用户名: 密码: 验证码:
采煤沉陷区生态演替规律及菌根修复作用与后效研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国作为煤炭大国,井工开采引起的地表沉陷带来了许多环境问题,生态环境的优劣直接决定了矿区的可持续发展问题。本论文针对受损生态系统具有一定程度的自我修复能力,以空间代替时间发展方法,研究了不同开采年限的沉陷区生态演替规律,以及人工改良的作用及后效生态演替规律。结果表明:随着开采的延长,植被群落多样性、土壤肥力、土壤微生物和根系真菌多样性逐渐恢复;两种菌根真菌(AMF)联合对植被和土壤的人工改良效果最优;菌根真菌联合与间作协同的后效作用提高了植被群落生态系统次生演替的速率,保护了生物的多样性;通过比较单作与间作在撂荒后对根际土壤环境的持续性改良后效,发现菌根真菌联合与间作协同能够提高撂荒土壤的熟化程度,其余二者只减轻了其退化的程度。人工接种菌根真菌对矿区沉陷地的生态重建效果显著,为微生物复垦技术的大规模应用提供理论依据。
China as a coal country, surface subsidence caused by underground mining hasbrought many environmental problems, and the pros and cons of the ecologicalenvironment directly determined the sustainable development of mining areas.Aiming at the rule of damaged ecosystems having self-healing capabilities,we studiedthe rules of ecological succession in different lives of mine subsidence, as well as therole of artificial improvement and aftereffect succession laws with method of spaceinstead of time development. The results showed that community diversity ofvegetation, soil fertility, soil microbial and root fungal diversity were recovered withthe mining lives. The processing inoculated by two AMF artificially improved bothplants and soil optimally. The synergistic aftereffects of two AMF and intercroppingimproved the rate of vegetation community ecosystem secondary succession andprotected the biodiversity. By comparing the lasting improvement aftereffects onrhizosphere soil environment by monoculture and intercropping, it was found thatsynergy of two mycorrhizal fungi and intercropping could improved the soilmaturation degree, and the other two mitigated soil degradation level. AMF hadsignificant effects on the ecological reconstruction of the mine subsidence land,providing a theoretical basis for the large-scale application of microbial reclamationtechnology.
引文
[1]宋振骐,文志杰.煤炭资源的开采现状及发展方向[J].科技导报,2011,29(35):3.
    [2]刘飞,陆林.采煤塌陷区的生态恢复研究进展[J].自然资源学报,2009,24(4):612~620.
    [3]王金安,赵志宏,侯志鹰.浅埋坚硬覆岩下开采地表塌陷机理研究[J].煤炭学报,2007,32(10):1051~1056.
    [4]李书银,董来启,王书宏,等.永城矿区陈四楼采煤塌陷区生态恢复与综合治理[J].科教文汇,2008,4(下旬刊):208,50.
    [5]贾善明.采煤沉陷区的生态恢复研究[J].科技信息,2008,21:326.
    [6]张波.浅析采煤对我国环境的影响及其生态恢复的策略[J].科技情报开发与经济,2011,21(30):154~155.
    [7]侯湖平,张绍良,丁忠义,等.基于植物净初级生产力的煤矿区生态损失测度研究[J].煤炭学报,2012,37(3):445~451.
    [8]岳辉,毕银丽,刘英.神东矿区采煤沉陷地微生物复垦动态监测与生态效应[J].科技导报,2012,30(24):33~37.
    [9]Cooper D J, MacDonald L H. Restoring the vegetation of mined peat lands in the SouthernRocky Mountains of Colorado, USA[J]. Restoration Ecology,2000,8(2):103~111.
    [10]陈龙乾,郭达志,许善宽,等.兖州矿区采煤塌陷地状况与综合治理途径研究[J].自然资源学报,2002,17(4):504-508.
    [11]李凤明.我国采煤沉陷区治理技术现状及发展趋势[J].煤矿开采,2011,16(3):8-10.
    [12]贾新果,张彬,杨宁.采煤沉陷土地破坏程度分级研究[J].煤炭工程,2009,6:81-84.
    [13]范英宏,陆兆华,程建龙,等.中国煤矿区主要生态环境问题及生态重建技术[J].生态学报,2003,23(10):2144-2152.
    [14]张发旺,赵红梅,宋亚新,等.神府东胜矿区采煤塌陷对水环境影响效应研究[J].地球学报,2007,28(6):521-527.
    [15]张曦沐,张国锋,马靖华.关于采煤沉陷区人居环境建设的思考[J].建筑科学,2010,26(11).:103-105,99.
    [16]Chapin III F S, Zavaleta E S, Eviner V T, et al. Consequences of changing biodiversity[J].Nature,2000,405(5):234~242.
    [17]刘德良,廖富林,黄思梅,等.菌根生物技术及其矿区土地复垦与生态重建中的应用研究[J].嘉应学院学报(自然科学),2011,29(2):58~65.
    [18]张全国,张大勇.生物多样性与生态系统功能:最新的进展与动向[J].生物多样性,2003,11(5):351-363.
    [19]马克平.生物多样性与生态系统功能的实验研究[J].生物多样性,2013,21(3):247-248.
    [20]山宝琴,姜在民.沙漠生境白沙蒿(Artemisia sphaerocephala)根围丛枝菌根真菌多样性[J].生态学杂志,2010,29(9):1729~1735.
    [21]Van der Heijden M G A, Klironomos J N, Ursic M, et al. Mycorrhizal fungal diversitydetermines plant biodiversity, ecosystem variability and productivity[J]. Nature,1998,396(5):69~72.
    [22]魏远,顾红波,薛亮,等.矿山废弃地土地复垦与生态恢复研究进展[J].中国水土保持科学,2012,2:107-114.
    [23]杜善周,毕银丽,王义,等.丛枝菌根对神东媒矿区塌陷地的修复作用与生态效应[J].科技导报,2010,28(7):41~44.
    [24]蔡柏岩,接伟光,葛菁萍,等.黄檗根围丛枝菌根(AM)真菌的分离与分子鉴定[J].菌物学报,2008,27(6):884~893.
    [25]何新华,段英华,陈应龙,等.中国菌根研究60年:过去、现在和将来[J].中国科学,2012,42(6):431~454.
    [26]Govindarajulu M, Pfeffer P E, Jin H, et al. Nitrogen transfer in the arbuscular mycorrhizalsymbiosis[J]. Nature,2005,435(7043):819-823.
    [27]Smith S E, Jakobsen I, Gr nlund M, et al. Roles of arbuscular mycorrhizas in plantphosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscularmycorrhizal roots have important implications for understanding and manipulating plantphosphorus acquisition[J]. Plant Physiology,2011,156(3):1050-1057.
    [28]El-Mesbahi M N, Azcón R, Ruiz-Lozano J M, et al. Plant potassium content modifies theeffects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants[J].Mycorrhiza,2012,22(7):555-564.
    [29]Zitka O, Merlos M A, Adam V, et al. Electrochemistry of copper (II) induced complexes inmycorrhizal maize plant tissues[J]. Journal of hazardous materials,2012,203:257-263.
    [30]Cavagnaro T R, Dickson S, Smith F A. Arbuscular mycorrhizas modify plant responses to soilzinc addition[J]. Plant and soil,2010,329(1-2):307-313.
    [31]刘惠欣,张俊英,李富平.丛枝菌根在尾矿废弃地生态恢复中的试验研究[J].中国农学通报,2012,28(14):285~289.
    [32]Miller R M, Jastrow J D. Mycorrhizal fungi influence soil structure[M]//Arbuscularmycorrhizas: physiology and function. Springer Netherlands,2000:3-18.
    [33]Jeffries P, Gianinazzi S, Perotto S, et al. The contribution of arbuscular mycorrhizal fungi insustainable maintenance of plant health and soil fertility[J]. Biology and fertility of soils,2003,37(1):1-16.
    [34]Zarea M J, Ghalavand A, Goltapeh E M, et al. Effects of mixed cropping, earthworms(Pheretima sp.), and arbuscular mycorrhizal fungi (Glomus mosseae) on plant yield,mycorrhizal colonization rate, soil microbial biomass, and nitrogenase activity of free-livingrhizosphere bacteria[J]. Pedobiologia,2009,52(4):223-235.
    [35]弓明钦,陈应龙,仲崇禄.菌根研究及应用[M].北京:中国林业出版社,1997.
    [36]Hassan S E D, Liu A, Bittman S, et al. Impact of12-year field treatments with organic andinorganic fertilizers on crop productivity and mycorrhizal community structure[J]. Biology andFertility of Soils,2013:1-13.
    [37]Fan J H, Gao Q, Zou Y D. Effect of arbuscular mycorrhiza on the content of nitrogen andnitrogenous matter in amur corktree seedings[J]. Agricultural Science and Technology,2012,13(8):1695~1698.
    [38]周玉杰,宋希强,朱国鹏,等.兰科植物菌根营养研究与展望[J].热带农业科学,2009,29(2):83~87.
    [39]Adesemoye A O, Torbert H A, Kloepper J W. Plant growth-promoting rhizobacteria allowreduced application rates of chemical fertilizers[J]. Microbial Ecology,2009,58(4):921~929.
    [40]Tawaraya K, Hirose R, Wagatsuma T. Inoculation of arbuscular mycorrhizal fungi cansubstantially reduce phosphate fertilizer application to Allium fistulosum L. and achievemarketable yield under field condition[J]. Biology and Fertility of Soils,2012,48(7):839-843.
    [41]Borde M, Dudhane M, Jite P. Growth, Water Use Efficiency and Antioxidant DefenseResponses of Mycorrhizal and Non Mycorrhizal Allium sativum L. Under Drought StressCondition[J]. Annals of Plant Sciences,2012,1(1):6-11.
    [42]Dave S, Tarafdar J C. Arbuscular mycorrhizal fungi encourage drought tolerance ofChlorophytum borivilianum by enhancing antioxidant enzyme system[J]. Applied BiologicalResearch,2012,14(1):60-70.
    [43]Fan L, Fang C, Dubé C, et al. Arbuscular Mycorrhiza Alleviates Salinity Stress of StrawberryCultivars under Salinity Condition[J]. Acta Horticulturae,2012(926):491-496.
    [44]Bothe H. Arbuscular mycorrhiza and salt tolerance of plants[J]. Symbiosis,2012:1-10.
    [45]Muleta D, Woyessa D. Importance of arbuscular mycorrhizal fungi in legume productionunder heavy metal-contaminated soils[J]. Toxicity of Heavy Metals to Legumes andBioremediation,2012:219~241.
    [46]Meier S, Borie F, Bolan N, et al. Phytoremediation of metal-polluted soils by arbuscularmycorrhizal fungi[J]. Critical Reviews in Environmental Science and Technology,2012,42(7):741-775.
    [47]Audet P, Charest C. Assessing arbuscular mycorrhizal plant metal uptake and soil metalbioavailability among ‘dwarf’sunflowers in a stratified compartmental growth environment[J].Archives of Agronomy and Soil Science,2013,59(4):533-548.
    [48]Chen B D, Zhu Y G, Duan J, et al. Effects of the arbuscular mycorrhizal fungus Glomusmosseae on growth and metal uptake by four plant species in copper mine tailings[J].Environmental Pollution,2007,147(2):374~380.
    [49]王倡宪,李晓林,宋福强,等.两种丛枝菌根真菌对黄瓜苗期枯萎病的防效及根系抗病相关酶活性的影响[J].中国生态农业学报,2012,20(1):53-57.
    [50]宰学明,夏连全,闫道良,等.丛枝菌根真菌对滨海扦插苗生根、生长和抗病相关酶活性的影响[J].广西植物,2011,31(3):393~397.
    [51]叶佳舒,李涛,胡亚军,等.干旱条件下AM真菌对植物生长和土壤水稳定性团聚体的影响[J].生态学报,2013,33(4):1080-1090.
    [52]Xi J M, Zhao H L, Jian H C. Ecological risk assessment of open coal mine area[J].Environmental monitoring and assessment,2008,147(1-3):471-481.
    [53]毕银丽.丛枝菌根培养新技术及其对土地复垦生态效应[M].北京:地质出版社,2007,5.
    [54]毕银丽,冯广达,刘榕榕,等.微生物对煤系固体废弃物淋滤液污染性影响[J].环境科学与技术,2009,32(9):17~21.
    [55]刘德良,廖富林,黄思梅,等.菌根生物技术及其矿区土地复垦与生态重建中的应用研究[J].嘉应学院学报(自然科学),2011,29(2):58~65.
    [56]Kumar A, Raghuwanshi R, Upadhyay R S. Arbuscular mycorrhizal technology in reclamationand revegetation of coal mine spoils under various revegetation models[J]. Engineering,2010,2(9):683-689.
    [57]Cuenca G, Andrade Z D, Escalante G. Arbuscalar mycorrhizae in the rehabilitation of fragiledegraded tropical lands[J]. Biology and Fertility of Soils,1998,26(2):107~111.
    [58]Maiti S K. Biofertiliser (Mycorrhiza) Technology in Mine Ecorestoration[M]//Ecorestorationof the coalmine degraded lands. Springer India,2013:171-185.
    [59]Rydlová J, Püschel D, Vosátka M, et al. Different effect of mycorrhizal inoculation in directand indirect reclamation of spoil banks[J]. Journal of Applied Botany and Food Quality,2008,82(1):15-20.
    [60]Tian Y, Lei Y, Zheng Y, et al. Synergistic effect of colonization with arbuscular mycorrhizalfungi improves growth and drought tolerance of Plukenetia volubilis seedlings[J]. ActaPhysiologiae Plantarum,2013,35(3):687-696.
    [61]王树和,王昶,王晓娟,等.根瘤菌、丛枝菌根(AM)真菌与宿主植物共生的分子机理[J].应用与环境生物学报,2008,14(5):721~725.
    [62]宋福强,贾永.丛枝菌根(AM)真菌-豆科植物-根瘤菌共生识别信号研究概况[J].菌物学报,2008,27(5):788~796.
    [63]贾永,宋富强.丛枝菌根(AM)对根瘤菌趋化作用研究[J].微生物学通报,2008,35(5):743~747.
    [64]丁效东,张林,李淑仪,等.丛枝菌根真菌与根瘤菌接种对大豆根瘤分别及磷素吸收的影响[J].植物营养与肥料学报,2012,18(3):662~669.
    [65]Onguene N A, Onana C S O, Onana L G O. Starter N and P Fertilizers Have Dissimilar Effectson Native Mycorrhizal and Bradyrhizobial Symbiosis of Four Promiscuous Soybean Varietiesin Acid Soils of Cameroon[J]. Tropicultura,2012,30(3):125-132.
    [66]李建华,郜春花,卢朝东,等.丛枝菌根和根瘤菌双接种对矿区土地复垦的生态效应[J].中国土壤与肥料,2009(5):77~80.
    [67]毕银丽,吴福勇,武玉坤,等.接种微生物对煤矿废弃物基质的改良与培肥作用[J].煤炭学报,2006,31(3):365~368.
    [68]于淼,毕银丽,张翠青.菌根与根瘤菌联合应用对复垦矿区根际土壤环境的改良后效[J].农业工程学报,2013,29(8):242-248.
    [69]Saxena J, Chandra S, Nain L. Synergistic effect of phosphate solubilizing rhizobacteria andarbuscular mycorrhiza on growth and yield of wheat plants[J]. Journal of soil science and plantnutrition,2013,13(2):511-525.
    [70]蔡晓布,彭岳林,盖京苹,等.藏北高寒草原土壤活性有机碳对AM真菌物种多样性的影响[J].农业工程学报,2012,28(增刊1):216~223.
    [71]盛利,陈莉,孙兆法,等. CAD在植物生长面积指标测定中的应用[J].北方园艺,2007,12:64.
    [72]Wright S F, Upadhyaya A. A survey of soils for aggregate stability and glomalin, aglycoprotein produced by hyphe of arbuscular mycorrhizal fungi. Plant and Soil,1998,198:97-107.
    [73]Lee J, Lee S and Young J P W. Improved PCR primers for the detectionand identification ofarbuscularmycorrhizal fungi [J]. Microbiol Ecology,2008,65:339-349.
    [74]何兴东,高玉葆,刘慧芬.重要值的改进及其在羊草群落分类中的应用[J].植物研究,2004,24(4):466~472.
    [75]Pagono M C, Covacevich F. Mycorrhizal fungi: soil, agriculture and environmentalimplications[M]. New York: Nava Science Publishers,2011.
    [76]王育松,上官铁梁.关于重要值计算方法的若干问题[J].山西大学学报(自然科学版),2010,33(2):312~316.
    [77]Nichols K A. Characterization of glomalin, a glycoprotein produced by arbuscularmycorrhizal fungi. PhD dissertation, University of Maryland, M D,2003.
    [78]Driver J D, Holben W E, Rillig M C. Characterization of glomalin as a hyphal wallcomponent of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry,2005,37:101-106.
    [79]Ruiz-lozano J M, Azón R. Symbiotic efficiency and infectivity of an autochthonous arbuscularmycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity[J].Mycorrhiza,2000,10(3):137~143.
    [80]王树和,王晓娟,王茜,等.丛枝菌根及其宿主植物对根际微生物作用的响应[J].草业学报,2007,16(3):108~113.
    [81]周霞,崔明,秦永胜,等.扩繁条件对3种丛枝菌根真菌(AMF)的影响[J].中国农学通报,2012,28(12):83~87.
    [82]常勃,李建华,卢朝东,等.微生物复垦技术在矿区生态重建中的应用[J].山西农业科学,2012,40(10):1071~1074.
    [83]Lata H, De Andrade Z, Schaneberq B, et al. Arbuscular mycorrhizal inoculation enhancessurvival rates and growth of Micropropagated plantlets of Echinacea pallida[J]. Planta Medica,2003,69(7):679~682.
    [84]Aralm G, Saleem A, Arnason J T, et al. Root colonization by an arbuscular mycorrhizal (AM)fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea(L.) Moench[J]. Journal of Agricultural and Food Chemistry,2009,57(6):2255~2258.
    [85]毕银丽,于淼,曹楠,等.解磷细菌对难溶磷肥的解磷效率比较[J].科技导报,2011,29(19):19~23.
    [86]Gehring C A. Growth responses to arbuscular mycorrhiza by rain forest seedlings vary withlight intensity and tree species. Plant Ecology,2003,167:127-139.
    [87] Harler J L, Smith S E. Mycorrhizal Symbiosis. New York: Academic Press,1983.
    [88]江盼盼,宋述尧,赵春波,等.三种丛枝菌根真菌对辣椒根系生长的影响及效应分析[J].中国蔬菜,2010(6):58~62.
    [89]宋勇春,冯固,李晓林.泡囊丛枝菌根对红三叶草根际土壤磷酸酶活性的影响[J].应用与环境生物学报,2000,6(2):171~175.
    [90]彭建,蒋一军,吴健生,等.我国矿山开采的生态环境效应及土地复垦典型技术[J].地理科学进展,2005,24(2):38-48.
    [91]Gai J P, Cai X B, Feng G, et al. Arbuscular mycorrhizal fungi associated with sedges on theTibetan plateau[J]. Mycorrhiza,2006,16:151~157.
    [92]Wagg C, Jansa J, Stadler M, et al. Mycorrhizal fungal identity and diversity relaxes plant-plantcompetition[J]. Ecology,2011,92(6):1303~1313.
    [93]Bauer J T, Kleczewski N M, Bever J D, et al. Nitrogen-fixing bacteria, arbuscular mycorrhizalfungi, and the productivity and structure of prairie grassland communities[J]. Oecologia,2012:1~10.
    [94]刘榕榕.微生物联合对煤矿废弃地资源化利用的生态效应[D].北京:中国矿业大学(北京),2010.
    [95]钱鸣高.煤炭的科学开采及有关问题的讨论(1)[J].中国煤炭,2008,34(8):5-10,20.
    [96]李杰颖,韩放,梁成华,等.浅谈矿区土地的生态复垦[J].采矿技术,2009,9(3):75-76,123.
    [97]蔡柏岩,接伟光,葛菁萍,等.黄檗根围丛枝菌根(AM)真菌的分离与分子鉴定[J].菌物学报,2008,27(6):884-893.
    [98]王震.微生物解磷钾作用及其对废弃地复垦效应研究[D].北京:中国矿业大学(北京),2011.
    [99]张翠青.微生物对尾矿和粉煤灰修复作用及其在废弃地生态效应[D].北京:中国矿业大学(北京),2010.
    [100]LY/T1228-1999.森林土壤全氮的测定.
    [101]冯固,张福锁,李晓林,等.丛枝菌根真菌在农业生产中的作用与调控[J].土壤学报,2010,47(5):995-1004.
    [102]Feng G, Song Y C, Li X L, et al. Contribution of arbuscular mycorrhizal fungi to utilizationof organic sources of phosphorus by red clover in a calcareous soil[J]. Appl Soil Ecol,2003,222(2):139-148.
    [103]Bedini S, Turrini A, Rigo C, et al. Molecular characterization and glomalin production ofarbuscular mycorrhizal fungi colonizing a heavy metal polluted ash disposal island, downtownVenice. Soil Biology and Biochemistry,2010,42(5):758-765.
    [104]李江.矿区复垦土壤微生物群落和功能多样性分析[J].广东化工,2011,38(7):18-20.
    [105]Chapin III F S, Zavaleta E S, Eviner V T, et al. Consequences of changing biodiversity[J].Nature,2000,405(5):234-242.
    [106]Cardinale B J, Duffy J E, Gonzalez A, et al. Biodiversity loss and its impact on humanity[J].Nature,2012,486(7):59-67.
    [107]Schloter M, Dilly O, Munch J C. Indicators for evaluating soil quality. Agriculture,Ecosystems and Environment,2003,98:255-262.
    [108]Stenberg B. Monitoring soil quality of arable land: microbiological indicators. ActsAgriculture Scandinavica Section B-Soil and Plant Science,1999,49(1):1-24.
    [109]Roberson E B, Sarig S, Shennan C et al. Nutritional management of microbialpolysaccharide production and aggregation in an agricultural soil. Soil Science Society ofAmerica Journal,1995,59(6):1587-1594.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700