用户名: 密码: 验证码:
纳米粒子组装电化学生物传感器和电化学发光免疫分析法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生命科学、材料科学、环境科学的发展,对分析化学提出了越来越高的要求,同时也极大地促进了分析化学的发展。传统的分析方法往往需要烦琐费时的分离、复杂昂贵的仪器设备,分析速度慢、耗时长,且劳动强度大。建立高灵敏度、高选择性、简单、快速的分析方法和廉价的小型化分析装置是分析化学工作者的研究目标。我们长期的研究目的是建立快速、灵敏、可实现自动化的新型均相电化学发光免疫分析方法,研制具有实用价值的纳米组装电化学和电化学发光生物传感器,为临床免疫检测和基因检测提供性能优良的分析器件。
     本论文研究工作旨在研究纳米粒子组装电极上电化学检测信号的增强作用,结合生物分子识别物质如酶、抗原/抗体和DNA的特异性,研制具有实用价值的纳米组装电化学生物传感器;利用多标记技术和磁性微粒的容易分离作用,结合生物分子识别物质—抗原/抗体的特异性,建立简单、快速、灵敏的电化学发光免疫分析新方法。本论文研究工作是在国家自然科学基金“新型功能纳米材料组装电化学发光生物亲合传感器的研究”(No.20375025)和“新型均相电化学发光免疫法的研究”(No.29975017)项目的资助下完成的。本论文研制了五种高灵敏度、高选择性、简单的碳纳米管组装电化学生物传感器;建立了两种简单、快速、灵敏的电化学发光免疫分析方法,并将其成功地用于过氧化氢、葡萄糖、酚类物质、IgG抗体、地高辛、碱基、DNA序列等物质的测定;还初步研究了DNA与电活性药物维生素B_6和氧氟沙星的相互作用,探讨了相互作用机理。
     第一章 引言 详细介绍了电化学生物传感器和有关电化学分析的基本原理及电化学生物传感器的固定化技术,概述了电化学发光分析法的基本原理,着重评述了电化学生物传感器和电化学发光分析法的研究进展,还简要地介绍了超声电化学的基本原理和研究进展。
     第二章 碳纳米管组装电化学生物催化传感器的研究 研制了碳纳米管组装基于血红蛋白直接电子转移的第三代过氧化氢生物传感器和碳纳米管组装预氧化电流型葡萄糖生物传感器,并将其用于实际样品眼药水中过氧化氢和血清中葡萄糖的测定。
     第三章 电化学免疫传感器的研究 研究了碳纳米管组装电极上酚类物质的电化学行为,建立了同时测定对苯二酚和邻苯二酚异构体的电化学分析新方法;研制了碳纳米管组装电化学免疫传感器,建立了免疫竞争法检测IgG抗体的高灵敏度电化学分析新方法。
Current analytical chemistry trends the innovation. The development of bioscience, environmental science and new material science has made new research subjects on analytical chemistry. For instance, biologically active substances including DNA, proteins, drugs and environmental toxic substances were exclusively selected as research analytes. Analytical systems have been transferred from simple systems to complex systems. Analytical methods have trended forward biochemical methods involving enzymatic and immunochemical reactions. Considerable efforts have made during the last decades to improve conventional analytical methods in accuracy, sensitivity, selectivity, fastness and automation, and to develop new methodologies for industrial, environmental and biomedical processes. In recent years, highly selective and sensitive analytical methods such as immunoassay and biosensor have been received much attention. The development of a rapid, sensitive and selective method and the fabrication of a simple and cheap analytical device for the detection of biological molecular substances have been a long-standing goal.The aim of the present work is to develop novel electrogenerated chemiluminescence immunoassay and to design and fabricate electrochemical biosensors for the determination of biological molecule with sensitivity, selectivity and simplify. In this thesis, taking advantages of the unique properties of nanoparticles and the specificity of biological molecular recognition substances, such as enzyme, antigen/antibody, DNA, we have designed a series of electrochemical biosensors and developed a series of electrogenerated chemiluminescece immunoassay for the determination of hydrogen peroxide, glucose, phenol, IgG, digoxin, and DNA. A part of research work in this thesis is financially supported by the National Natural Science Foundation of China (Grant No. 20375025, No. 29975017).The major contents in this thesis are described as follows:In Chapter 1, general introduction to electrochemical biosensors, electrogenerated chemiluminescence (ECL) and sonoelectrochemistry including its principle and research development, and the purpose of this research work were presented.
    In Chapter 2, two amperometric biosensors incorporating multiwall carbon nanotubes (MWNT) have been designed and applied to the determination of hydrogen peroxide in pharmaceutical injections of hydrogen peroxide and to the determination of glucose in human serum with satisfactory results, respectively.Amperometric third-generation hydrogen peroxide biosensor incorporating multiwall carbon nanotubes and hemoglobin An amperometric third-generation hydrogen peroxide biosensor was designed by immobilizing hemoglobin (Hb) on a glassy carbon electrode modified with multiwall carbon nanotubes (MWNT). The direct electron transfer of the Hb immobilized on the MWNT-modified electrode was observed. The formal potential of the immobilized Hb was -0.241 V vs. Ag/AgCl (3 mol/L NaCl) and the heterogeneous electron transfer rate constant was 0.58 s~(-1) in a 0.20 mol/L acetate buffer solution (pH 5.4). The immobilized Hb exhibited excellent electrocatalytic activity to reduce hydrogen peroxide in the absence and presence of oxygen, which facilitated designing an amperometric third-generation biosensor for hydrogen peroxide. In the presence of oxygen, the response to hydrogen peroxide of the designed biosensor at a potential of-0.35 V was linear in the concentration range from 6.0 ×10~(-6) mol/L to 6.0 ×10~(-3) mol/L, and the detection limit was 1.2×10~(-6) mol/L. The relative standard deviation was 2.4% for nine successive assays at 1.0×10~(-5) mol/L hydrogen peroxide. The designed biosensor was applied to the determination of hydrogen peroxide in pharmaceutical injections with satisfactory results.Pre-oxidative amperometric glucose biosensor incorporating multiwall carbon nanotubes and PbO_2 A pre-oxidative amperometric glucose biosensor incorporated with MWNT and PbO_2 was designed in order to make the biosensor possessing the interference-removing ability with simple structure and short response time and high sensitivity. The interferences coming from reduced substances, such as ascoribic acid and uric, were diminished by PbO_2. The oxidative current at the potential of + 0.40 V (vs. SCE) to the concentration of glucose was linear in the range from 0.5 to 20 mmol/L, and the detection limit of glucose was 0.1 mmol/L. The proposed biosensors have been applied to the determination of glucose in serum with satisfactory results.In Chapter 3, an electrochemical method for simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with MWNT and an amperometric immunosensor for immunoglobulin G antibody (anti-IgG) based on immobilizing IgG antigen on a glassy carbon electrode modified with MWNT have
    been developed.Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes A simply and selectively electrochemical method for simultaneous determination of hydroquinone and catechol had been developed at a glassy carbon electrode modified with MWNT. It was found that the oxidation peak separation of hydroquinone and catechol and the oxidation currents of hydroquinone and catechol greatly increased at MWNT modified electrode in a 0.20 mol/L acetate buffer solution (pH 4.5). The two corresponding well-defined oxidation peaks of hydroquinone in the presence of catechol at MWNT modified electrode occurred at 0.264 V and 0.162 V, respectively. Under the optimized condition, the oxidation peak current of hydroquinone was linear over a range from 1.0 ×10~(-6) mol/L to 1.0 ×10~(-4) mol/L hydroquinone in the presence of 1.0×10~(-4) mol/L catechol with a detection limit of 7.5×10~(-7) mol/L and the oxidation peak current of catechol was linear over a range from 6.0 ×10~(-7) mol/L to 1.0×10~(-4) mol/L catechol in the presence of 1.0 ×10~(-4) mol/L hydroquinone with a detection limit of 2.0 ×10~(-7) mol/L. The proposed method has been applied to simultaneous determination of hydroquinone and catechol in a water sample with simplicity and high selectivity.Amperometric immunosensor for IgG antibody based on immobilizing IgG antigen on a glassy carbon electrode modified with multiwall carbon nanotubes A highly sensitive amperometric immunosensor for anti-IgG based on immobilizing IgG antigen on a glassy carbon electrode modified with MWNT was designed. A MWNT monolayer formed on a glass carbon electrode was utilized as a sensing platform for the immobilization of IgG antigen and a competitive immunoreaction occurred while analyte anti-IgG and horseradish peroxidase (HRP)-labeled anti-IgG competed for the surface-immobilized IgG antigen binding sites. The catalytic reduction current at 0.030 V (vs. SCE), which is produced in the reaction of hydroquinone with hydrogen peroxide in the presence of HRP, was linear over a range from 0.30 to 10 μg/mL anti-IgG with a detection limit of 0.11 μg/mL.In Chapter 4, homogeneous electrogenerated chemiluminescence immunoassay for the determination of digoxin and immunomagnetic electrogenerated chemiluminescence detection of digoxin based on Ru(bpy)_3~(2+) label have been developed.Homogeneous electrogenerated chemiluminescence immunoassay for the
    determination of digoxin A novel homogeneous electrogenerated chemiluminescence immunoassay (ECLIA) for the determination of small hapten was developed. As a model system, digoxin was investigated while luminol served as luminescence label and BSA served as carrier protein. Digoxin was indirectly heavily labeled with luminol through BSA to form luminol-BSA-digoxin conjugate. The immunocomplex of luminol-BSA-digoxin conjugate with anti-digoxin antibody underwent less ECL reaction than luminol-BSA-digoxin conjugate after immunoreaction took place. Two immunoassay formats, directly homogeneous immunodetection for anti-digoxin antibody and competitive immunoassay for digoxin, were proposed to determine anti-digoxin antibody and digoxin, respectively. The anti-digoxin antibody concentration was determined in the range from 1/50000 to 1/2000 dilution. The ECL intensity vs. digoxin concentration was linear in the range from 5.0×10~(-10)g/mL to 3.0 ×10~(-8) g/mL. The detection limit was 2.8 ×10~(-10)g/mL. The relative standard derivation for 1.0 ×10~(-9)g/mL was 5.1%. The proposed method has been applied to assay digoxin in human control serum with satisfactory results.Immunomagnetic electrogenerated chemiluminescence detection of digoxin based on Ru(bpy)_3~(2+) label Immunomagnetic electrogenerated chemiluminescencedetection of digoxin based on Ru(bpy)_3~(2+) label was developed. Digoxin was covalently attached to magnetic beads and Ru(bpy)_3~(2+) was attached to anti-digoxin antibody. A competitive immunoreaction occurred between analyte digoxin and digoxin-labeled bead competing for the Ru(bpy)_3~(2+) labeled anti-digoxin antibody. After magnetic separation, the concentration of analyte digoxin, related to the concentration of the immunocomplex of digoxin and Ru(bpy)_3~(2+) labeled anti-digoxin conjugate, was determined by ECL produced by electrochemical oxidized Ru(bpy)_3~(2+) in the presence of TPA. The linear range for digoxin was 1.0 ×10~(-8) g/mL ~ 2.0 ×10~(-6) g/mL with a detection limit of 7.5×10~(-9)g/mL.In Chapter 5, MWNT paste electrode was fabricated in this chapter. At the MWNT paste electrode, electrochemical behaviors of bases of nuclueic acids and its analytical applications were investigated, and an electrochemical detection of DNA hybridization based on ss-DNA/ polypyrrole/MWNT paste electrode using ethidium bromide as a response indicator was developed. The interaction of vitamin B_6 /ofloxacin with DNA was also investigated.Electrochemical behaviors of bases of nuclueic acids at multiwall carbon
    nanotube paste electrode and its analytical applications The electrochemical behaviors of five free bases of nucleic acids at a carbon paste electrode incorporated with MWNT were investigated by differential pulse voltammetry and cyclic voltammetry. It was found that in a 0.20 mol/L borate buffer solution (pH 11.0), the bases including guanine, adenine, thyrime, uracil and cytosine showed irreversible electrochemical behaviors and the corresponding oxidation peaks appeared at 0.556 V, 0.824 V, 0.952 V, 1.048 V and 1.160 V (vs. SCE), respectively. The oxidation peaks of bases were separated. A simple electrochemical method for the simultaneous determination of one purine or pyrimidine in the presence of related compounds (adenine in the presence of guanine, and guanine in the presence of cytosine) was developed using MWNT paste electrode. The proposed method has been applied to determination the value of (G+C)/(A+T) of HCl-digested DNA and other synthetic oligonucleotides with satisfactory results.Electrochemical detection of DNA hybridization based on ss-DNA/ polypyrrole/multiwall carbon nanotube paste electrode using EB as a response indicator A highly sensitive electrochemical method for the detection of DNA hybridization using a MWNT paste electrode and immobilizing nucleic acid probes within electropolymerized polypyrrole (PPy) was described. The detection approach relied on the oligonucleotide probes served as the counter anions during the growth of conducting PPy film on the MWNT paste electrodes. An electroactive intercalate, ethidium bromide, as an electrochemical hybridization indicator, was used to monitor the hybridization reaction by differential pulse voltammetry. The anodic peak current of EB after hybridization with the target ss-DNA was linearly related to the logarithmic value of the target ss-DNA concentration ranging from 5.0×10~(-10) to 1.0×10~(-8) mol/L. The detection limit was 1.0×10~(-10) mol/L.Electrochemical studies of the interaction between Vitamin B_6/ ofloxacin and DNA The interaction of vitamin B_6 /ofloxacin (OF) with DNA was investigated by electrochemical method. When DNA was added into vitamin B_6/OF solution, it was found that the oxidation current of vitamin B_6/OF decreased. The electrochemical behaviors in the absence and presence of DNA were investigated and the results showed that Vitamin B_6/OF and DNA formed an electrochemical inactive supermolecular complex.In conclusion, five electrochemical biosensors assembled by nanoparticles or
引文
[1] A P F Turner, Biosensors—Sense and Sensitivity, Science, 2000, 17(290), 1315-1318.
    [2] M M Richter, Electrochemiluminescence (ECL), Chemical Reviews, 2004, 104(6); 3003-3036.
    [3] 李启隆,电分析化学,北京师范大学出版社,1995年7月.
    [4] E Laviron, L Roullier, General expression of the linear potential sweep voltammogram for a surface redox reaction with interactions between the adsorbed molecules. Applications to modified electrodes, J. Electroanal. Chem. 1980, 115, 65-74.
    [5] E Laviron, The use of linear potential sweep voltammetry and of a. c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes, J. Electroanal. Chem. 1979, 100, 263-270.
    [6] F C Anson,黄蔚曾等译,《电化学和电分析化学》,北京大学出版社,1983年,52.
    [7] M R Moncelli, L Becucei, A Nelson, R Guidelli, Electrochemical modeling of electron and proton transfer to ubiquinone-10 in a self-assembled phospholipid monolayer. Biophys J. 1996, 70(6), 2716-2726.
    [8] 曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2000年.
    [9] F S Cesar, C J McNeil, K Rawson, Electrochemical impedance spectroscopy studies of polymer degradation. application to biosensor development, TrAC Trends in Analytical Chemistry, 2005, 24(1), 37-48.
    [10] O Lev, Z Wu, S Bharathi, V Gleaer, A Modestov, J Gun, L Rabinovich, S Sampath, Sol-Gel Materials in Electrochemistry, Chem. Mater., 1997, 9, 2354-2375.
    [11] A Ulman, Formation and structure of self-assembled monolayers, Chem. Rev., 1996, 96, 1533-1554.
    [12] R N Adams, Electrochemistry at solid electrodes. Marcel Dekker, New York, 1969.
    [13] 彭丽娟,文孟良,王昌益,生物材料修饰的碳糊电极及其应用,云南化工,1998,4,48-55.
    [14] 张正奇,刘辉,黎艳飞,碳糊电极新进展,分析科学学报,1998,1,80-86.
    [15] A Malinauskas, T Ruzgas, L Gorton, Tuning the redox potential of riboflavin by zirconium phosphate in carbon paste electrodes, Bioelectrochemistry and Bioenergetics, 1999,49(1), 21-27.
    [16] N S Lawrence, R P Deo, J Wang, Biocatalytic carbon paste sensors Mediator Pasting Liquid, Anal. Chem., 2004,76, 3735-3739.
    [17] J Wang, M Musameh, Carbon nanotube/teflon composite electrochemical sensors and biosensors, Anal. Chem., 2003, 75,2075-2079.
    [18] C G Hu, S S Hu, Electrochemical characterization of cetyltrimethyl ammonium bromide modified carbon paste electrode and the application in the immobilization of DNA Electrochimica Acta, 2004,49, 405-412.
    [19] C X Lei, F C Gong, G L Shen, R Q Yu, Amperometric immunosensor for Schistosoma japonicum antigen using antibodies loaded on a nano-Au monolayer modified chitosan-entrapped carbon paste electrode, Sensors and Actuators B: Chemical, 2003,96, 582-588.
    [20] S Q Liu, H X Ju, Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold modified electrode, Anal. Biochem., 2002, 307, 110-116.
    [21] J P Hart, S A Wring. Recent developments in the design and application of screen-printed electrochemical sensors for biomedical, environmental and industrial analyses Trends Anal. Chem., 1997, 16, 89-103.
    [22] J M Kauffmann, M Pekli-Novak, A Nagy, The potential of electroanalytical techniques in pharmaceutical analysis, Acta Pharm Hung, 1996,66(2), 57-64.
    [23] M P O'Halloran, M Pravda, G G Guibault. Prussian bluc bulk modificd screen-printed electrodes for H_2O_2 detection and for biosensors, Talanta, 2001, 55,605-611.
    [24] K C Honeychurch, J P Hart, Screen-printed electrochemical sensors for monitoring metal pollutants, TrAC Trends in Analytical Chemistry, 2003, 22,456-469.
    [25] 张贤珍,刘旭辉,莫志宏,丝印电化学传感器及其应用研究进展,现代科学仪器,2002,4,46-50.
    [26] C X Zhang, Q Gao, M Aizawa, Flow injection analytical system for glucose with screen-printed enzyme biosensor incorporating Os-complex mediator, Anal. Chim. Acta, 2001, 426, 33-41.
    [27] C X Zhang, J Li, Disposable biamperometric capillary-fill device for glucose, Microchim. Acta, 2004,144,119-124.
    [28] C Chan, M Lehmann, K Chan, P Chan, C Chan, B Gruendig, G Kunze, R Renneberg, Designing an amperometric thick-film microbial BOD sensor. Biosens. Bioelectron., 2000 15(7-8), 343-353.
    [29] 李元光,周永新,冯建林,蒋中华,马立人,丝网印刷胆碱酯酶电极测定神经性毒剂沙林、梭曼,分析化学,2000,28,95-98.
    [30] 徐肖邢,葡萄糖氧化酶在纳米金修饰的丝网印刷电极上的直接电子传递及应用研究,分析科学学报,2004,20(6),598-600.
    [31] V V Shumyantseva, T V Bulko, S A Usanov, R D Schmid, C Nicolini, A I Archakov, Construction and characterization of bioelectrocatalytic sensors based on cytochromes P450, Journal of Inorganic Biochemistry, 2001, 87, 185-190.
    [32] J R Chen, Y Q Miao, N Y He, X H Wu, S J Li, Nanotechnology and biosensors. Biotechnol Adv., 2004, 22(7), 505-518.
    [33] C R Martin, D T Mitchell, Nanomaterials in Analytical chemistry, Anal. Chem., 1998, 322A.
    [34] 唐芳琼,韦正,陈东,孟宪伟,苟立,冉均国,亲水金和憎水二氧化硅纳米颗粒对葡萄糖生物传感器响应灵敏度的增强作用,高等学校化学学报,2000,21(1),91-94.
    [35] 唐芳琼,孟宪伟,陈东,冉均国,苟立,郑昌琼,纳米颗粒增强的葡萄糖生物传感器,中国科学(B辑),2000,30(2),119-124.
    [36] 蔡称心,陈洪渊,鞠熀先,细胞色素c在微带金电极上的直接电化学,化学学报,1995,53,286-290.
    [37] P M Allen, A O Hill, N J Walton, J Electroanal Chem, 1984, 178, 69.
    [38] 曲晓刚,陆天宏,董绍俊,促进剂分子在共轭键对细胞色素C电化学的影响,电化学,1995,1(3),278-282.
    [39] 曲晓刚,周成立,陆天宏,董绍俊,细胞色素C在吡啶,聚吡啶修饰的金电极上的直接电化学,高等学校化学学报,1994,15(1),113-116.
    [40] 顾仁敖,乔专虹,曲晓刚,陆天宏,董绍俊,细胞色素C在糖及醇修饰金电极上的直接电化学,物理化学学报,1996,12(7),654-658.
    [41] 曲晓刚,孙公权,杨辉,陆天宏,细胞色素C在聚乙烯氧化物修饰电极上金电极的直接电化学,电化学,1998,4(3),260-264.
    [42] F A Armstrong, A M Lannon, Fast interfacial electron transfer between cytochrome C peroxidase and graphite electrodes promoted by aminoglycosides: novel electroenzymic catalysis of hydrogen peroxide reduction, J. Am. Chem. Soc., 1987, 109(23), 7211-7212.
    [43] W Schuhmann, T J Ohara, H L Schmidt, A Heller, Electron transfer between glucose oxidase and electrodes via redox mediators bound with flexible chains to the enzyme surface, J. Am. Chem. Soc., 1991, 113(4), 1394-1397.
    [44] Y Degani, A Heller, Direct electrical communication between chemically modified enzymes and metal electrodes. Ⅰ. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme, J. Phys. Chem., 1987, 91(6), 1285-1289.
    [45] A Heller, Electrical wiring of redox enzymes, Acc. Chem. Res., 1990, 23(5), 128-134.
    [46] Y Degani, A Heller, Direct electrical communication between chemically modified enzymes and metal electrodes. 2. Methods for bonding electron-transfer relays to glucose oxidase and D-amino-acid oxidase, J. Am. Chem. Soc., 1988, 110(8), 2615-2620.
    [47] F Paimisano, P G Zambonim, D Centonze, M Quinto, Disposable, reagentless, third-generation glucose biosensor based on overoxidized poly(pyrrole)/tetrathiafulvalene-tetracyanoquinodimethane composite, Anal Chem., 2002, 74, 5913-5918.
    [48] 严捷,李经捷,张波,蔡生民,细胞色素C551在ITO电极上的直接电化学,物理化学学报,2001,17(12),1126-1128.
    [49] E Topoglidis, Y Astuti, F Duriaux, M Gratzel, J R Durrant, Direct electrochemistry and nitric oxide interaction of Heme proteins adsorbed on nanocrystalline tin oxide electrodes, Langmuir, 003, 19, 6894-6900.
    [50] Q J Chi, J D Zhang, S J Dong, E K Wang, Direct electrochemistry and surface characterization of glucose oxidase adsorbed on anodized carbon electrodes, Electrochimica Acta., 1994, 39(16), 2431-2438
    [51] 胡乃非,曾泳淮,氧化还原蛋白质在模拟生物膜修饰电极上的直接电化学,化学通报,2001,3,152-157.
    [52] M Ciureanu, S Goldstein, M A Mateescu, Direct electron transfer for hemoglobin in surfactant films cast on carbon electrodes, Journal of the Electrochemical Society, 1998, 145(2), 533-541.
    [53] S Zhang, W L Sun, W Zhang, L T Jin, K Yamamota, S G Tao, J Y Jin, Direct electrochemistry of hemoglobin at sliver electrode modified by lipoic acid monolayer. Anal. Lett. 1998, 31, 2159-2171.
    [54] C H Fan, I Suzuki, Q Chen, G X Li, J Anzai, An unmediated hydrogen peroxide sensor based on a hemoglobin-SDS film modified electrode, Anal. Lett. 2000, 33(13), 2631-2644.
    [55] J F Rusling, A E F Nassar, Enhanced electron transfer for myoglobin in surfactant films on electrodes, J. Am. Chem. Soc, 1993, 115(25), 11891-11897.
    [56] K Chattopadhyay, S Mazumdar, Direct electrochemistry of heme proteins: effect of electrode surface modification by neutral surfactants, Bioelectrochemistry, 2000,53,17-24.
    [57] J Yang, N F Hu, Direct electron transfer for hemoglobin in biomembrane-like dimyristoyl phosphatidylcholine films on pyrolytic graphite electrodes, Bioelectrochemistry and Bioenergetics, 1999, 48, 117-127.
    [58] H Y Liu, L W Wang, N F Hu, Direct electrochemistry of hemoglobin in biomembrane-like DHP-/PDDA polyion-surfactant composite films, Electrochimica Acta, 2002,47, 2515-2523.
    [59] R Huang, N F Hu, Direct electrochemistry and electrocatalysis with horseradish peroxidase in Eastman AQ films, Bioelectrochemistry, 2001, 54, 75-81.
    [60] Y J Hu, N F Hu, Y H Zeng, Electrochemistry and electrocatalysis with myoglobin in biomembrane-like surfactant-polymer 2C_(12)N+PA~- composite films, Talanta, 2000,50(6), 1183-1195.
    [61] Y M Lvov, Z Q Lu, J B Schenkman, X L Zu, J F Rusling, Direct electrochemistry of myoglobin and cytochrome P450cam in alternate layer-by-layer films with DNA and other polyions, J. Am. Chem. Soc, 1998,120,4073-4080.
    [62] R Huang, N F Hu, Direct voltammetry and electrochemical catalysis with horseradish peroxidase in polyacrylamide hydrogel films, Biophysical Chemistry, 2003, 104, 199-208.
    [63] T Ferri, A Poscia, R Santucci, Direct electrochemistry of membrane-entrapped horseradish peroxidase. Part II: Amperometric detection of hydrogen peroxide, Bioelectrochemistry and Bioenergetics, 1998, 45, 221-226.
    [64] S D Varfolomeev, L N Kurochkin, A I Yaropolov, Direct electron transfer effect biosensors, Biosensors and Bioelectronics, 1996, 11(9), 863-871.
    [65] 池其金,董绍俊,酶直接电化学与第三代生物传感器,分析化学, 1994,22(10),1065-1072.
    [66] 董绍俊,车广礼,谢远武,《化学修饰电极》,科学出版社,2003年2月.
    [67] 刘慧宏,庞代文,氧化还原蛋白质电化学研究,化学进展,2002,14(6),425-432.
    [68] J Zhao, R W Henkens, J Stonehuerner, Direct electron transfer at horseradish Peroxidase-colloidal gold modified electrodes, J. Electroanal Chem., 1992, 327, 109-119.
    [69] X Yi, H X Ju, H Y Chen, Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode, Analytical Biochemistry, 2000, 278, 22-28.
    [70] J B Jia, B Q Wang, A Wu, G J Cheng, Z Li, S J Dong, A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network, Anal. Chem., 2002, 74, 2217-2223.
    [71] S Iijima, Helical microtubes of graphitic carbon, Nature, 1991, 354, 56-58.
    [72] S Iijima, T Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, 1993, 363,603-605.
    [73] 王宗花,罗国安,碳纳米管在分析化学领域的研究进展,分析化学,2003,31(8),1004-1009.
    [74] Y D Zhao, W D Zhang, H Chen, Q M Luo, S Fong, Y Li, Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode. Sensors and Actuators B 2002, 87, 168-172.
    [75] A G Elie, C H Lei, R H Baughman, Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 2002, 13, 559-564.
    [76] G C Zhao, L Zhang, X W Wei, Z S Yang, Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysis, Electrochemistry Communications, 2003, 5, 825-829.
    [77] C X Cai, J Chen, Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode, Analytical Biochemistry, 2004, 325, 285-292.
    [78] J X Wang, M X Li, Z J Shi, N Q Li, Z N Gu, Direct electrochemistry of Cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes, Anal. Chem., 2002, 74, 1993-1997.
    [79] G Wang, J J Xu, H Y Chen, Interfacing cytochrome C to electrodes with a DNA-carbonnanotube composite, Electrochemistry Communications, 2002, 4, 506-509.
    [80] 蔡称心,陈静,陆天虹,碳纳米管修饰电极上葡萄糖氧化酶的直接电子转移,中国科学(B辑),2003,33(6),511-518.
    [81] S G Wang, Q Zhang, R L Wang, S F Yoon, A novel multiwalled carbon nanotube based biosensor for glucose detection. Biochemical and Biophysical Research Communications. 2003, 311(3), 572-576.
    [82] L Wang, J X Wang, F M Zhou, Direct electrochemistry of catalase at a gold electrode modified with single-wall carbon nanotubes, Electroanalysis, 2004, 16(8), 627-632.
    [83] Q Zhao, D Zhan, H Ma, M Zhang, Y Zhao, P Jing, Z Zhu, X Wan, Y Shao, Q Zhuang, Direct proteins electrochemistry based on ionic liquid mediated carbon nanotube modified glassy carbon electrode. Front Biosci. 2005, 10, 326-334.
    [84] J F Rochette, E Sacher, M Meunier, J H Luong. A mediatorless biosensor for putrescine using multiwalled carbon nanotubes. Anal Biochem. 2005, 336(2), 305-311.
    [85] X Gan, T Liu, J Zhong, X Liu, G Li. Effect of silver nanoparticles on the electron transfer reactivity and the catalytic activity of myoglobin. Chembiochem. 2004, 5(12), 1686-1691.
    [86] L C Guerente, S. Cosnier, P. Labbe, Sol-gel derived composite materials for the construction of oxidase/peroxidase mediatorless biosensors, Chem. Mater, 1997, 9, 1348-1352.
    [87] Q L Wang, G X Lu, B J Yang, Direct electrochemistry and electrocatalysis of hemoglobin immobilized on carbon paste electrode by silica sol-gel film, Biosensors and Bioelectronics, 2004, 19, 1269-1275.
    [88] Y Zhang, P L He, N F Hu, Horseradish peroxidase immobilized in TiO_2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis, Electrochimica Acta, 2004, 49, 1981-1988.
    [89] X G Qu, X T Dong, Z Y Cheng, T H Lu, S J Dong, The direct electrochemistry of cytochrome c at the nanometer-sized rare earth elemnt oxide particle modified gold elelctrodes, J. Molecule Catalysis A: Chemical, 1996, 106, 1-5.
    [90] C Popescu, G Zetterberg, L Gorton, Influence of graphite powder, additives and enzyme immobilization procedures on a mediatorless HRP-modified carbon paste electrode for amperometric flow-injection detection of H_2O_2, Biosensors and Bioelectronics, 1995, 10,443-461.
    [91] M Lutz, E Burestedt, J Emneus, H Liden, S Gobhadi, L Gorton, G M Varga, Effects of different additives on a tyrosinase based carbon paste elelctrode, Anal. Chim. Acta, 1995, 305, 8-17.
    [92] I O Ikeda, M. Ohtani, T Yamaguchi, A Komura, Direct elelctrochemistry of cytochrome C at a glassy carbon elelctrode covered with a microporous alumina membrane, Electrochimica Acta, 1998,43(8), 833-839.
    [93] A Morales, F Cespedes, J Munoz, E Martinez-Fabregas, S Alegret, Hydrogen peroxide amperometric biosensor based on a peroxidase-graphite-epoxy biocomposite, Anal. Chim. Acta, 1996, 332, 131-138.
    [94] C X Lei, Y Yang, H Wang, G L Shen, R Q Yu. Amperometric immunosensor for probing complement III (C3) based on immobilizing C3 antibody to a nano-Au monolayer supported by sol-gel-derived carbon ceramic electrode, Analytica Chimica Acta, 2004, 513, 379-384.
    [95] H Cai, C M Xu, P G He, Y Z Fang, Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA, J. Electroanal. Chem., 2001, 510(1-2), 78-85.
    [96] J Wang, A N Kawde, M R Jan, Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridization. Biosensors and Bioelectronics, 2004, 20(5), 995-1000.
    [97] M L Guo, J H Chen, L H Nie, S Z Yao, Electrostatic assembly of calf thymus DNA on multi-walled carbon nanotube modified gold electrode and its interaction with chlorpromazine hydrochloride, Electrochimica Acta, 2004, 49(16), 2637-2643.
    [98] G F Cheng, J Zhao, Y H Tu, P G He, Y Z Fang, A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole, Anal. Chim. Acta, 2005, 533(1), 11-16.
    [99] M L Guo, J H Chen, D Y Liu, L H Nie, S Z Yao, Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes, Bioelectrochemistry, 2004, 62(1), 29-35.
    [100] Y Z Fu, R Yuan, L Xu, Y Q Chai, X Zhong, D P Tang, Indicator free DNA hybridization detection via EIS based on self-assembled gold nanoparticles and bilayer two-dimensional 3-mercaptopropyltrimethoxysilane onto a gold substrate, Biochemical Engineering Journal, 2005, 23(1), 37-44.
    [101] L P Lu, S Q Wang, X Q Lin, Fabrication of layer-by-layer deposited multilayer films containing DNA and gold nanoparticle for norepinephrine biosensor, Anal. Chim. Acta, 2004, 519(2), 161-166.
    [102] K Kerman, Y Morita, Y Takamura, M Ozsoz, E Tamiya, Modification of Escherichia coli single-stranded DNA binding protein with gold nanoparticles for electrochemical detection of DNA hybridization, Anal. Chim. Acta, 2004, 510(2), 169-174.
    [103] M O'Connor, S N Kim, A J Killard, R J Forster, M R Smyth, F Papadimitrakopoulos, J F Rusling, Mediated amperometric immunosensing using single walled carbon nanotube forests. Analyst, 2004, 129(12), 1176-1180.
    [104] 袁若,唐点评,柴雅琴,张凌燕,刘颜,钟霞,戴建远,高灵敏电位性免疫传感器对乙型肝炎表面抗原的诊断技术研究,中国科学B辑,化学,2004,34(4),279-286.
    [105] D P Tang, R Yuan, Y Q Chai, X Zhong, Y Liu, J Y Dai, Novel potentiometric immunosensor for the detection of diphtheria antigen based on colloidal gold and polyvinyl butyral as matrixes, Biochemical Engineering Journal, 2004, 22(1), 43-49.
    [106] D P Tang, R Yuan, Y Q Chai, L Y Zhang, X Zhong, Y Liu, J Y Dai, Preparation and application on a kind of immobilization method of anti-diphtheria for potentiometric immunosensor modified colloidal Au and polyvinyl butyral as matrixes, Sensors and Actuators B: Chemical, 2005, 104(2), 199-206.
    [107] 唐点平,袁若,柴雅琴,刘颜,钟霞,戴建远,纳米金修饰玻碳电极固载抗体电位型白喉类毒素免疫传感器的研究,化学学报,2004,52(20),2062-2066.
    [108] Y Z Fu, R Yuan, D P Tang, Y Q Chai, L Xu, Study on the immobilization of anti-IgG on Au-colloid modified gold electrode via potentiometric immunosensor, cyclic voltammetry, and electrochemical impedance techniques, Colloids and Surfaces B: Biointerfaces, 2005, 40, 61-66.
    [109] D P Tang, R Yuan, Y Q Chai, J Y Dai, X Zhong, Y Liu, A novel immunosensor based on immobilization of hepatitis B surface antibody on platinum electrode modified colloidal gold and polyvinyl butyral as matrices via electrochemical impedance spectroscopy, Bioelectrochemistry, 2004, 65(1), 15-22.
    [110] D P Tang, R Yuan, Y Q Chai, X Zhong, Y Liu, J Y Dai, L Y Zhang, Novel potentiometric immunosensor for hepatitis B surface antigen using a gold nanoparticle-based biomolecular immobilization method. Anal. Biochem., 2004, 333(2), 345-350.
    [111] R Yuan, L Y Zhang, Q F Li, Y Q Chai, A label-free amperometric immunosenor based on multi-layer assembly of polymerized o-phenylenediamine and gold nanoparticles for determination of Japanese B, Anal. Chim. Acta, 2005, 531(1), 1-5.
    [112] D P Tang, R Yuan, Y Q Chai, L Y Zhang, X Zhong, J Y Dai, Y Liu, Novel potentiometry immunoassay with amplified sensitivity for diphtheria antigen based on Nafion, colloidal Ag and polyvinyl butyral as matrixes, J. Biochem. Biophys. Methods, 2004, 61,299- 311.
    [113] D P Tang, R Yuan, Y Q Chai, Y Liu, J Dai, X Zhong, Novel potentiometric immunosensor for determination of diphtheria antigen based on compound nanoparticles and bilayer two-dimensional sol-gel as matrices. Anal. Bioanal. Chem., 2005, 381(3), 674-680.
    [114] D P Tang, R Yuan, Y Q Chai, Y Z Fu, Study on electrochemical behavior of a diphtheria immunosensor based on silica/silver/gold nanoparticles and polyvinyl butyral as matrices, Electrochemistry Communications, 2005, 7(2), 177-182.
    [115] Z S Wu, J S Li, M H Luo, G L Shen, R Q Yu, A novel capacitive immunosensor based on gold colloid monolayers associated with a sol-gel matrix, Anal. Chim. Acta, 2005, 528(2), 235-242.
    [116] H Wang, Y L Liu, Y H Yang, T Deng, G L Shen, R Q Yu, A protein A-based orientation-controlled immobilization strategy for antibodies using nanometer-sized gold particles and plasma-polymerized film, Anal. Biochem., 2004, 324(2), 219-226.
    [117] S Q Hu, J W Xie, Q H Xu, K T Rong, G L Shen, R Q Yu, A label-free electrochemical immunosensor based on gold nanoparticles for detection of paraoxon, Talanta, 2003, 61(6), 769 - 777.
    [118] C X Lei, F C Gong, G L Shen, R Q Yu, Amperometric immunosensor for Schistosoma japonicum antigen using antibodies loaded on a nano-Au monolayer modified chitosan-entrapped carbon paste electrode Schistosoma japonicum antigen (SjAg) assay based on nano-size particulate, Sensors and Actuators B, 2003, 96, 582-588.
    [119] 刘志国,胡舜钦,沈国励,基于褐藻酸钠—纳米金复合物作非酶标记的新型电化学免疫传感器的研制,理化检验,化学分册,2004,40(8),445-449.
    [120] D Du, F Yan, S L Liu, H X Ju, Immunological assay for carbohydrate antigen 19-9 using an electrochemical immunosensor and antigen immobilization in titania sol-gel matrix, J. Immunol. Methods, 2003, 283(1-2), 67-75.
    [121] J Wu, Y H Zou, X L Li, H B Liu, G L Shen, R Q Yu, A biosensor monitoring DNA hybridization based on polyaniline intercalated graphite oxide nanocomposite, Sensors and Actuators B, 2005, 104, 43-49.
    [122] J Wang. Stripping Analysis, VCH Publishers, New York, 1985.
    [123] L Authier, C Grossiord, P Berssier, B Limoges. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes, Anal. Chem., 2001, 73(18), 4450-4456.
    [124] M Ozsoz, A Erdem, K Kerman, D Ozkan, B Tugrul, N Topcuoglu, H Ekren, M Taylan, Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes, Anal. Chem., 2003, 75(9), 2181-2187.
    [125] H Cai, Y Xu, N Zhu, P G He, Y Z Fang, An electrochemical DNA hybridization detection assay based on a silver nanoparticle label, Analyst, 2002, 127(6), 803-808.
    [126] J Wang, O Rincon, R Polsky, E Dominguez, Electrochemical detection of DNA hybridization based on DNA-templated assembly of silver cluster, Electrochem. Commun., 2003, 5, 83-86.
    [127] M Dequaire, C Degrand, B Limoges, An electrochemical metalloimmunoassay based on a colloidal gold label, Anal. Chem., 2000, 72, 5521-5528.
    [128] J Wang, G D Liu, R Polsky, A Merkoc, Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags, Electrochem. Commun., 2002, 4(9), 722-726.
    [129] N Zhu, A Zhang, P G He, Y Z Fang. Cadmium sulfide nanocluster-based electrochemical stripping detection of DNA hybridization, Analyst, 2003, 128(3), 260-264.
    [130] G D Liu, J Wang, J Kim, M R Jan, Electrochemical coding for multiplexed immunoassays of proteins, Anal. Chem., 2004, 76, 7126-7130.
    [131] X Chu, X Fu, K Chen, G L Shen, R Q Yu, An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label, Biosensors and Bioelectronics, 2005, 20, 1805-1812.
    [132] H Cai, Y Q Wang, P G He, Y Z Fang, Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label, Anal. Chim. Acta, 2002,469(2), 165-172.
    [133] T M H Lee, L L Li, I M Hsing, Enhanced Electrochemical Detection of DNA Hybridization Based on Electrode-Surface Modification, Langmuir, 2003, 19(10), 4338-4343.
    [134] J Wang, G D Liu, A Merkoci, Particle-based detection of DNA hybridization using electrochemical stripping measurements of an iron tracer, Anal. Chim. Acta, 2003,482(2), 149-155.
    [135] H Cai, N Zhu, Y Jiang, P He, Y Fang, Cu@Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization, Biosensensors Bioelectronics, 2003, 18(11), 1311-1319.
    [136] N N Zhu, H Cai, P G He, Y Z Fang, Tris(2,2'-bipyridyl)cobalt(III)-doped silica nanoparticle DNA probe for the electrochemical detection of DNA hybridization, Anal. Chim. Acta, 2003, 481(2), 181-189.
    [137] J Wang, R Polsky, A Merkoci, K L Turner, "Electroactive Beads" for Ultrasensitive DNA Detection, Langmuir, 2003,19(4), 989-991.
    [138] J H Thomas, S K Kim, P J Hesketh, H B Halsall, W R Heineman, Microbead-based electrochemical immunoassay with interdigitated array electrodes, Anal. Biochem., 2004, 328, 113-122.
    [139] J H Thomas, S K Kim, P J Hesketh, H B Halsall, W R Heineman, Bead-based electrochemical immunoassay for bacteriophage MS2, Anal. Chem., 2004, 76, 2700-2707.
    [140] E Paleciek, S Billova, L Havran, R Kizek, A Micjjulkova, F Jelen, DNA hybridization at microbeads with cathodic stripping voltammetric detection, Talanta, 2002, 56(5), 919-930.
    [141] E Palecek, M Fojta, F Jelen, New approaches in the development of DNA sensors: hybridization and electrochemical detection of DNA and RNA at two different surfaces, Bioelectrochemistry, 2002, 56(1-2), 85-90.
    [142] J Wang, A Kawde, Magnetic-field stimulated DNA oxidation, Electrochemistry Communication, 2002, 4(4), 349-352.
    [143] J Wang, D Xu, A N Kawde, R Polsky, Metal Nanoparticle-Based Electrochemical Stripping Potentiometric Detection of DNA Hybridization, Anal. Chem., 2001, 73(22), 5576-5581.
    [144] J Wang, R Polsky, X Danke, Silver-Enhanced Colloidal Gold Electrochemical Stripping Detection of DNA Hybridization, Langmuir, 2001, 17(19), 5739-5741.
    [145] J Wang, D Xu, R Polsky, Magnetically-induced solid-state electrochemical detection of DNA hybridization, J. Am. Chem. Soc., 2002, 124(16), 4208-4209.
    [146] E Palecek, R Kizek, L Havran, S Billova, M Fojta, Electrochemical enzyme-linked immunoassay in a DNA hybridization sensor, Anal. Chim. Acta, 2002, 469, 73-83.
    [147] C A Wijayawardhana, S Purushothama, M A Cousino, H B Halsall, W R Heineman, Rotating disk electrode amperometric detection for a bead-based immunoassay, J. Electroanal. Chem., 1999, 468, 2-8.
    [148] M Dequaire, C Degrand, B Limoges, An immunomagnetic electrochemical sensor based on a perfluorosulfonate-coated screen-printed electrode for the determination of 2,4-dichlorophenoxyacetic acid, Anal. Chem., 1999, 71, 2571-2577.
    [149] 程琼,彭图治,刘爱丽,纳米磁性微球免疫伏安法测定乙肝表面抗原,化学学报,2004,62(24),2447-2450.
    [150] A G Gehring, S I Tu. Enzyme-linked immunomagnetic electrochemical detection of live Escherichia coli 0157:H7 in apple juice. J Food Prot., 2005, 68(1), 146-149.
    [151] J W Choi, K W Oh, J H Thomas, W R Heineman, H B Halsall, J H Nevin, A J Helmicki, H T Henderson, C H Ahn, An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab Chip., 2002, 2(1), 27-30.
    [152] 王鹏,张文艳,周鸿,朱果逸,免疫电化学发光,分析化学,1998,26(7),898-903.
    [153] 陈曦,王小如,黄本立,电致化学发光研究的新进展,分析化学,1998,26(6),770-778.
    [154] 王鹏,袁艺,朱果逸,张密林,电化学发光分析的新进展,分析化学,1999, 27(10),1219-1225.
    [155] R D Gerardi, N W Barnett, S W Lewis, Analytical applications of tris (2,2'-bipyridyl)ruthenium(Ⅲ) as a chemiluminescent reagent, Anal. Chim. Acta, 1999, 378(1-3), 1-41.
    [156] A W Knight, A review of recent trends in analytical applications of electrogenerated chemiluminescence, Trends in analytical chemistry, 1999, 18(1), 47-62.
    [157] 徐国宝,董绍俊,电化学发光及其应用,分析化学,2001,29(1),103-108.
    [158] A F Karsten, P Miloslav, G G George, Recent applications of electrogenerated chemiluminescence in chemical analysis, Talanta, 2001, 54, 531-559.
    [159] S Kulmala, J Suomi, Current status of modem analytical luminescence methods, Anal. Chim. Acta, 2003, 500, 21-69.
    [160] 林金明,化学发光基础理论与应用,化学工业出版社,2004年7月.
    [161] S Sakura, Electrogenerated chemiluminescence of hydrogen peroxide-luminol at a carbon electrode, Anal. Chim. Acta, 1992, 262, 49-57.
    [162] C X Zhang, S C Zhang, Z J Zhang, Determination of copper in water by electrochemical stripping chemiluminescence analysis in situ, Analyst, 1998, 123(6), 1383-1386.
    [163] W Qin, Z J Zhang, H J Liu, Chemiluminescence flow-through sensor for copper based on an anodic stripping voltammetric flow cell and an ion-exchange column with immobilized reagents, Anal. Chem., 1998, 70(17), 3579-3582.
    [164] J X Du, J J Li, L J Yang, J R Lu, Sensitive and selective determination of molybdenum by flow injection chemiluminescence method combined with controlled potential electrolysis technique, Anal. Chim. Acta, 2003, 481(2), 239-244.
    [165] J J Li, J X Du, J R Lu, Flow injection electrogenerated chemiluminescence determination of vanadium and its application to environmental water sample, Talanta, 2002, 57(1), 53-57.
    [166] J C Huang, C X Zhang, Z J Zhang, Flow injection chemiluminescence determination of isoniazid with electrogenerated hypochlorite, Fresenius Journal of Anal. Chem., 1999, 363, 126-128.
    [167] Z J Zhang, B X Li, X W Zheng, Investigation of chemiluminescence with electrogenerated reagents and its analytical application, Chinese J. Chem., 2003, 21, 1403-1409.
    [168] C X Zhang, G J Zhou, Z J Zhang, M Aizawa, Highly sensitive electrochemical luminescence determination of thiamine, Anal. Chim. Acta, 1999, 394, 165-170.
    [169] R Wilson, D J Schiffrin, Chemiluminescence of luminol catalyzed by electrochemically oxidized ferrocenes, Anal. Chem., 1996, 68, 1254-1257.
    [170] C E IV Taylor, S E Creager, Electrochemiluminescence-based detection of ferrocene derivatives at monolayer-coated electrodes, J. Electroanal. Chem., 2000,48,114-120.
    [171] R Wilson, D J Schiffrin, Electrochemically oxidized ferrocenes as catalysts for the chemiluminescence oxidation of luminol, J. Electroanal. Chem., 1998, 448, 125-130.
    [172] C X Zhang, H L Qi, Highly sensitive determination of riboflavin based on the enhanced electrogenerated chemiluminescence of lucigenin at a platinum electrode in a neutral aqueous solution, Analytical Science, 2002, 18(7), 819-822.
    [173] H L Qi, C X Zhang, Electrogenerated chemiluminescence reaction of lucigenin with isatin at a platinum electrode, Luminescence, 2004,19, 21-25.
    [174] S Szunerits, D R Walt, Fabrication of an optoelectrochemical microring array, Anal. Chem., 2002, 74,1718-1723.
    [175] H Cui, Y Xu, Z F Zhang, Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode, Anal. Chem., 2004, 76,4002-4010.
    [176] Z H Guo, Y Shen, M K Wang, F Zhao, S J Dong, Electrochemistry and electrogenerated chemiluminescence of SiO_2 nanoparticles/ Tris(2,2-bipyridyl) ruthenium multilayer films on indium Tin Oxide electrodes, Anal. Chem., 2004, 76, 184-191.
    [177] Z H Guo, S J Dong, Electrogenerated chemiluminescence from Ru(Bpy)32+ ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films, Anal. Chem., 2004, 76, 2683-2688.
    [178] S K Poznyak, D V Talapin, E V Shevchenko, H Weller, Quantum Dot Chemiluminescence, Nano Lett., 2004,4(4), 693-698.
    [179] Z F Ding, B M Quinn, S K Haram, L E Pell, B A Korgel, A J Bard, Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots, Science, 2002, 296(17), 1293-1297.
    [180] N Myung, Y Bae, A J Bard, Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals, Nano. Lett., 2003, 3(8), 1053-1055.
    [181] N Myung, Z F Ding, A J Bard, Electrogenerated chemiluminescence of CdSe nanocrystals, Nano. Lett., 2002, 2(11), 1315-1319.
    [182] N Myung, X M Lu, K P Johnston, A J Bard, Electrogenerated chemiluminescence of Ge nanocrystals, Nano. Lett., 2004,4(1), 183-185.
    [183] G Zou, H Ju, Electrogenerated chemiluminescence from a CdSe nanocrystal Film and Its sensing application in aqueous solution, Anal. Chem., 2004, 76(23), 6871-6876.
    [184] G F Blackburn, H P Shah, J H Kenten, J Leland, R A Kamin, J Link, J Peterman, M J Powell, A Shah, D B Talley, S K Tyagi, E Wilkins, T G Wu, R J Massey, Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics, Clin. Chem., 1991, 37(9), 1534-1539.
    [185] R Wilson, C Clavering, A Hutchinson, Electrochemiluminescence enzyme immunoassays for TNT and pentaerythritol tetranitrate, Anal. Chem., 2003, 75, 4244-4249.
    [186] Y Ikariyama, H Kunoh, M Aizawa, Electrochemical luminescence-based homogeneous immunoassay, Biochem. Biophys. Res. Commun., 1985, 128, 987-992.
    [187] C X Zhang, H H Zhang, M L Feng, Homogeneous electrogenerated chemiluminescence immunoassay using a luminol-labeled digoxin hapten, Anal Lett, 2003, 36(6), 1103-1114.
    [188] H L Qi, C X Zhang, Homogeneous electrogenerated chemiluminescence immunoassay for the determination of digoxin, Anal. Chim. Acta, 2004, 501(1), 31-35.
    [189] M Zhou, J Roovers, G P Robertson, C P Grover, Multilabeling biomolecules at a single site. 1. Synthesis and characterization of a dendritic label for electrochemiluminescence assays, Anal. Chem., 2003, 75, 6708-6717.
    [190] H J Yang, J K Leland, D Yost, R J Massey, Electrochemiluminescencew: A new diagnostic and research tool, Biotechnology, 1994, 12, 193-194.
    [191] M T Carter, A J Bard, Electrochemical investigation of the interaction of metal chelates with DNA, 3, electrogenerated chemiluminescent investigation of the interaction of tris(1,10-phenanthroline ruthenium(Ⅱ) with DNA, Bioconjug. Chem., 1990, 1(4), 257-263.
    [192] M Rodriguez, A J Bard, Electrochemical studies of the interaction of metal chelates with DNA. 4. Voltammetric and electrogenerated chemiluminescent studies of the interaction of tris(2,2'-bipyridine)osmium(Ⅱ) with DNA, Anal Chem., 1990, 62(24), 2658-2662.
    [193] T Kuwabara, T Noda, H Ohtake, T Ohtake, S Toyama, Y Ikariyama, Classification of DNA-binding mode of antitumor and antiviral agents by the electrochemiluminescence of ruthenium complex, Anal. Biochem., 2003, 314, 30-37.
    [194] W J Miao, A J Bard, Electrogenerated chemiluminescence. 72. Determination of Immobilized DNA and C-Reactive protein on Au(111) electrodes using Tris(2,2-bipyridyl)ruthenium(Ⅱ) labels, Anal. Chem., 2003, 75, 5825-5834.
    [195] L Dennany, R J Forster, J F Rusling, Simultaneous direct electrochemiluminescence and catalytic voltammetry detection of DNA in ultrathin films, J. Am. Chem. Soc., 2003, 125, 5213-5218.
    [196] M L Yang, C Z Liu, K J Qian, P G He, Y Z Fang, Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis, Analyst, 2002, 127, 1267-1271.
    [197] W Miao, A J Bard, Electrogenerated chemiluminescence. 77. DNA hybridization detection at high amplification with [Ru(bpy)_3]~(2+)-containing microspheres, Anal. Chem., 2004, 76(18), 5379-5386.
    [198] 冯若,李化茂,声化学及其应用,安徽科学技术出版社,1992年6月.
    [199] R G Compton, J C Eklund, F Marken, Sonoelectrochemical processes, a review, Electroanalysis, 1997, 9(7), 509-522.
    [200] 王俊中,胡源,陈祖耀,超声化学制备纳米材料的研究进展,稀有金属材料与工程,2003,32(3),585-590.
    [201] 贾卫国,张鹏,刘振荣,李慧芳,杨奇,王君,超声化学的研究与应用,辽宁大学学报(自然科学版),2002,29(3),198-202.
    [202] 张成孝,超声电化学及其研究进展,陕西师范大学学报(自然科学版),2001,29(2),104-109.
    [203] K S Suslick, The Chemical Effects of Ultrasound, Scientific American, 1989, 62.
    [204] R. Walker, Ultrasound improves electrolytic recovery of metals, Ultrasonics Sonochemistry, 1997,4(1), 39-43.
    [205] T J Mason, Practical Sonoelectrochemistry, Ellis Horwood: Cheichester, 1991.
    [206] P R Birkin, M S Silva, Determination of heterogeneous electron transfer kinetics in the presence of ultrasound at microelectrode employing sampled voltammetry, Anal. Chem., 1997, 69(11), 2055-2062.
    [207] R R Manna, B Lee, K C Brecher, Probe ultrasonics: increased productivity and accelerated reactions in modern laboratory, Am. Lab., 1998, 30(13), 14-15.
    [208] F M Matysik, S Matysik, A M O Brett, Ultrasound enhanced anodic voltammetry using perfluorolfonated ionomer coated mercury thin film electrode, Anal. Chem., 1997, 69(8), 1651-1656.
    [209] J Davis, R G Compton, Sonoelectrochemically enhanced nitrite detection, Anal. Chim. Acta, 2000, 44(2), 241-247.
    [210] T J Mason, Ultrasonics, 1990, 28, 333.
    [211] K Kobayashi, A Chiba, N Minami, Effects of ultrasound on both electrolytic and electroless nickel depositions, Ultrasonic, 2000, 38(1-8), 676-681.
    [212] E Namgoong, Thin solid Films, 1984, 120, 153-159.
    [213] M Atobe, T Nonaka, Ultrasonic effects on electroorganic processes 7. Reduction of benzaldehydes on ultrasound vibrating electrodes, J Electroanal Chem, 1997, 425(122), 161-166.
    [214] Y Mastai, R Polsky, K Yu, Pulsed sonoelectrochemical synthesis of cadmium selenide nanopartical, J. Am. Chem. Soc, 1999,121(43), 10047-10052.
    [215] J J Zhu, S T Aruna, Y Koltypin, A Gedanken A novel method for the preparation of lead selenide: pulse sonoelectrochemical synthesis of lead selenide nanoparticles, Chem. Mater., 2000, 12 (1), 143-147.
    [216] J J Zhu, Q F Qiu, H Wang, Synthesis of silver nanowires by a sonoelect rochemical method. Inorganic Chemistry Communications, 2002,4, 242 - 244.
    [217] J L Delplancke, J Dille, J Reises, Grandjean F. Magnetic nanopowders: ultrasound-assisted electrochemical preparation and properties, Chem. Mater., 2000, 12(4), 946-955.
    [218] B Pollet, J P Lorimer, J Y Hihn, F Touyeras, T J Mason, Electrochemical study of silver thiosulphate reduction in the absence and presence of ultrasound, Walton Ultrasonics Sonochemistry, 2005, 12, 7-11.
    [219] D J Walton, S S Phull, D M Bates, Ultrasonic enhancement of electrochemiluminescence. Electrochim. Acta, 1993, 38(2/3), 307-310.
    [220] C Malins, R Vandeloise, D Walton, E V Donckt, Ultrasonic modification of light emission from electrochemiluminescence processes, J. Phys. Chem. A, 1997, 101(28), 5063-5068.
    [221] A Malinauskas, R Garjonyte, R Mazeikiene, I Jureviute, Electrochemical response of ascorbic acid at conducting and electrogenerated polymer modified electrodes for electroanalytical applications: a review, Talanta, 2004, 64(1), 121-129.
    [222] J F Rusling, R J Forster, Electrochemical catalysis with redox polymer and polyion-protein films, Journal of Colloid and Interface Science, 2003, 262(1), 1-15.
    [223] S Zhang, G Wright, Y Yang, Materials and techniques for electrochemical biosensor design and construction, Biosensors and Bioelectronics, 2000, 15(5-6), 273 - 282.
    [224] S Mandal, S Phadtare, M Sastry, Interfacing biology with nanoparticles, Current Applied Physics, 2005, 5(2), 118-127.
    [225] P J Britto, K S V Santhanam, P M Ajayan, Carbon nanotube electrode for oxidation of dopamine, Bioelectrochem. Bioenerg., 1996, 41, 121-125.
    [226] J J Davis, R J Coles, A O Hill, Protein electrochemistry at carbon nanotube electrodes, J. Electroanal. Chem., 1997, 440, 279-282.
    [227] J Li, Y J Lu, Q Ye, M Cinke, J Han, M Meyyappan, Carbon nanotube sensors for gas and organic vapor detection, Nano. Lett., 2003, 3, 929-933.
    [228] M Darder, K Takada, F Pariente, E Lorenzo, H D Abruna, Dithiobissuccinimidyl propionate as an anchor for assembling peroxidases at electrodes surfaces and its application in a H2O2 biosensor, Anal. Chem., 1999, 71, 5530-5537.
    [229] B C Madsen, M S Kromis, Flow injection and photometric determination of hydrogen peroxide in rainwater with N-ethyl-N-(sulfopropyl)aniline sodium salt, Anal. Chem., 1984, 56,2849-2850.
    [230] S Hanaoka, J M Lin, M Yamada, Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin, Anal. Chim. Acta, 2001,426, 57-64.
    [231] J G Hong, J Maguhn, D Freitag, A Kettrup, Determination of H2O2 and organic peroxides by high-performance liquid chromatography with post-column UV irradiation, derivatization and fluorescence detection, Fresenius J. Anal. Chem., 1998,361,124-128.
    [232] J H Yu, H X.Ju, Preparation of porous titania sol-gel matrix for immobilization of horseradish peroxidase by a vapor deposition method. Anal. Chem., 2002, 74, 3579-3583.
    [233] J Kong, Z Lu, Y M Lvov, R Z A Desamero, H A Frank, J F.Rusling, Direct electrochemistry of cofactor redo sites in a bacterial photosynthetic reaction center protein, J. Am. Chem. Soc, 1998,120, 7371-7372.
    [234] H Sun, H Y Ma, N F Hu, Electroactive hemoglobin-surfactant-polymer biomembrane-like films, Bioelectrochem. Bioenerg., 1999, 49, 1-10.
    [235] L W Wang, N F Hu, Direct electrochemistry of hemoglobin in layer-by-layer films with poly(vinyl sulfonate) grown on pyrolytic graphite electrodes, Bioelectrochem., 2001, 53, 205-212.
    [236] H Huang, N F Hu, Y H Zeng, G Zhou, Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films, Anal. Biochem., 2002, 308, 141-151.
    [237] H Y Liu, N F Hu, Heme protein-gluten films: voltammetric studies and their electrocatalytic properties, Anal. Chim. Acta, 2003,481, 91-99.
    [238] D P Nikolelis, C G Siontorou, Hemoglobin modified bilayer lipid membranes (BLMs) biosensor for carbon dioxide detection, Bioelectrochem. Bioenerg., 1997,42,71-75.
    [239] X J Han, W M Huang, J B Jia, S J Dong, E K Wang, Direct electrochemistry of hemoglobin in egg-phosphatidylcholine films and its catalysis to H_2O_2; Biosensor. Bioelectron., 2002,17, 741-746.
    [240] C H Fan, H Y Wang, S Sun, D X Zhu, G Wagner, G X Li, Electron-transfer reactivity and enzymatic activity of hemoglobin in a SP sephadex membrane, Anal. Chem., 2001, 73,2850-2854.
    [241] C H Fan, G X Li, J Q Zhu, D X Zhu, A reagentless nitric oxide biosensor based on hemoglobin-DNA films, Anal. Chim. Acta, 2000,423,95-100.
    [242] X J Han, W L Cheng, Z L Zhang, S J Dong, E K Wang, Direct electron transfer between hemoglobin and a glassy carbon electrode facilitated by lipid-protected gold nanoparticles, Biochimica. Biophysica. Acta, 2002, 1556, 273-277.
    [243] C H Lei, U Wollenberger, N Bistolas, A Guiseppi-Elie, F W Scheller, Electron transfer of hemoglobin at electrodes modified with colloidal clay nanoparticles, Anal. Bioanal. Chem., 2002, 372, 235-239.
    [244] H Y Gu, A M Yu, H Y Chen, Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode, J. Electroanal. Chem., 2001, 516, 119-126.
    [245] J M Gong, X Q Lin, Facilitated electron transfer of hemoglobin embedded in nanosized Fe_3O_4 matrix based on paraffin impregnated graphite electrode and electrochemical catalysis for trichloroacetic acid, Microchem. J., 2003, 75, 51-57.
    [246] F H Wu, G C Zhao, X W Wei, Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode, Electrochem. Commun., 2002, 4, 690-694.
    [247] H X Luo, Z J Shi, N Q Gu, Q K Zhuang, Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode, Anal. Chem., 2001, 73, 915-920.
    [248] E Laviron, General expression of the linear potential sweep volammogram in the case of diffufionless electrochemical systems, J. Electroanal.Chem., 1979, 101, 19-28.
    [249] A J Bard, L R Faulkner, Electrochemical Methods, Wiley, New York, 1980.
    [250] H Theorell, A Ehrenberg, Spectrophotometric magnetic and titrimetric studies on the heme-linked groups in myoglobin. Acta. Chem. Scand., 1951, 5, 823-848.
    [251] P George, G Hanania, A spectrophotometric study of ionizations in methaemoglobin. Biochem. J., 1953, 55, 236-243.
    [252] H R Horton, L A Moran, R S Ochs, J D Rawn, K G Scrimgeour, Principles of Biochemistry, Third Edition, Pearson Eduation, inc., 2002.
    [253] S Kroger, A P F Turner, K Mosbach, K Haupt, Imprinted polymer-based sensor system for herbicides using differential-pulse voltammetry on screen-printed electrodes, Anal. Chem., 1999, 71(17), 3698-3702.
    [254] J H Pei, X Y Li, Xanthine and hypoxanthine sensors based on xanthine oxidase immobilized on a CuPtCl_6 chemically modified electrode and liquid chromatography electrochemical detection, Anal. Chim. Acta, 2000, 414(1-2), 205-213.
    [255] J Motonaka, L R Faulkner, Determination of cholesterol and cholesterol ester with novel enzyme microsensors, Anal. Chem., 1993, 65(22), 3258-3261.
    [256] M Pravda, C M Jungar, E I Iwuoha, M R Smyth, K Vytras, A Ivaska, Evaluation of amperometric glucose biosensors based on co-immobilisation of glucose oxidase with an osmium redox polymer in electrochemically generated polyphenol films, Anal. Chim. Acta, 1995, 304(2), 127-138.
    [257] Z E Zhang, H Y Liu, J Q Deng, A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode, Anal. Chem., 1996,68 (9), 1632-1638.
    [258] C Saby, F Mizutani, S Yabuki, Glucose sensor based on carbon paste electrode incorporating poly(ethylene glycol)-modified glucose oxidase and various mediators, Anal. Chim. Acta, 1995, 304(1), 33-39.
    [259] M E Ghica, C M A Brett, A glucose biosensor using methyl viologen redox mediator on carbon film electrodes, Anal. Chim. Acta, 2005, 532(2), 145-151.
    [260] L Rover, J G D O Neto, J R F L T Kubota, Selectivity assessment of a sequential extraction procedure for metal mobility characterization using model phases, Talanta, 2000, 51(3), 545-557.
    [261] A Silber, N Hampp, W Schuhmann, Poly(methylene blue)-modified thick-film gold electrodes for the electrocatalytic oxidation of NADH and their application in glucose biosensors, Biosens. Bioelectron., 1996,11(3), 215-223.
    [262] R Nagata, K Yokoyama, S A Clark, I Karube, A glucose sensor fabricated by the screen printing technique, Biosens. Bioelectron., 1995, 10(3-4), 261-267.
    [263] S Poyard, N Jaffrezic-Renault, C Martelet, S Cosnier, P Labbe, Optimization of an inorganic/bio-organic matrix for the development of new glucose biosensor membranes, Anal. Chim. Acta, 1998, 364(1-3), 165-172.
    [264] T Matsumoto, M Furusawa, H Fujiwara, Y Matsumoto, N Ito, A micro-planar amperometric glucose sensor unsusceptible to interference species, Sensors and Actuators B: Chemical, 1998,49(1-2), 68-72.
    [265] S K Jung, G S Wilson, Polymeric mercaptosilane-modified platinum electrodes for elimination of interferants in glucose biosensors, Anal. Chem., 1996, 68(4),591-596.
    [266] S X Zhang, W W Yang, Y M Niu, C Q Sun, Multilayered construction of glucose oxidase on gold electrodes based on layer-by-layer covalent attachment, Anal. Chim. Acta, 2004, 523(2), 209-217.
    [267] G Cui, S J Kim, S H Choi, H Nam, G S Cha, A disposable amperometric sensor screen Printed on a Nitrocellulose Strip: A glucose biosensor employing lead oxide as an interference-removing agent, Anal. Chem., 2000, 72(8), 1925-1929.
    [268] C X Zhang, K Wang, An amperometric glucose biosensor incorporating a permeable pre-oxidation layer, Anal. Lett., 2002, 35(5), 869-880.
    [269] C Cai, J Chen, Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal Biochem., 2004, 332(1), 75-83.
    [270] A Salimi, R G Compton, R Hallaj, Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode. Anal Biochem., 2004, 333(1), 49-56.
    [271] H Tang, J Chen, S Yao, L Nie, G Deng, Y Kuang, Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode. Anal Biochem., 2004, 331(1), 89-97.
    [272] S Hrapovic, Y Liu, K B Male, J H Luong, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem., 2004, 76(4), 1083-1088.
    [273] S H Lim, J Wei, J Lin, Q Li, J Kuayou, A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto nafion-solubilized carbon nanotube electrode. Biosens Bioelectron., 2005, 20(11), 2341-2346.
    [274] J Barek, J Cvacka, A Muck, V Quaiserova, J Zima, Electrochemical methods for monitoring of environmental carcinogens. Fresenius J Anal Chem., 2001, 369(7-8), 556-562.
    [275] A E G Cass, G Davis, G D Francis, H Al Hill, W J Aston, I J Higgins, E V Plotkin, L D L Scott, A P F Turner, Ferrocene-mediated enzyme electrode for amperometric determination of glucose, Anal. Chem., 1984, 56(4), 667-671.
    [276] 金利通,毛翼萍,方禹之,羧酸二茂铁为介体的生物传感器的研究,华东师范大学学报(自然科学版),1995,2,59-64.
    [277] Y Cao, M R Suresh, Bispecific antibodies as novel bioconjugates, Bioconjugate Chem., 1998, 9(6), 635-644.
    [278] P B Luppa, L J Sokoll, D W Chan, Immunosensors—principles and applications to clinical chemistry, Clin. Chim. Acta, 2001, 314, 1-26.
    [279] M Mehrvar, M Abdi, Recent developments, characteristics, and potential applications of electrochemical biosensors, Anal. Sci., 2004, 20(8), 1113-1126.
    [280] 何亚明,张维成,王志茹,测酚用的酪氨酸酶媒体玻碳电极的研制,分析测试学报,1999,18(4),76-78.
    [281] S H Duvall, R L McCreery, Control of catechol and hydroquinone electro-transfer kineticss on native and modified glassy carbon electrodes, Anal. Chem., 1999, 71, 4594-4602.
    [282] K B Wu, J J Fei, S S Hu, Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes, Anal. Biochem., 2003, 2003, 318(1), 100-106.
    [283] 王宗花,罗国安,肖素芳,王歌云,α-环糊精复合碳纳米管电极对异构体的电催化行为,高等学校化学学报,2003,24,811-813.
    [284] R L McCreey, in: A J Bard (Ed.), Electroanalytical Chemistry: A Series of Advances, Vol. 27, Marcel Dekker, New York, 1991, 293-295.
    [285] 张书圣,陈洪渊,焦奎,以邻氨基酚为底物的伏安酶联免疫分析体系酶促反应的研究,中国科学(B辑),1999,29(1),83-90.
    [286] T Suzawa, Y Ikariyama, M Aizawa, Bull. Chem. Soc. Jpn., 1995, 68, 165.
    [287] T Suzawa, Y Ikariyama, M Aizawa, Multilabeling of ferrocenes to a glucose oxidase-digoxin conjugate for the development of a homogeneous electroenzymic immunoassay, Anal. Chem., 1994, 66(22), 3889-3894.
    [288] M W Jr Ducey, A M Smith, X Guo, M E Meyerhoff, Competitive nonseparation electrochemical enzyme binding/immunoassay (NEEIA) for small molecule detection, Anal. Chim. Acta, 1997, 357(1-2), 5-12.
    [289] M J Choi, S Y Kim, J Choi, I R Paeng, Labeling Digoxin Antibody with Colloidal Gold and Ferrocene for Its Use in a Membrane Immunostrip and Immunosensor, Microchemical J, 1999, 63(1), 92-99.
    [290] D Dreveny, J Michalowski, R Seidl, G Guebitz, Development of solid-phase chemiluminescence immunoassays for digoxin comparing flow injection and sequential injection techniques, Analyst, 1998, 123(11), 2271-2276.
    [291] M T Carter, A J Bard, Electrochemical investigations of the interaction of metal chelates with DNA. 3. Electrogenerated chemiluminescent investigation of the interaction of tris(1,10-phenanthroline)ruthenium(Ⅱ) with DNA, Bioconjugate Chem., 1990, 1(4), 257-263.
    [292] M Rodrigue, A J Bard, Electrochemical investigation of the association of distamycin A with the manganese(Ⅲ) complex of meso-tetrakis (N-methyl-4-pyridiniumyl)porphine and the interaction of this complex with DNA, Inorg. Chem., 1992, 31(7), 1129-1135.
    [293] P W Atkins, Physical Chemistry, Freeman San Francisco, CA, 1982, 823-905.
    [294] A J Bard, L R Faulkner, In Electrochemical Methods Fundamentals and Applications, New York, 1980, 788-510.
    [295] C X Zhang, G J Zhou, Z J Zhang, M Aizawa, Highly sensitive electrochemical luminescence determination of thiamine, Anal. Chim. Acta, 1999, 394, 165-170.
    [296] J S A Simpson, A K Campbell, M E T Ryall, J S Woodhead, A stable chemiluminescent-labelled antibody for immunological assays, Nature, 1979, 279(5714), 646-647.
    [297] K E Haapakka, J J Kankare, The mechanism of the electrogenerated chemiluminescence of luminol in aqueous alkaline solution, Anal. Chim. Acta, 1982, 138, 263-275.
    [298] K Kriz, G Janin, K Dario, Advancements toward magneto immunoassays, Biosensors and Bioelectronics, 1998, 13(7-8), 817-823.
    [299] H Yu, J W Raymonda, T M McMahon, A A Campagnari, Detection of biological threat agents by immunomagnetic microsphere-based solid phase fluorogenic-and electro-chemiluminescence, Biosensors and Bioelectronics, 2000, 14(10-11), 829-840.
    [300] A S Yuan, M L Morris, K C Yin, J Y K Hsieh, B K Matuszewski, Development and implementation of an electrochemiluminescence immunoassay for the determination of an angiogenic polypeptide in dog and rat plasma, Journal of Pharmaceutical and Biomedical Analysis, 2003, 33(4), 719-724.
    [301] 邢婉丽,晁福寰,蒋中华,马立人,电化学发光免疫传感器检测甲磺隆的研究,高等学校化学学报,2000,21(6),873-875.
    [302] H Yu, Comparative studies of magnetic particle-based solid phase fluorogenic and electrochemiluminescent immunoassay, Journal of Immunological Methods, 1998, 218(1-2), 1-8.
    [303] E Terpetschnig, H Szmacinski, H Malak, J R Lakkowicz. Metal-ligand complexes as a new class of long-lived fluorophores for protein hydrodynamics, Biophysical Journal, 1995, 68(1), 342-350.
    [304] T Shimdzu, T Iyoda, K Izaki, Photoelectrochemical properties of bis(2,2'-bipyridine)(4,4'-dicarboxy-2,2'-bipyridine)ruthenium(Ⅱ) chloride, J. Phys. Chem., 1985, 89(4), 642-645.
    [305] 崔亚丽,硅烷化磁性微粒的合成及其在分子生物学领域中的应用研究,西安交通大学博士论文,2000年.
    [306] N Davidson, The biochemistry of the nucleic acids, 7th edn. Cox and Nyman, Norfolk, UK, 1972, p129.
    [307] M Katayama, Y Matsuda, K Shimokawa, S Tanabe, S Kaneko, I H Hara Sato, Simultaneous determination of six adenyl purines in human plasma by high-performance liquid chromatography with fluorescence derivatization, J. Chromatogr. Biomed. Appl., 2001, 760 (1), 159-163.
    [308] G Chen, Q C Chu, L Y Zhang, J N Ye, Separation of six purine bases by capillary electrophoresis with electrochemical detection, Anal Chim Acta, 2002, 457, 225-233.
    [309] J E Edstrom, Separation and determination of purines and pyrimidine nucleotides in picogram amounts, Biochim. Biophys. Acta, 1956, 22 (2), 378-388.
    [310] S Steenken, Purine bases, nucleosides and nucleotides: Aqueous solution redox chemistry and tansformation reactions of their radical cations and e-and OH adducts, Chem. Rev., 1989, 89, 503-520.
    [311] A Abbaspour, M A Mehrgardi, Electrocatalytic oxidation of guanine and DNA on a carbon paste electrode modified by cobalt hexacyanoferrate films, Anal Chem., 2004, 76(19), 5690-5696.
    [312] K Wu, J Fei, W Bai, S Hu, Direct electrochemistry of DNA, guanine and adenine at a nanostructured film-modified electrode. Anal Bioanal Chem., 2003, 376(2), 205-209.
    [313] M L Pedano, G A Rivas, Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes, Electrochem. Commun., 2004, 6, 10-16.
    [314] 鄢远,许金钩,陈国珍,溴化乙锭的三维荧光光谱用于研究DNA构象,科学通报,1195,40(18),1664-1666.
    [315] J Wang, M Jiang, A Fortes, B Mukherjee, New label-free DNA recognition based on doping nucleic-acid probes within conducting polymer films, Anal. Chim. Acta, 1999, 402, 7-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700