾富营养化模糊评价与预测研究[D].天津:天津大学环境科学与工程学院, 2007.
    [55]杨世民,董树刚,窦明武,等.渤海湾海域生态环境的研究II.水体富营养化的评价与分析[J].海洋环境科学, 2007, 26(6): 541-545.
    [56] Mu D, Tao J. Eutrophication assessment of a large scale coastal area using GIS technologies[J]. Advanced Material Research, 2011, 219-220: 1073-1076.
    [57]张洪亮,张爱君,窦月明,等.渤海海区赤潮发生特点的研究[A].见:中国环境科学学会.中国环境保护优秀论文集[C].北京:中国环境科学出版社, 2005. 1107-1111.
    [58]国家海洋局天津海洋环境监测中心站,天津市海洋环境监测预报中心. 2006年渤海湾生态监控区监测报告[R]. 2006.
    [59]刘素娟.渤海湾浮游植物的生态研究[D].天津:天津大学环境科学与工程学院, 2007.
    [60]杨世民,董树刚,李锋,等.渤海湾海域生态环境的研究I.浮游植物种类组成和数量变化[J].海洋环境科学, 2007, 26(5): 442-445.
    [61]王勇,焦志念.营养盐对浮游植物生长的上行效应的研究方法[J].海洋科学, 2000, 24(11): 16-18.
    [62]彭欣,宁修仁,蔡昱明,等.浮游植物生长上行效应的研究进展[J].海洋学研究, 2006, 24(3): 64-75.
    [63] Lane P, Levins R. The dynamics of aquatic systems 2. The effects of nutrient enrichment on model plankton communities[J]. Limnology and Oceanography, 1977, 22(3): 454-471.
    [64] Smith S V. Phosphorus versus nitrogen limitation in the marine environment[J]. Limnology and Oceanography, 1984, 29(6): 1149-1163.
    [65] Fisher T R, Peele E R, Ammerman J M, et al. Nutrient limitation of phytoplankton in Chsapeake Bay[J]. Marine Ecology Progress Series, 1992, 82: 51-63.
    [66] Nelson D M, Treguer P, Brzezinski M A, et al. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Clobal Biogeochemical Cycles, 1995, 9(3): 359-372.
    [67] Redfield A C, Ketchum B H, Richards F A. The influence of organisms on the composition of sea-water[A]. In: Hill M N. The Sea[C]. New York: Wiley, 1963. 26-77.
    [68] Justic D, Rabalais N N, Turner R E, et al. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences[J]. Estuarine, Coastal and Shelf Science, 1995, 40:339-356.
    [69] Dortch Q, Whitledge T E. Does nitrogen or silicon limit phytoplankton production in the Mississippi river plume and nearby regions?[J] Continental Shelf Research, 1992, 12(11): 1293-1309
    [70] Rhee G Y, Gotham I J. The effect of environmental factors on phytoplankton growth: light and the interactions of light with nitrate limitation[J]. Limnology and Oceanography, 1981, 26(4): 649-659.
    [71] Hodgkiss I J, Ho K C. Are changes in N: P ratios in coastal waters the key to increased red tide blooms?[J] Hydrobiologia, 1997, 352: 141-147.
    [72]蒲新明,吴玉霖.浮游植物的营养盐限制研究进展[J].海洋科学, 2000, 24(2): 27-30.
    [73]张平,沈志良.营养盐限制的水域性特征[J].海洋科学, 2001, 25(6): 16-19.
    [74]冯士筰,李凤岐,李少菁.海洋科学导论[M].北京:高等教育出版社, 1999.
    [75]李冠国.海洋生态学[M].北京:高等教育出版社, 2004.
    [76] Dortch Q, Clayton J R, Thoresen S S, et al. Species differences in accumulation of nitrogen pools in phytoplankton[J]. Marine Biology, 1984, 81: 237-250.
    [77] Ryther J H, Dunstan W M. Nitrogen, phosphorus, and eutrophication in the coastal marine environment[J]. Science, 1971, 171(3975): 1008-1013.
    [78] Labry C,Herbland A,Delmas D.The role of phosphorus on planktonic production of the Gironde plume waters in the Bay of Biscay[J].Journal of Plankton Research, 2002, 23: 97-117.
    [79] Hu M H, Yang Y P, Harrison P J. Limitation of phosphate on phytoplankton growth in Yangtze River estuary[J]. Acta Oceanologia Sinica, 1989, 11: 439-443.
    [80] Krom M D, Kress N, Brenner S. Phosphorus limitation of primary productivity in the eastern Mediterranean Sea[J]. Limnology and Oceanography, 1991, 36(3): 424-432.
    [81] Healey F P, Hendzel L L. Physiological indicators of nutrient deficiency in lake phytoplankton[J]. Canadian Journal of Fisheries and Aquatic Science, 1980, 37:442-453.
    [82] Sala M M, Karner M, Arin L, et al. Measurement of ectoenzyme activities as an indication of inorganic nutrient imbalance in microbial communities[J]. Aquatical Microbial Ecology, 2001, 23: 301-311.
    [83] Boynton W R, Kemp W M, Keefe C W. A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production[A]. In: Kennedy V S. Estuarine Comparisons[C]. New York: Academic Press, 1982. 60-90.
    [84] Fisher T R, Harding L W, Stanley D W, et al. Phytoplankton, nutrients and turbidity in the Cheasapeake, Delaware and Hudson estuaries[J]. Estuarine, Coastal and Shelf Science, 1988, 27: 61-93.
    [85] Prego R. Nitrogen fluxes and budget seasonality in the Ria Vigo (NW Iberian Peninsula)[J]. Hydrobiologia, 2002, 475/476: 161-171.
    [86] Ryther J H, Guillard R R L. Enrichment experiments as a means of studying nutrients limiting to phytoplankton production[J]. Deep Sea Research, 1959, 6: 65-69.
    [87] Menzel D W, Hulbert E M, Ryther J H. The effects of enriching Sargasso Sea water on the production and species composition of the phytoplankton[J]. Deep Sea Research, 1963, 10: 209-219.
    [88] Goldman C R. Primary production and limiting factors in three lakes of the Alaskan peninsula[J]. Ecology Monograph, 1960, 30: 207-230.
    [89] Schelske C L, Rothman E D, Stoermer E F, et al. Responses of phosphorus limited Lake Michigan phytoplankton to factorial enrichments with nitrogen and phosphorus[J]. Limnology and Oceanography, 1974, 19: 409-419.
    [90] Sanders J G, Cibik S T, Elia C F, at al. Nutrient enrichment studies in a coastal plain estuary: changes in phytoplankton species composition[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44: 83-90.
    [91] Fong P, Zedler J B, Donohoe R M. Nitrogen versus phosphorus limitation of algal biomass in shallow coastal lagoons[J]. Limnology and Oceanography, 1993, 38 (5): 906-923.
    [92] Balode M, Purina I, Béchemin C, et al. Effects of nutrient enrichment on the growth rates and community structure of summer phytoplankton from the Gulf of Riga, Baltic Sea[J]. Journal of Plankton Research, 1998, 20 (12): 2251-2272.
    [93] Loureiro S, Newton A, Icely J. Effects of nutrient enrichments on primary production in the Ria Formosa coastal lagoon (Southern Portugal)[J]. Hydrobiologia, 2005, 550: 29-45.
    [94] Tranter D J, Newell B S. Enrichment experiments in the Indian Ocean[J]. Deep Sea Research, 1963, 10: 1-9.
    [95] Kalff J. Nutrient limiting factors in an arctic tundra pond[J]. Ecology, 1971, 52: 655-659.
    [96] Gerhart D Z, Likens G E. Enrichment experiments for determining nutrient limitation: Four methods compared[J]. Limnology and Oceanography, 1975, 20: 649-653.
    [97] Healey F P. Short-term responses of nutrient-deficient algae to nutrient addition[J]. Journal of Phycology, 1979, 15: 289-299.
    [98] Kaiser M S, Speckman P L, Jones J R. Statistical models for limiting nutrient relations in inland waters[J]. Journal of the American Statistical Association,1994,89(426): 410-423.
    [99] Brown C D, Hoyer M V, Bachmann R W, et al. Nutrient-chlorophyll relationships: an evaluation of empirical nutrient-chlorophyll models using Florida and north-temperate lake data[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57: 1574-1583.
    [100] Markus A A, Glas P C G, Van der Giessen A. A simulation model of phytoplankton and water quality in the Southern Bight of the North Sea[C]. // Proceedings of the 1988 ICES Annual Science Conference. Copenhagen, Denmark, 1988, C44: 1-22.
    [101]刘哲.胶州湾水体交换与营养盐收支过程数值模型研究[D].青岛:中国海洋大学海洋环境学院, 2004.
    [102] Liu H, Yin B. Numerical investigation of nutrient limitations in the Bohai Sea[J]. Marine Environmental Research, 2010, 70: 308-317.
    [103]李铁,胡立阁,史致丽.营养盐对中肋骨条藻和新月菱形藻生长及氮磷组成的影响[J].海洋与湖沼, 2003, 31(1): 46-52.
    [104] Coale K H, Jonhson K S, Fitzwater S E, et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial pacific ocean[J]. Nature, 1996, 383: 495-501.
    [105]王勇,焦志念.北黄海浮游植物营养盐限制的初步研究[J].海洋与湖沼, 1999, 30(5): 512-518.
    [106]王勇,赵澎,单宝田.胶州湾营养盐限制浮游植物生长的初步模拟现场实验研究[J].海洋科学, 2002, 26(10): 55-59.
    [107]王勇,焦志念.胶州湾浮游植物对营养盐添加的响应关系[J].海洋科学, 2002, 26(4): 8-12.
    [108]邹立,张径.渤海春季营养盐限制的现场实验[J].海洋与湖沼, 2001, 32(6): 672-678.
    [109]刘媛,曹振锐,黄邦钦,等.东、黄海典型海区浮游植物对营养盐添加的响应[J].厦门大学学报:自然科学版, 2004, 43: 147-152.
    [110]王晓伟,李纯厚,李占东,等.大亚湾海域春季浮游植物生长的限制性营养元素[J].中国水产科学, 2007, 14(5):836-842.
    [111]宋文筠.渤海湾营养盐结构及浮游植物营养盐限制的实验研究[D].天津:天津大学环境科学与工程学院, 2007.
    [112]胡俊,柳欣,张钒,等.台湾海峡浮游植物生长的营养盐限制研究[J].台湾海峡, 2008, 27(4): 452-458.
    [113]王玉珏,洪华生,王大志,等.台湾海峡上升流区浮游植物对营养盐添加的响应[J].生态学报, 2008, 28(3): 1321-1327.
    [114] Fransz H G, Mommaerts J P, Radach G. Ecology modeling of the North Sea[J]. Netherlands Journal of Sea Research, 1991, 28(1-2):67-140.
    [115]任玲,杨军.海洋中氮营养盐循环及其模型研究[J].地球科学进展, 2000, 15(1): 58-64.
    [116] Nihaul J C J. Marine interfaces ecohydrodynamics[M]. Amsterdam: Elsevier Science Publshers BV, 1986.
    [117] EUR-OCEANS Consortium. EUR-OCEANS Model Interfacing Database [EB/OL]. http://www.eur-oceans.org/shopping_tool/all_models.php, 2011.
    [118] Lenhart H J, Mills D K, Baretta-Bekker H, et al. Predicting the consequences of nutrient reduction on the eutrophication status of the North Sea[J]. Journal of Marine Systems, 2010, 81: 148-170.
    [119] Xu J, Hood R R. Modeling biogeochemical cycles in Chesapeake Bay with a coupled physical-biological model[J]. Estuarine, Coastal and Shelf Science, 2006, 69(1-2): 19-46.
    [120] Arango H G, Robertson D. Introduction[EB/OL]. http://www.ocean-modeling.org /index.php, 2011.
    [121] Yamane N, Nakatsuji K, Kurita H, et al. Field data collection and modelling for verification of an ecosystem model in Osaka Bay, Japan[J]. Esuarine and Coastal Modelling, ASCE, 1997: 196-210.
    [122] Murray A G, Parslow J S. Modelling of nutrient impacts in Port Phillip Bay - a semi-enclosed marine Australian ecosystem[J]. Marine and Freshwater Research, 1999, 50(6): 597-612.
    [123] Spillman C M, Imberger J, Hamilton D P, et al. Modelling the effects of Po River discharge, internal nutrient cycling and hydrodynamics on biogeochemistry of the Northern Adriatic Sea[J]. Journal of Marine Systems, 2007, 68(1-2): 167-200.
    [124] Srokosz M A. Data assimilation into oceanic ecosystem models: a critical review, some comparisons, and recommendations[Z]. SOC Internal Document, 1998, No. 32: 32.
    [125] Xu Q, Lin H, Liu Y, et al. Data assimilation in a coupled physical-biological model for the Bohai Sea and the Northern Yellow Sea[J]. Marine and Freshwater Research, 2008, 59: 529-539.
    [126] Cui M C, Wang R, Hu D X. Simple ecosystem model of the central part of the East China Sea in spring[J]. Chinese Journal of Oceanology and Limnology, 1997, 15(1):80-87.
    [127] Gao H, Feng S, Guan Y. Modelling annual cycles of primary production in different regions of the Bohai Sea [J]. Fisheries oceanography, 1998, 7(3-4): 256-264.
    [128]余光耀,吴增茂.胶州湾北部水层生态动力学模型与模拟I.胶州湾北部水层生态动力学模型[J].青岛海洋大学学报, 1999, 29(3): 421-428.
    [129]余光耀,吴增茂.胶州湾北部水层生态动力学模型与模拟II.胶州湾北部水层生态动力学的模拟研究[J].青岛海洋大学学报, 1999, 29(3):429-435.
    [130]张书文,夏长水,袁业立.黄海冷水团上升流对叶绿素垂向分布的影响[J].海洋科学进展, 2002, 20(3): 9-14.
    [131]李清雪.渤海湾浮游生物氮吸收动力学研究[J].河北建筑科技学院学报, 2001, 2: 1-4.
    [132]李清雪.海湾浮游生物及氮营养盐生态水动力学模拟[D].天津:天津大学机械工程学院, 2000.
    [133]宋文筠.渤海湾浮游生态系统生态水动力学模型[D].天津:天津大学环境科学与工程学院, 2002.
    [134]赵海萍,陶建华,李清雪.渤海湾海域硝化、亚硝化细菌的生态研究[J].海洋技术,2005,24(4): 44-49.
    [135]赵海萍.渤海湾浮游细菌及水层生态动力学模拟[D].天津:天津大学环境科学与工程学院, 2006.
    [136]高庆春.渤海湾赤潮监控区细菌对浮游生态系统影响的研究[D].天津:天津大学环境科学与工程学院, 2007.
    [137]穆迪.渤海湾生态水质动力学模型研究[D].天津:天津大学环境科学与工程学院, 2006.
    [138] Wei H, Sun J, Moll A, et al. Phytoplankton dynamics in the Bohai Sea-observations and modeling[J]. Journal of Marine Systems, 2004, 44: 233-251.
    [139] Zhao L, Wei H. The influence of physical factors on the variation of phytoplankton and nutrients in the Bohai Sea[J]. Journal of Oceanography, 2005, 61: 335-342.
    [140]高会旺,王强. 1999年渤海浮游植物生物量的数值模拟[J].中国海洋大学学报, 2004, 34(5): 867-873.
    [141] Liu H, Yin B. Model study on Bohai ecosystem 1. Model description and primary productivity[J]. Acta Oceanologica Sinica, 2006, 25(4): 77-90.
    [142] Liu H, Yin B. Annual cycle of carbon, nitrogen and phosphorus in the Bohai Sea: A model study[J]. Continental Shelf Research, 2007, 27: 1399-1407.
    [143]张燕,孙英兰,袁道伟,等.胶州湾氮、磷浓度的三维数值模拟[J].中国海洋大学学报, 2007, 37(1):21-26.
    [144] Lu Z, Gan J, Dai M, et al. The influence of coastal upwelling and a river plume on the subsurface chlorophyll maximum over the shelf of the northeastern South China Sea[J]. Journal of Marine Systems, 2010, 82(1-2): 35-46.
    [145] Cools J, Broekx S, Vandenberghe V, et al. Coupling a hydrological water quality model and an economic optimization model to set up a cost-effective emission reduction scenario for nitrogen[J]. Environmental Modelling and Software, 2011, 26: 44-51.
    [146] Nunneri C, Windhorst W, Turner R K, et al. Nutrient emission reduction scenarios in the North Sea: An abatement cost and ecosystem integrity analysis[J]. Ecological Indicators, 2007, 7: 776-792.
    [147] Nobre A M, Ferreira J G, Newton T A, et al. Management of coastal eutrophication: Integration of field data, ecosystem-scale simulations and screening models[J]. Journal of Marine Systems, 2005, 56: 375-390.
    [148] Azzellino A, Bonomo L, Calderara E, et al. Combined use of the EPA-QUAL2E simulation model and factor analysis to assess the source appointment of point and non point loads to surface waters[C]. //Proceedings of the Diffuse Pollution Conference. Dublin, Ireland, 2003, 9A Transboundary: 1-7.
    [149] Engqvist A, Stenstr?m P. Flow regimes and long-term water exchange of the Himmerfj?rden estuary[J]. Estuarine, Coastal and Shelf Science, 2009, 83(2): 159-174.
    [150] Monsen N E, Cloern J E, Lucas L V, et al. A comment on the use of flushing time, residence time, and age as transport time[J]. Liminology and Oceanography, 2002, 47(5): 1545-1553.
    [151] Le Pape O, Menesguen A. Hydrodynamic prevention of eutrophication in the Bay of Brest (France), a modelling approach[J]. Journal of Marine System, 1997, 12: 171-186.
    [152] Tett P, Gilpin L, Svendsen H. Eutrophication and some European waters of restricted exchange[J]. Continental Shelf Research, 2003, 23: 1635-1671.
    [153] Nordberg K, Filipsson H L, Gustafsson M, et al. Climate, hydrographic variations and marine benthic hypoxia in Kolj? Fjord, Sweden[J]. Journal of Sea Research, 2001, 46: 187-200.
    [154] Rosenberg R. Negative oxygen trends in Swedish coastal bottom waters[J]. Marine Pollution Bulletin, 1990, 21: 335-339.
    [155] Kraufvelin P, Sinisalo B, Lepp?koski E, et al. Changes in zoobenthic community structure after pollution abatement from fish farms in the Archipelago Sea (N. Baltic Sea)[J]. Marine Environmental Research, 2001, 51: 229-245.
    [156] Ribbe J. A study into the export of saline water from Hervey Bay, Australia[J]. Estuarine, Coastal and Shelf Science, 2006, 66: 550-558.
    [157] Ribbe J, Wolff J, Staneva J, et al. Assessing water renewal time scales for marine environments from three-dimensional modelling: A case study for Hervey Bay, Australia[J]. Environmental modelling and software, 2008, 23: 1217-1228.
    [158] Signell R, Butman B. Modeling tidal exchange and dispersion in Boston Harbor[J]. Journal of Geophysical Research, 1992, C10: 15591-15606.
    [159] Jouon A, Douillet P, Ouillon S, et al. Calculations of hydrodynamic time parameters in a semi-opened coastal zone using a 3D hydrodynamic model[J]. Continental Shelf Research, 2006, 26: 1395-1415.
    [160] Mohn C, White M. Remote sensing and modelling of bio-physical distribution patterns at Porcupine and Rockall Bank, Northeast Atlantic[J]. Continental Shelf Research, 2007, 27: 1875-1892.
    [161] Luff R, Pohlmann T. Calculation of the water exchange times in the ICES-Boxes with and Eulerian dispersion model using a half-life time approach[J]. Deutsche Hydrographische Zeitung, 1995, 47(4): 287-299.
    [162] Delhez E J M, Campin J M, Hirst A, et al. Toward a general theory of the age in ocean modeling[J]. Ocean modelling, 1999, 1: 17-27.
    [163] Deleersnijder E, Campin J M, Delhez E J M. The concept of age in marine modellingΙ. Theory and preliminary model results[J]. Journal of Marine System, 2001, 28: 229-267.
    [164] Takeoka H. Fundamental concepts of exchange and transport time scales in a coastal sea[J]. Continental Shelf Research, 1984, 3(3): 311-326.
    [165] Sun J, Tao J. Relation matrix of water exchange for sea bays and its application [J]. China Ocean Engineering, 2006, 20(4): 529-544.
    [166] Bolin B, Rodhe H. A note on the concepts of age distribution and transit time in natural reservoirs[J]. Tellus, 1973, 25: 58-63.
    [167] Zimmerman J T F. Mixing and flushing of tidal embayments in the Western Dutch Wadden Sea. Part I: Disbribution of salinity and calculation of mixing time scales[J]. Netherlands Journal of Sea Research, 1976, 10: 149-191.
    [168]魏皓,田恬,周锋,等.渤海水交换的数值研究-水质模型对半交换时间的模拟[J].青岛海洋大学学报, 32(4): 519-525.
    [169] Hainbucher D, Wei H, Pohlmann T. Variability of the Bohai Sea circulation based on model circulation[J]. Journal of marine systems, 2004, 44(3-4): 153-174.
    [170]何磊.海湾水交换数值模拟方法研究[D].天津:天津大学机械工程学院, 2002.
    [171] Wang Y, Wu D, Lin X, et al, 2009. Numerical study on the time of water exchange and the variation of pollutants' concentration in Bohai Bay under the effect of M2 constituent [C]. //Proceedings of the 2nd International Conference on Environmental Pollution and Public Health (EPPH2009). Beijing, China, 2009: 1-5.
    [172]刘慧,董双林,方建光.全球海域营养盐限制研究进展[J].海洋科学, 2002, 26(8): 47-53.
    [173]唐松.印度洋海水营养盐添加模拟实验中浮游植物生长的营养盐限制作用[J].海洋科学, 2010, 34(7): 34-40.
    [174]张均顺,沈志良.胶州湾营养盐结构变化的研究[J].海洋与湖沼, 1997, 28(5):529-535.
    [175] Ho K C, Hodgkiss I J. Assessing the limiting factors of red tide by bottlebioassay[J]. Asian Marine Biology, 1993, 10: 77-94.
    [176]萧云朴,李扬,李欢,等.温州南麂列岛海域硅藻、甲藻群落变化与环境因子的关系[J].海洋环境科学, 2009, 28(2): 167-169, 201.
    [177]孙健,陶建华.潮流数值模拟中动边界处理方法研究[J].水动力学研究与进展, 2007, 22(1): 44-52
    [178]陈长胜.海洋生态系统动力学与模型[M].北京:高等教育出版社, 2003.
    [179] Radach G, Moll A. Review of three-dimensional ecological modeling related to the North Sea shelf system. Part II: model validation and data needs[J]. Oceanography and Marine Biology, 2006,44, 1-60.
    [180]王修林,李克强.渤海主要化学污染物海洋环境容量[M].北京:科学出版社, 2006.
    [181]唐晓,王佳.海水ORP的影响因素[J].装备环境工程, 2004, 1 (1) : 37-39.
    [182] Sundby B, Gobeil C, Silverberg N, et al. The phosphorus cycle in coastal marine sediments[J]. Limnology and Oceanography, 1992, 37: 1129-1145.
    [183] Hall T M, Haine T W N. On ocean transport diagnostics: The idealized age tracer and the age spectrum[J]. Journal of Physical Oceanography, 2001, 32: 1987-1991.
    [184] England M H. The age of water and ventilation time scale in a global ocean model[J]. Journal of Physical Oceanography, 1995, 25: 2756-2777.
    [185] Martin A P. Phytoplankton patchiness: the role of lateral stirring and mixing [J].Progress in Oceanography, 2003, 57(2): 125-174.
    [186]郑重,李少菁.海洋浮游生物斑块分布的研究[J].海洋科学, 1988, 2: 58-62.
    [187] Borcard D, Legendre P. All-scale analysis of ecological data by means of principal coordinates of neighbor matrices[J]. Ecological Modelling, 2002, 153: 51-68.
    [188]赵安玖,胡庭兴,陈小红.西南山地阔叶混交林群落空间结构的多尺度特征[J].生物多样性, 2009, 17 (1): 43-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700