用户名: 密码: 验证码:
台风区大跨度钢桁架拱桥施工控制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于钢桁架拱桥具有较强的竖向刚度和横向刚度,从而成为台风区跨越大江大河的常用桥型。随着我国桥梁向更长、更大、更柔的方向发展,安全质量问题越发突出,特别是在台风区建设大跨度钢桁架拱桥,需要考虑的不确定因素较多。为了使成桥状态与设计要求更加吻合,本文以在台风区建设的厦深铁路榕江特大桥为研究背景,对台风区建设大跨度钢桁架拱桥施工控制成套关键技术进行了研究。主要完成了以下研究工作:
     (1)基于运筹学理论的施工方案对比研究
     总体施工方案的优劣对施工安全质量的控制成败起着关键性作用,针对目前采用专家讨论会评选施工方案具有较强的经验性和主观性特征,尝试将运筹学决策理论应用于台风区大跨度钢桁架拱桥施工方案比选,选定施工过程中最为关心的安全、质量、工期、技术和成本等5个子目标,对拟采用的3个方案进行统筹建模计算,最终得出的方案与召开专家讨论会的选定结果相符,且大桥按照该方案施工,已顺利完工并投入使用,从而在一定程度上验证了该方法的可靠性。
     (2)抗风稳定性控制措施设置研究
     首先采用针对榕江特大桥结构风洞试验的三分力系数和风压时程成果,对施工阶段进行了风振响应分析,分析结果发现:在台风作用下,主梁最大拉应力较在施工临时主要荷载(大吨位悬拼吊机)大,且在风荷载和自重作用下,主梁最大拉应力超出钢材受力允许范围;长吊杆的涡激共振和驰振起振风速均小于相应检验风速,为保证大桥顺利安全架设,对主梁和拱肋施工分别采取了如下控制措施:在主梁施工阶段,创造性地在大跨度连续钢桁梁悬拼架设过程中对局部若干薄弱杆件采取如下临时加强设施:对薄弱斜腹杆,直接在板外附加一T形截面杆件进行临时加强;对较薄弱的下弦杆,直接附加一H形截面杆件进行临时加强,加强杆件和被加强杆件共用螺栓连接副,从而形成组合截面,加强杆件与主桁结构协同工作性能较好;在拱肋施工阶段,创新性地通过采用钢丝绳将两片拱肋与上弦杆交叉连接起来,有效地提高了吊杆和拱圈在施工过程中抗风稳定性。
     (3)施工过程特殊节点应力控制研究
     首先对比计算分析了特殊节点在设计运营最不利工况状态和施工阶段最不利状态的区别,结果发现杆端内力相差很大,其中受力上弦杆两端在施工阶段较运营阶段分别增大了58.6%(靠支座端)和73.1%(靠跨中端),故对于大跨度钢桁梁桥,除在设计阶段需要验证特殊节点受力的合理性外,还需考虑施工阶段的受力状态。
     在此基础上,参照缩比模型试验验证计算模型的成果,建立施工阶段节点计算模型并对节点进行局部受力分析,结果发现最不利工况下,存在局部受力超出钢材允许应力现象,然后结合架设工艺和结构特征,提出先合拢弦杆后再拼桥面板法施工,实现了安全合理架设。然后以大桥实测数据验证了有限元计算模型及等效加载方式的可靠性。
     (4)高强螺栓连接施工质量控制研究
     着重对在自然暴露下的2组拼接板的摩擦面进行了试验研究分析,试验结果得出,抗滑移系数降低较多,分别从出厂实测滑移系数0.83和0.74降低至0.47和0.47,最终只略微高于规范要求的安装前不小于0.45。然后对影响施工质量的扭矩系数控制进行了研究,鉴于连接接头的头尾排传力比占整个接头的绝大部分,提出在终拧后对螺栓检测时,建议采取如下方案:头尾两排螺栓按100%检查,而中间排数的螺栓按规范10%抽查,从而确保头尾两排螺栓的施拧质量。
     (5)大跨度钢桁梁拼装线形控制技术研究
     首先推导了钢桁梁悬臂法架设的拼装线形,然后对架设前的准备阶段和拼装过程中及合拢阶段的误差控制进行了系统研究。架设前的准备阶段,对临时支墩的标高设置推导了经验公式,且依据现场条件,对水中临时墩的承载力试验提出了锚桩压重联合反力装置,保证了众多临时墩合理设置;拼装阶段,着重对在架设过程中发现的钢梁受温度、风和施工荷载的影响变位进行了分析并提出了相应控制措施;合拢阶段,对双跨不对称合拢,系统研究了合拢方案及三向调整措施,最终架设线形和理论线形吻合得较好,验证了本章线形控制方法的适用性和合理性。
The steel truss arch bridge was used commonly in the typhoon area, for which has strongvertical stiffness and lateral stiffness. With bridge to the longer, larger and more flexibledirection, the safety and quality problem become more and more prominent. Specifically,more uncertain factors need to be considered when constructing large span steel truss archbridge in the typhoon area. In order to make a bridge state is more consistent with the designrequirements, the crucial technique of construction control for large span steel trussed archbridges in typhoon area was studied in this paper, background with Rongjiang super-largebridge of the Xiamen-Shenzhen railway. The main research work covers the followingaspects:
     (1)Acomparative study of the construction program based on operational research
     The merits of the overall construction plan for the success of the construction safety andquality control plays a key role. Against currently used expert seminar for the constructionprogram selection has strong empirical and subjective characteristics, this paper tried applyingoperations research decision-making theory to the typhoon area large span steel truss archbridge construction program comparison, which selected the most concerned problems ofconstruction safety, quality, schedule, technology and cost as the five sub-goals, then overallmodeling calculation is carried on the three programs that is to be adopted, finally concludedprogram is consistent with the selected results of expert seminar. According to theconstruction program, Rongjiang super-large bridge has been successfully completed and putinto use, which to a certain extent, to verify the reliability of this method.
     (2)Wind resistance stability control measures set research
     At first adopted for Rongjiang super-large bridge structure coefficient and wind pressuretime history of the three component of wind tunnel tests results, the wind vibration responseanalysis was carried out on the construction stage, the results of the analysis found that: underthe effect of the typhoon, the maximum tensile stress of the main girder is bigger than one inthe construction of the temporary main load (large tonnage of the cantilever crane), and underthe action of wind load and dead weight, the maximum tensile stress of the main girderexceeds the maximum tensile stress in the steel stress allowed range; The long boom of thevortex-induced resonance and chi ZhenQi winds are less than the corresponding test windspeed. Therefore, the main girder and arch rib construction respectively adopted controlmeasures as follows: in the main girder construction stage, creatively in the long-spancontinuous steel truss beam in the process of the cantilever erection of local several temporary strengthening weak link take the following facilities: the weak oblique abdominal rod directlyattached a T section bar, attach a H form to the thinner bottom chord of the section bar fortemporary strengthening, strengthening bar and Shared by reinforcing bar bolt connectionvice, reinforced bar and main girder structure has good work performance; In the arch ribconstruction stage, innovation in using wire rope will be two pieces of arch rib and the upperchord connecting, effectively improves the derrick and arch ring stability of wind resistance inthe process of construction.
     (3)Stress control research of the special node in the construction process
     First comparatively calculate and analyze the differences of the most unfavorableconditions in design operating status and in the construction phase, the difference between theresults found that the internal forces vary widely, which stress on both ends of the upper chordin construction stage is operating stage respectively increased by58.6%(bearing) and73.1%(by cross in the end), so for large span steel truss, except during the design phase to verifyspecial node force of cohesion, still need to consider the construction phase of the stress.Referring to shrinkage ratio computational model of achievement than the model test,construction phase node calculation model is established and the local stress analysis wascarried out on the nodes, the results showed that the local stress of steel exceeds the maximumlocal stress in the steel stress allowed range under the most unfavorable conditions.Combining with erection process and structural features, the first meeting after the chord tospell bridge panel method was put forwarded and realized the safety and reasonable set up.Then the finite element calculation model and the reliability of equivalent loading methodwere verified by the Rongjiang bridge measured data.
     (4)The construction quality control study of high-strength bolts connection
     Two groups of splice plates' friction surface under natural exposure are analyzed inexperimental study, the results concluded that resistance to sliding coefficient to reduce much,respectively from the factory measured slip coefficient of0.83and0.74to0.74and0.47, onlyslightly higher than the specification requirements before the installation of not less than0.45.In view of the force transmission ratio between the head and tail rows of connectorsaccounted for most in the total joint, the torque coefficient that effects the construction qualitycontrol were studied. And then the following solutions were recommended: In order to ensurethe quality of twist in two rows of head and tail bolts, two rows of head and tail bolts shouldbe checked in100%and the middle rows bolts could be checked in10%as specificationrequired, after the final twist of bolt detection.
     (5)Assembled linear control technology research of large span steel truss girder
     First assembled linear of the steel truss cantilever method was deduced, and then theerror controls in the process of construction preparation stage and in front of the assembledand the closure phase were systematically researched. In preparation stage before erection, theempirical formula for the elevation settings of temporary piers was deduced, and dependingon site conditions joint reaction force of anchor pile device was putted forward for waterbearing capacity test of temporary pier loading, which ensures the reasonable settings ofmany temporary piers; In assembling stage, temperature, wind, and the construction loaddeflection in the process of the erection of the steel beam were analyzed and correspondingcontrol measures were putted forward; In closure phase, systematic study of the closure planand a three-way adjustment measures were applied to the asymmetric double span closure,eventually the erection linear and the theory linear were good agreement which verified theapplicability and rationality of linear control methods in this chapter.
引文
[1]《铁路“十二五”发展规划》(铁计[2011)80号).
    [2]邵克华,方秦汉,赵煌澄.九江长江大桥钢梁15MnVNq钢材质优化[J].桥梁建设,1993,(1):7-11.
    [3]成宇海,黄鑫.重庆朝天门长江大桥钢拱座整体节点制造研究[J].工程技术,2008,(2):19-22.
    [4]方秦汉,邵克华,赵煌澄.九江长江大桥钢梁56mm厚板的使用[J].桥梁建设,1993,(1):71-76.
    [5]方秦汉,高宗余,李加武.中国铁路钢桥的发展历程及展望[J].建筑科学与工程学报,2008,25(4):1-5.
    [6]戴公连,李德建.桥梁结构空间分析设计方法与应用[M].北京:人民交通出版社,2001.
    [7]戴公连,李德建.浏阳河洪山大桥异形斜拉桥主梁空间受力及稳定性分析[J].中国公路学报,2002,(3):53-56.
    [8] Zhang xin, James MarK, William B.. Time domain formulation of self-excited forces onbridge deek for wind tunnel experiment [J]. Journal of wind Engineering and IndustrialAerodynamics,2003,91:723-736.
    [9] Shaaban H.F., Atabi M., Hakim H.A..Space truss deekforcable一stayed bridges [J].Journal of the international Association for Shell and Spatial structures,2003,44(142):77-91.
    [10] Zhu L.D., Xiang H.F., Xu Y.L.. TriPle-girder model for modai anaiysis of cable-stayedbridges with warping effect [J].Engineering Structures,2000,22(10):1313-1323.
    [11]严国敏,周世忠.现代悬索桥[M].北京:人民交通出版社,2002..
    [12] Bleich F. Dynamics instability of truss-stiffened suspension bridges under wind action [J].Proc. ASCE,1948,74(7):1269-1314.
    [13] Kim Ho-Kyung, Lee Myeong-Jae, Chang Sung-Pil. Non-linear shape-finding analysis ofa self-anchored suspension bridge [J]. Engineering Structures,2002,24(12):1547-1559.
    [14]程进,江见鲸,肖汝诚.大跨度钢拱桥结构极限承载力分析.工程力学[J],2003,20(2):7-9.
    [15] Austin W.J.. In Plane Bending and Buckiing of Arches [J]. Journal of Structural Division,1971,97(5):1575-1592.
    [16] Pi Y.L., Trahair N.S. In-Plane Inelastic Buckling and Strengths of Steel Arches [J]. StructEng, ASCE,1996,122(7):734-747.
    [17] Pi Y.L., Trahair N. S. Out-of-Plane Inelastic Buckling and Strengths of Steel Arches [J].Struct Eng, ASCE,1998,124(2):174-183.
    [18]范立础,胡世德,叶爱君.大跨度桥梁抗震设计.北京:人民交通出版社,2001.
    [19] Emesto H Z, Vanmareke E H. Seismic random vibration analysis of ufti-supportstructural systems [J]. ASCE, Journal of Engineering Mechanics,1994,120:1107-1128.
    [20] SARKAR A.. Critical Seismic Vector Random Excitations for Multiply SupportedStructures [J]. Journal of Sound and Vibration,1998,212(3):525-546.
    [21] Yamamura N, Tanaka H, Response analysis of flexible MDOF systems formultiple-support seismic excitation [J]. Earthquake Engng Struct Dyn,1992,(19):345-357.
    [22]高宗余,方秦汉,卫军.中国铁路桥梁技术发展与展望[J].铁道工程学报,2007,(1):55-59.
    [23]曾庆元,杨毅,骆宁安,等.列车-桥梁时变系统的横向振动分析[J].铁道学报,1991,13(2):38-46..
    [24]王荣辉,郭向荣,曾庆元.高速列车-钢桁梁桥系统横向振动随机分析[J].铁道学报,1996,18(1):90-95.
    [25] Diana G., Cheli F. Dynamic Interaction of Railway Sys-tems with Large Bridges [J].Vehicle System Dynamics,1989,18(1):71-106.
    [26] M Olsson. Finite Element Model Coordinate Analysis of Structures Subjected to MovingLoads [J]. Journal of Sound&Vibration,1985,99(1):1-12.
    [27] Yeong-Bin Yang, Bing-Houng Lin. Vehicle-Bridge Inter-action Analysis by DynamicCondensation Method [J]. Journal of Structural Engineering, ASCE,1995,121(11):1636-1643.
    [28] Yeong-Bin Yang, Shu-Shyan Liao, Binghoung Lin. Impact Formulas for Vehicle Movingover Simple and Con-tinuous Beams [J]. Journal of Structural Engineering, ASCE,1995,121(11):1644-1650.
    [29] Van Bogaert. Dynamic Response of Trains crossingLarge Span Double-track Bridges [J].Journal of Constructional Steel Research,1993,24(1):57-74.
    [30] Xia He, De Roeck G, et al. Dynamic Analysis of TrainBridge System and Its Applicationin Steel Girder Rein-forcement [J]. Journal of Computers and Structures,2001,79,1851-1860.
    [31]孙海涛.大跨度钢桁架拱桥关键问题研究[D].上海:同济大学,2006.
    [32]欧阳平,吕慎明.南京大胜关长江大桥高强度螺栓试验控制方案[J].工程技术,2009,(6):19-22.
    [33] LIU Yongjian, LIU Jian, ZHONG Guanxin, et al. Mechanical Behavior of Steel TrussBridge Stiffened with Rigid Cable in Construetion Stage [J].Jounal of Traffic andTransportation Engineering,2009,9(3): l-10.
    [34]韩衍群.高速铁路三主桁道碴整体桥面板桁组合桥受力特性及计算理论研究[D].长沙:中南大学桥梁与隧道工程,2008.
    [35]刘雪锋.多重组合体系拱桥的静动力特性研究[D].长沙:长沙理工大学桥梁与隧道工程,2008.
    [36] Quail Douglas J., West Richard P.. Sydney harbour bridge bus lane [J]. ProceedingsConference of the Australian Road Research Board,1992:263-285.
    [37] Lardner-Smith P. Sydney harbour bridge electronic toll collection pilot project [J].Proceedings of of the26th international symposium on Automotive Technology andautomation,1993:121.
    [38]汪存书,向中富,孙玉祥.重庆朝天门大桥特大跨钢桁拱结构安装及控制[M].北京:人民交通出版社,2013.
    [39]孙莉,刘祚波,姚莉.重庆朝天门长江大桥主桥边跨钢梁半伸臂安装技术[J].公路交通技术,2008,(5):57-60.
    [40]王东辉,覃勇刚.南京大胜关长江大桥钢梁架设及关键技术[J].桥梁建设,2009(3):5-9.
    [41]潘东发,李军堂.南京大胜关长江大桥钢梁安装方案研究[J].桥梁建设,2007(3):5-8.
    [42]余岭.九江长江大桥三大拱吊杆风致振动试验研究[J].长江科学学院院报,1995,12(3):53-60.
    [43]李瀛沧.九江长江大桥正桥钢梁设计简介[J].桥梁建设,1993,(1):3-6.
    [44]范立础,顾安邦等.桥梁工程[M].北京:人民交通出版社,1993.
    [45]林元培.我国桥梁的进展[J].《城市道桥与防洪》全国高峰论坛专辑,2006,(4):1-8.
    [46]王荣辉,蔡禄荣,黄永辉,等.双层公路特大桥的模态参数识别及成桥模型分析[J].华南理工大学学报.2011,39(6):113-118.
    [47]蔡禄荣.大跨度钢桁架拱桥预拱度设置与拼装误差理论研究[D].广州:华南理工大学土木与交通学院,2012.
    [48]陈玉骥,叶梅新.高速铁路下承式板桁结合梁的受力分析.中南大学学报,2004,35(5):849-855.
    [49]张慎伟;大型钢结构施工过程计算理论与监测技术[D].上海:同济大学土木与工程学院,2007年.
    [50]杜国华,姜林.斜拉桥的合理索力及施工张拉力[J].桥梁建设,1989(3)
    [51]徐君兰.大跨度桥梁施工控制[M].人民交通出版社,2002
    [52] Torilk, Ikeda k. Study of the optimum design Methold for Cable-stayed Bridge.International conference on Cable-stayed Bridge. Bangkok Nov1987.
    [53]范立础,杜国华,马健中等.斜拉桥索力优化及非线性理想倒退分析[J].重庆交通学院学报,1992(1).
    [54]傅强,张泽鹏,严学寨等.斜拉桥结构优化设计初探[J].湖南大学学报,2001(3).
    [55]秦顺全.斜拉桥安装无应力状态控制法[J].桥梁建设,2003(2)
    [56]秦顺全.无应力状态控制法——斜拉桥安装计算的应用[J].桥梁建设,2008(2)
    [57]秦顺全.桥梁施工控制——无引力状态法理论与实践[M].北京:人民交通出版社,2007
    [58]余岭,王晶.用调质阻尼器抑制九江桥吊杆风致振动[J].长江科学院院报,1996,13(4):45-49.
    [59]陈政清,刘慕广,刘光栋,等. H型吊杆的大攻角风致振动和抗风设计[J].土木工程学报,2010,43(2):1-11.
    [60]陈政清.桥梁风工程[M].北京:人民交通出版社,2005.
    [61]姜天华.大跨度桥梁风致振动研究[D].武汉:武汉理工大学土木与建筑学院,2009.
    [62]葛楠,周锡元,侯爱波.利用人工模拟脉动风压计算高层建筑横风向风振动力反应时程[J].四川建筑科学研究.2006(04)
    [63]葛楠,周锡元,侯爱波.建筑结构横向脉动风压谱密度函数的分析计算[J].建筑科学.2006(01)
    [64]赵林,葛耀君,项海帆.基于台风数值模拟的极值风速预测研究[A].第十一届全国结构风工程学术会议论文集[C].2004
    [65]刘汉顺,文武松.芜湖长江大桥主跨斜拉桥施工监控[J].桥梁建设,2003,(3):19-21.
    [66]赵廷衡,林荫岳.京九线孙口黄河大桥整体节点钢桁梁[J].铁道工程学报,1996,(3):53-61.
    [67] WENG C.C., CHEN J.J.. Study on Residual Stress Re-lief of Welded Structural SteelJoints [J]. Journal of Materials in Civil Engineering,1993,5(2):265-279.
    [68]周志良,谢明,焦建强,等.芜湖长江大桥整体节点焊接残余应力的研究[J].大连铁道学院学报,1998,19(3):79-84.
    [69]黄永辉,王荣辉,甘泉.钢桁梁桥整体节点焊接残余应力试验[J].中国公路学报,2001,24(1):83-88.
    [70]月兰.焊管的残余应力测试与研究[J].实验力学,2001,16(3):305-312.
    [71]俞家欢,戴利,李洪双,刘琼阳.焊缝与螺栓混合连接梁柱钢节点的残余应力有限元分析[J]焊接学报,2010,31(10):22-27.
    [72] Jinxiang Zhang, Kaishin Liu, Kai Zhao, etal. A study on the relief of residual stresses inweldments with explosive treatment [J].International Journal of Solids and Structures,2005,(42):3794-3806.
    [73]王天亮.钢桁梁整体节点试验研究[J].桥梁建设,1999,29(4):32-40.
    [74]陈毅明,谭永高,吴游宇.四渡河大桥钢桁梁节点板局部应力分析[J].桥梁建设,2008,(1):58-61.
    [75] KISS K., DUNAI L.. Stress History Generation for Truss Bridges Using Multi-levelModels [J]. Computers&Structures,2000,78(1):329-339.
    [76]李厚民,熊健民,余天庆,褚利波.钢桁梁整体节点模型强度分析[J].湖北工学院学报,2002,17(1):37-41.
    [77]谭明鹤,王荣辉,黄永辉,谷利雄.刚性悬索加劲钢桁梁桥特殊节点模型试验[J].中国公路学报,2008,21(1):47-52.
    [78]方志.上海闵浦二桥钢桁梁节点的应力分析[J].交通科技,2009,(4):4-6.
    [79]崔鑫,潘际炎,张玉玲.武汉天兴洲公铁两用大桥疲劳四线系数的研究[J].中国铁道科学,2006,27(3):13-17.
    [80]王天亮,王邦相,潘东发.芜湖长江大桥钢梁整体节点疲劳试验研究[J].中国铁道科学.2001,22(5):93-97.
    [81]任伟平.钢桥整体节点疲劳性能试验与研究[D].成都:西南交通大学桥梁与隧道工程,2004.
    [82]荣振环,张玉玲,刘晓光.天兴州桥正交异性板焊接部位疲劳性能研究.中国铁道科学,2008,29(2):48-52.
    [83]荣振环.芜湖长江大桥主桥长期实时监控疲劳损伤[D].北京:铁道科学研究院,2005.
    [84] Dong P.. A structural stress definition and implementation for fatigue analysis of weldedjoints [J]. International Journal of Fatigue,2001,(23):856一876.
    [85] Shin S.B.. The use of hot spot stress for estimating the fatigue strength of weldedcomponents [J]. Steel Research,2000,71(11):466-473.
    [86]潘际炎.铁路钢桥疲劳可靠性设计及铁路桥梁荷载谱研究[J].铁道学报,1992,14(4):58-66.
    [87] Hahin C., South J.M., Mohanunadi J.. Accurate and rapid determination of fatiguedamage in steel bridges [J]. Journal of structural Engineering,1993,119(2):150-167.
    [88] Savaidis G., Vormwald M.. Hot spot stress evaluation of fatigue in welded structuralconnections supported by finite element analysis [J]. International Journal of Fatigue,2000,(22):85-91.
    [89]张敏.南京大胜关长江大桥受力特性、计算方法、桥面疲劳和防腐问题研究[D].长沙:中南大学土木建筑学院,2010.
    [90] Kiss K. Advaneed model for the stress analysis of steel struss bridges. Journal ofConstructional Steel Researeh,1998,46:76-7.
    [91]张建民,高锋.钢桁梁桥整体节点的优化分析.中国铁道科学,2001,22(5):89~92.
    [92]王芬.钢结构梁柱刚性连接节点优化研究[D].西安:西安理工大学结构工程,2007.
    [93] Dubina D., Zaharia R.. Cold-formed steel trusses with semi-rigid joints. Thin-WalledStruetures,2007,(29):273-287.
    [94] Kiss K., Dunai L.. Stress history generation for truss bridges using multi-level models [J].Computers&Struetures,2000,(78):329-339.
    [95]方京.九江长江大桥216m梁及三大拱的拼装与合拢设计[J].桥梁建设,1993,(1):12-18.
    [96]郑机.九江长江大桥第四联钢梁安装过程中的纵横移[J].桥梁建设,1993,(1):58-63.
    [97]胡汉舟,张驰,张关成,赵煜澄.九江长江大桥钢梁跨中合拢施工[J].桥梁建设,1993,(1):18-27.
    [98]张锋,王福敏,尚军年.刚度分配法在重庆朝天门长江大桥扣索力计算与研究中的应用[J].公路交通技术,2009,(2):75-79.
    [99]孙莉,刘祚波,姚莉.重庆朝天门长江大桥主桥边跨钢梁半伸臂安装技术[J].公路交通技术,2008,(5):57-60.
    [100]陈永涛,尹向红.菜园坝长江大桥上部结构施工监控[J].桥梁建设,2007,(S1):83-86.
    [101]李新永.重庆菜园坝长江大桥静力及稳定分析[D].重庆:重庆大学土木工程学院,2006.
    [102]张亮亮,曾永平,晏致涛,王睿.菜园坝长江大桥节段模型风洞试验[J].重庆大学学报(自然科学版),2006,29(3):134-137.
    [103]谢莉.新广州站东平水道桥受力特性及桥面系比较研究[D].长沙:中南大学结构工程,2009.
    [104]刘永健,刘剑,刘君平,等.刚性悬索加劲钢桁梁桥施工阶段全桥模型试验研究[J].土木工程学报,2010,43(2):72-78.
    [105]彭振华.三桁刚性悬索加劲钢桁梁关键技术研究[D].上海:同济大学建筑与土木工程,2007.
    [106]易伦雄.南京大胜关长江大桥大跨度钢桁拱桥设计研究[J].桥梁建设,2009,(5):1-9.
    [107]胡文军.目京沪高速铁路南京大胜关长大桥节段模型试验研究[D].长沙:中南大学结构工程,2008.
    [108]易伦雄.大胜关长江大桥工程特点与关键技术[J].钢结构,2007,22(5):77-79.
    [109]张德铭.天兴洲大桥钢桁梁桥整节段架设技术[J].桥梁建设,2006,(S1):52-56.
    [110]姜天华,朱红兵,刘唐.天兴洲大桥主桥钢桁梁节间长度研究[J].武汉科技大学学报(自然科学版),2006,29(4):412-414.
    [111]左宏献,张召.武汉天兴洲公铁两用长江大桥斜拉索安装技术[J].桥梁建设,2009,(4):5-8.
    [112]钱竹.三主桁连续钢桁拱桥整体节点应力颁布规律与构造研究[D].长沙:中南大学桥梁与隧道工程,2009.
    [113]刘亮.大跨度钢桁桥节点疲劳性能试验与研究[D].重庆:重庆交通大学结构工程,2008.
    [114]张晔芝,侯文崎,叶梅新.摩擦型高强度螺栓长接头螺栓传力比研究[J].长沙铁道学院学报,2000,18(4):6-10.
    [115]李启才,顾强,刘刚.拼接板厚度对框架中钢梁高强螺栓拼接性能的影响[J].兰州理工大学学报,2008,34(6):131-136.
    [116]郝建民,耿刚强,张智龙.电弧喷涂铝对高强度螺栓摩擦型连接面抗滑移系数的影响[J].长安大学学报(自然科学版),2003,23(4):85-87.
    [117]党志杰.高强度螺栓连接的应力集中系数与传力比[J].桥梁建设.1989(3).61-66
    [118]党志杰.摩擦型长列高强度螺栓接头研究[J].桥梁建设.1993(1).52-57
    [119]李绍麟.改善现行三角形铁路钢桁梁主桁起拱方法的建议[J].桥梁建设,1978(2).
    [120]万明坤.钢桁梁起拱方法探讨[J].长沙铁道学院学报,1981(1):43-58.
    [121]李堪以.合理设置铁路钢梁的上拱度[J].铁道建筑,1994(1):26-28.
    [122]曾永平,陈天地,袁明,等.大跨度铁路钢桁梁斜拉桥预拱度设置[J].铁道工程学报,2010(10):78-81.
    [123]胡步毛,艾宗良,袁明,戴胜勇.基于非线性规划实现钢桁连续梁预拱度[J].铁道工程学报,2010(4):49-52.
    [124]向中富.桥梁施工控制技术[M].北京:人民交通出版社,2001.
    [125]张治成.大跨度钢管混凝土拱桥施工控制研究[D].杭州:浙江大学,2004.
    [126]李竞.东江大桥钢桁梁合龙参数研究[D].西安:长安大学,2008.
    [127] TB10212-2009,铁路钢桥制造规范[S].北京:中国铁道出版社,2009.
    [128] JTJ041-2000,公路桥涵施工技术规范[S].北京:人民交通出版社,2000.
    [129] Irvine H.M.. Cable structure Massachusetts, The MIT Press Cambridge,1981.
    [130] Pandey P.C., Bakshi P.. Analytical Response Sensitivity Using Hybrid Finite Elements[J]. Comp and Struct,1999,56(3):525-534.
    [131] Aryana F., Bahai H.. Sensitivity Analysis and Modification of Structural DynamicCharacteristics Using Second Order Approximation [J].Engineering Structures,2003,(25):1279-1287.
    [132] Datong S., Suhuan C., ZhiPin Q.. Stochastic Sensitivity Analysis of Eigen Values andEigen Vectors [J]. Comp and Struct,1995,54(5):891-896.
    [133]章光,朱维申.参数敏感性分析与试验方案优化[J].岩土力学,1993,14(1):51-58.
    [134]魏春明,陈淮,王艳.矮塔斜拉桥参数敏感性分析[J].郑州大学学报(理学版),2007,39(3):179-182.
    [135]方华兵,田启贤.大跨度预应力混凝土连续刚构桥主梁线形控制参数敏感性分析[J].桥梁建设,2006,(2):81-83.
    [136]林驰,刘沐宇,王海亮.南太子湖拱形连续箱梁桥参数敏感性分析[J].武汉理工大学学报,2007,29(12):93-96.
    [137]张雷.三桁连续钢桁梁桥施工误差参数敏感性分析[J].西安:长安大学,2010.
    [138] Hohenbiehler M., Rackwitz R.. Sensitivities and importance measures in structuralreliability [J]. Civil Eng. System,1986,(3):203-209.
    [139] Karamehandani A., Comell C.A.. Sensitivity estimation within first and secondreliability methods [J]. Struct. Safety,1992,(11):97-105.
    [140]刘宁,吕泰仁.三维结构可靠度对随机变量的敏感性分析[J].工程力学,1995,12(2):119-128.
    [141]佟晓利.钢筋混凝土结构施工期可靠性研究[D].大连:大连理工大学,1997.
    [142]刘春华,秦权.架设阶段悬索桥静力问题的随机有限元分析[J].计算力学学报,1998,15(2):232-235.
    [143]陈铁冰.斜拉桥几何材料非线性静力分析及其可靠度评估[D].上海:同济大学,2000.
    [144]刘志文,陈艾荣,贺拴海.风荷载作用下斜拉桥概率有限元分析[J].长安大学学报(自然科学版),2004,24(2):53-57.
    [145]张永水.大跨度预应力砼连续刚构桥施工预应力调整的Kalman滤波法[J].重庆交通学院学报,2000,19(3):13-16.
    [146]林元培.卡尔曼滤波法在斜拉桥施工中的应用[J].土木工程学报,1983,16(3):7-14.
    [147]马增琦.卡尔曼滤波法在大跨度预应力混凝土连续刚构桥施工监控中的应用[D].成都:西南交通大学,2002.
    [148]陈雷,刘立农,陈东银.自适应卡尔曼滤波法用于变形监测数据处理[J].测绘工程,2008,17(1):49-52.
    [149]刘圣钦.最小二乘问题计算方法[M].北京:北京工业大学出版社,1989.
    [150]吴国胜,卜一之.基于最小二乘法的参数识别方法在斜拉桥施工控制中的应用[M].中外公路,2008,(12):108,110.
    [151]诸静.模糊控制理论与系统原理[M].北京:机械工业出版社,2006.
    [152]汪娟娟.灰色系统理论在大跨径桥梁施工控制中的应用[D].武汉:武汉理工大学,2006.
    [153]张荣瑞.尺寸链原理及其应用[M].北京:机械工业出版社,1986.
    [154]刘之生.尺寸链原理及应用[M].北京:兵器工业出版社,1990.
    [155]戴杰.运筹这理论在重大施工方案决策中的运用[J].石化技术,2002,9(1):4-7.
    [156]朱勇,田小勇,罗海东.基于层次分析法的山区高速公路路线方案比选研究[J].交通科技,2009,232(1):62-64.
    [157]胡运权.运筹学[M].北京:清华大学出版社,2003.
    [158]曹映汉,项海帆,周颖.大跨度桥梁随机风场模拟[J].土木工程学报,1998,31(3):72~79.
    [159]曹映泄.大跨度桥梁非线性颤振和抖振时程分析[D].上海:同济大学,1999.
    [160] A G Davenport. The application of statistical concepts to the wind loading of structures[J]. Proc Inst Civil Eng,1961,(19).
    [161]陈政清,刘慕广,刘光栋,等. H型吊杆的大攻角风致振动和抗风设计[J].土木工程学报,2010,43(2):1-11.
    [162]王玉银.榕江特大桥主桥施工全过程静动力性能研究研究报告[R].汕头:中铁十三局集团,2012.
    [163]陈政清.榕江特大桥吊杆风致振动风洞试验研究报告[R].汕头:中铁十三局集团有限公司,2010.
    [164]党志杰,文武松.大跨度钢桥理论和试验研究成果概要[J].桥梁建设,1999,(4).
    [165]刘承虞,赵廷衡.孙口黄河大桥整体节点钢桁梁的设计与制造[J],桥梁建设,1996,(3):44-48.
    [166]赵达斌,魏云祥,李庆瑞.芜湖长江大桥2×120m联钢桁梁主桁杆件制造与试装[J].钢结构,2001,16(5):1-3.
    [167]王天亮,王邦相,潘东发.芜湖长江大桥钢梁整体节点疲劳试验研究[J].中国铁道科学,2001,(5).
    [168]钱竹,戴公连.三主桁连续钢桁拱桥整体节点有限元分析[J].企业技术开发,2009,28(7):54-57.
    [169]榕江特大桥特殊节点试验研究[R].汕头:中铁十三局集团,2012.
    [170]张晔芝,侯文崎,叶梅新.摩擦型高强度螺栓长接头螺栓传力比研究[J].长沙铁道学院学报,2000,18(4):6-10.
    [171]李启才,顾强,刘刚.拼接板厚度对框架中钢梁高强螺栓拼接性能的影响[J].兰州理工大学学报,2008,34(6):131-136.
    [172]郝建民,耿刚强,张智龙.电弧喷涂铝对高强度螺栓摩擦型连接面抗滑移系数的影响[J].长安大学学报(自然科学版),2003,23(4):85-87.
    [173]田岛二郎著,铁道部基建局编译组.高强度螺栓摩擦连接概论[M].北京:人民铁道出版社,1978.
    [174]王伯琴,陈录如,陈先峰.高强度螺栓连接[M].北京:冶金工业出版社,1991.
    [175]陈绍蕃,顾强主编.钢结构上册[M].北京:中国建筑工业出版社,2007.
    [176]中华人民共和国建设部.钢结构高强度螺栓连接的设计、施工及验收规程[S].1992.
    [177]中华人民共和国铁道部.铁路桥梁钢结构设计规范[S].2005.
    [178]温洁明.钢结构用高强度螺栓抗滑移系数的测定方法[J].广西机械,2001,(4):9-11.
    [179]阮欣,汪军,石雪飞.大跨径外倾式拱桥钢箱拱肋拼装误差影响[J].结构工程师,2005,21(4):23-27.
    [180]张建平,贺淑龙,张念来,等.黄绍桥矮寨大桥钢桁加劲梁高强度螺栓施工质量控制[J].桥梁建设,2012,42(6):103-109.
    [181] Shivakumar R., Kaushal P.. Computer Aided Tolerance Assignment. Computers ind [J].Engng,1991,21(4):67-71.
    [182] KAUSHAL P., Shivakumar R., Simin P.. Computer-aided tolerance assignmentprocedure for design dimensioning [J]. INT. J. PROD. RES,1992,(3):599-610.
    [183] Desrochers A., Clement A.. A Dimensioning and tolerancing assistance model forCAD/CAM systems [J]. Int J Adv Manuf Technol.1994,(9):352-361.
    [184] JAMI J.S.. Dimension and tolerance modeling and transformations in feature baseddesign and manufacturing [J]. Journal of Intelligent Manufacturing,1998(9):475-488.
    [185] BS EN1993-1-8:2005. Eurocode3: Design of steel structures, Part1-8: Design ofjoints[s], May2005.
    [186]李国强,李明菲,殷颖智,等.高温下高强度螺栓20MnTIB钢的材料性能试验研究[J].土木工程学报,2001,(34(5):100-104.
    [187] Yamamoto A., Kasei S. A solution for self-loosening mechanism of threaded fastenersunder transverse vibration [J].Bull. Jpn. Soc. Precis. Eng.,1984,(18):261–266.
    [188] Sakai T. The friction coefficient of fasteners [J]. Bull. JSME,1978,(21):333–340.
    [189] Ming Zhang, Yanyao Jiang, Chu-Hwa Lee. Finite element modeling of self-loosening ofbolted joints [J]. ASME Journal of Mechanical Design.2007,129(2):218-226.
    [190] Yanyao Jiang, Ming Zhang, Tae-Won Park, etc. An experimental study of self-looseningof bolted joints [J]. ASME journal of mechanical design.2004,126(9):925-931.
    [191]武芳文,薛成凤,赵雷.连续刚构桥梁悬臂施工线形控制分析[J].铁道工程学报,2006(7):29-33.
    [192]王荣辉.杆板壳结构计算理论及应用.中国铁道出版社出版,1999.
    [193]郭福元.东江大桥钢桁梁架设线形控制[J].科技资讯,2009,(8):1-2.
    [194]梁鹏,肖汝诚,徐岳.超大跨度斜拉桥施工过程随机模拟分析[J].中国公路学报,2006,19(4):52-58.
    [195]黄鑫,罗章智,成宇海.重庆朝天门长江大桥主桁试拼装精度控制方法研究[J].世界桥梁,2009,(2):31-33.
    [196]马学武.定位误差的尺寸链解法[J].宁夏机械,2002,(2):46-47.
    [197]区展楷.大跨度钢桁梁桥精确合龙误差理论分析[D].广州:华南理工大学土木与交通学院,2010.
    [198]田仲初,陈得良,颜东煌.大跨度拱桥拱圈拼装过程中扣索索力和标高预抬量的确定[J].铁道学报.2004,26(3):81-87.
    [199]罗世东,严爱国,刘振标.大跨度连续刚构柔性拱组合桥式研究[J].铁道科学与工程学报,2004,1(2):57-62.
    [200] Aryana F., Bahai H.. Sensitivity Analysis and Approximation Modification of StructuralDynamic Characteristics Using Second Order [J]. Engineering Structures,2003,(25):1279-1287.
    [201]杨梦纯.郑州黄河公铁两用桥连续钢桁梁悬臂拼装关键技术[J].桥梁建设,2010,(3):1-4.
    [202]苏蕴.计算机辅助工艺尺寸链分析与解算[D].上海:上海师范大学计算机软件与理论,2007.
    [203]何景熙.复杂尺寸链分析计算理论与应用[D].重庆:重庆大学机械工程学院,2003.
    [204] GB50017-2003,钢结构设计规范[S].北京:中国建筑工业出版社,2003.
    [205]李月华.钢桁架结构次应力影响分析[D].郑州:郑州大学结构工程,2005.
    [206]严辉均.钢桁架节点刚性次应力及正交异性桥面板计算方法分析[D].合肥:合肥工业大学工程力学,2007.
    [207]李军平,姚小元,王岁利.芜湖长江大桥钢梁制造技术[J].桥梁建设,2001,(5):52-55.
    [208]贾志军,刘庆明.提高钢结构高强螺栓过孔率的有效途径[J].钢结构,2006,21(4):81-83.
    [209]范重,王喆,唐杰.国家体育场大跨度钢结构温度场分析与合拢温度研究材料力学[J].建筑结构学报,2007,28(2):32-40.
    [210]王政兵,李红旗.万州长江大桥钢梁架设方案及关键技术[J].桥梁建设,2003,(S1):1-4.
    [211]李芳军,赵志尚,朱鹏飞.万州长江大桥钢桁拱梁合龙技术[J].桥梁建设,2006,(1):56-59.
    [212]孙吉飚.朝天门长江大桥钢桁拱合龙技术[J].现代交通技术,2007,4(2):46-48.
    [213]戴福忠,刘学文,潘家英,胡所亭.南京大胜关长江大桥主跨钢梁合龙调整的过程控制[J].铁道建筑,2011,(5):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700