用户名: 密码: 验证码:
不锈钢三维整体外翅片管的滚压—犁切/挤压成形及强化传热性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源消耗的日益增加,世界能源日益紧张,节能减排在工业中应用越来越广泛。以第三代传热技术为基础的三维整体式外翅片管,具有较优的强化传热性能,受到越来越多的重视。对其强化传热性能和制造方法的研究,已变得越来越重要。研究表明,目前三维整体外翅片管的制造具有较大的难度,特别是以适应恶劣工况的不锈钢作为基管,其加工难度更大,基于此现状,开发了新型的犁切/挤压刀具,采用滚压-犁切/挤压复合成形方法,在不锈钢管上加工出较优的三维整体外翅片管结构。主要研究内容如下:
     (1)不锈钢二维螺旋状沟槽结构的滚压加工
     采用滚压成形方法在不锈钢光管上加工出不同结构的二维螺旋状沟槽,通过实验研究了滚压速度、进给量的合理选择范围,研究了不同的滚压深度条件下的二维螺旋状沟槽形貌,确定形成单一螺旋状沟槽结构的合理参数。
     (2)新型犁切/挤压刀具的开发
     在现有犁切/挤压刀具的基础上,根据犁切/挤压成形机理,开发出一种结构简单的新型犁切/挤压刀具,并建立了刀具的几何模型和数学模型,确定了刀具的各几何参数之间的相互关系;并针对犁切/挤压刀具的特点,采用微单元刀具法,确定了犁切/挤压临界进给量以及极限切削深度和刀具几何参数之间的关系,并通过以上关系来优化刀具结构。
     (3)不锈钢管犁切/挤压成形研究及参数优化
     通过犁切/挤压成形方法,在不锈钢二维螺旋状沟槽结构上制造出三维整体外翅结构。根据大量实验结果,分析了不同加工条件下的翅片形貌;并通过单因素实验,分析了不同刀具参数和加工参数对翅片高度、厚度以及间距的影响规律;通过多因素条件下的正交实验,研究了犁切/挤压深度、进给量、刀尖圆弧半径以及主偏角对翅片高度的影响规律,获得了不锈钢三维整体外翅片管犁切/挤压过程中翅片高度的经验公式;通过犁切/挤压过程切削力实验,得到了翅片加工过程中切削力的变化规律;切削力实验结果表明,犁切/挤压过程切削力的变化幅度远远大于传统切削力,并且进给方向切削力恒为负值,这将对刀具设计具有很好的指导意义。
     (4)不锈钢三维整体外翅片管的传热性能测试
     以R22为制冷工质,通过对不锈钢光管和三种不同加工参数下形成的三维整体外翅片管的冷凝强化传热性能测试,通过测试结果,对不锈钢光管和三种不同加工条件下形成的三维整体外翅片管的总传热系数和冷凝强化传热系数作对比,发现三种翅片管的传热性能是光管的两倍多,可以取代不锈钢光管作为冷凝管。
With the increasing of the energy resources consumption, the energy resources in theworld is used increasingly nervously, Energy saving ana emission reduction become moreand more important in the industrial applications.The outside three-dimension integral finswhich are as the third generation heat transfer enhancement technology have excellent heattransfer performance,so it can be widely used in industrial practice. The research aboutheat transfer enhancement performance and methods of fabrication manufacture ofthree-dimension integral fins become more and more important. While the manufacture ofthree-dimension integral fins have difficulty. Especially the stainless steel tube which workin worse condition is as the base tube, the manufacture is more difficult. In this condition,base on rolling-plowing/extrusion process methods, plowing/extrusion tool is developed,Three-dimension integral fins on the stainless steel tube is successfully manufactured. Themainly research works are summarized as follows:
     (1)Experiment study of rolling process on the stainless steel tube
     2D spiral grooves were gained on the stainless steel tube by rolling process. Thereasonable rolling speed and feed rate were choosed, and the effect of rolling depth to thespiral grooves are researched by rolling experiment. Reasonable rolling parameters wereobtained for fabricating singed V-shape spiral grooves.
     (2)Development of a new plowing/extrusion tool
     Based on the exiting plowing/extrusion tool and cutting theory, a newplowing/extrusion tool was developed. Geometric and mathematic model were establishedand the relationship among the geometric parameters of plowing/extrusion tool wereensured. Based on the new plowing/extrusion tool, plowing/extrusion critical feed rate andmaximum plowing/extrusion depth are ensured by micro-units tool.
     (3)Experiment study of plowing/extrusion process on the stainless steel tube andoptimization of the paremeters
     The Outside3D integral fins on the stainless steel tubes were manufactured by plowing/extrusion. Finned appearance by different manufactured technology paremeterswas analyzed which were based on the experimental results; the effect regularity ofplowing/extrusion tool parameters and process parameters to the finned height、thicknessand pitch were analyzed by single factor experiment; The effect regularity ofplowing/extrusion feed rate and depth and plowing/extrusion tool nose arc radius andcutting edge angle on finned height were analyzed by multi-factor experiment; the cuttingforce experiments on plowing/extrusion process were carried out, cutting force wasobtained, the experiment results of cutting force results showed that the cutting force onplowing/extrusion process changed in bigger range than common cutting, and feed force isnegative, those have better guide meaning to the tool design.
     (4)Condensation heat transfer of outside3D integral fins on the stainless steel tubes
     The smooth tube and three kinds of outside3D integral fins on the stainless steel tubeswere tested at the saturated vapor temperature of39℃for R22, the overall heat transfercoefficient and condensation heat transfer were compared. The experiment results wereshowed that heat transfer performance of three kinds of outside3D integral fins on thestainless steel tubes is over two times higher than the smooth tube, so the outside3Dintegral fins on the stainless steel tubes can replace the smooth tube as condensation heattransfer tube.
引文
[1]何志荣.节能是我国能源可持续发展的重要战略[J].中国能源,2002,(12):41-42
    [2]王彦彭.我国能源环境与经济可持续发展-理论模型与实证分析[D].北京:首都经济贸易大学,2010
    [3]崔海亭,彭培英.强化传热新技术及其应用[M],北京:化学工业出版社,2005
    [4]汤勇,潘敏强,汤兴贤.表面热功能结构制造领域的发展及关键技术[J].中国表面工程,2010,23(1):1-8
    [5]汤勇,周明,韩志武.表面功能结构制造研究进展[J].机械工程学报,2010,46(23):93-105
    [6]尹斌,欧阳惕,丁国良. R134a外螺纹管水冷冷凝器研究[J].液体机械,2006,34(7):65-68
    [7]Chamra L.M., Webb R.L.. Advanced micro-fin tubes for evaporation [J]. Heat MassTransfer,1996,39(9):1827-1838
    [8]Lee M., Kang T., Kim Y.. Air-side heat transfer characteristics of spiral-type circularfin-tube heat exchanger[J]. International Journal of Refrigeration,2010,33(2):313-320
    [9] Liaw S.P., Yeh R.H., Kim W.T.. A simple design of fin for boiling heat transfer [J].International Journal of Heat and Mass Transfer,2005,48(12):313-320
    [10] Naphon P.. Heat transfer and pressure drop in the horizontal double pipes with andwithout twisted tape insert [J]. International Communication in Heat and MassTransfer,2006,33(2):166-175
    [11] Zimparov V.. Enhancement of heat transfer by a combination of a single-start spirallycorrugated tubes with a twisted-tape [J]. Experimental Thermal and Fluid Science,2002,25(7):535-546.
    [12]谭羽非,陈家新.新型不锈钢波纹管性能及强化传热的实验研究[J].热能动力工程,2003,18(103):47-51
    [13] Sheik lsmail L.,Ranganayakulu C., Shah K.. Numerical study of flow patterns ofcompact plate-fin heat exchangers and generation of design data for offset and wavy fins[J].International Journal of Heat and Mass Transfer,2009,52(17-18):3972-3983
    [14] Hsieh C.T., Jang J.Y..3-D thermal-hydraulic analysis for louver fin heat exchangerswith variable louver angle[J]. Applied Thermal Engineering,2006,26(14-15):1629-1639
    [15] Wang C.C, Webb R.L., Chi K.Y.. Data reduction for air-side performance of fin-andtube heat exchangers[J]. Experimental thermal and fluid science,2000,21(4):218-226
    [16] Kundu B, Barman D. Analytical study on design analysis of annular fins underdehumidifying conditions with a polynomial relationship between humidity ratio andsaturation temperature [J]. International Journal of Heat and Fluid Flow,2010,31(4):722-733
    [17]王必武,杨子谦,施广森.高效节能翅片管的加工、应用及发展趋势[J].水利电力机械,2002,24(1):16-18.
    [18] Nuntaphan A., Kiatsiriroat T., Wang C.C.. Heat transfer and friction characteristics ofcrimped spiral finned heat exchangers with dehumidification [J]. Applied ThermalEngineering,2005,25(2-3):327-340
    [19]Yau K. K, Cooper J. R., Rose J.W.. Horizontal plain and low-finned condenser tubeseffect of fin spacing and drainage strips on heat transfer and condensate retention [J]. ASMEJ. of Heat Transfer,1986,108:946-950
    [20]Honda H., Nozu S.. A predication method for heat transfer during film condensation onhorizontal low integral-fin tubes a theoretical investigation [J]. ASME J. of Heat Transfer,1987,109:218-225
    [21]Zahid H. Ayub,Arthur E.bergles, Nucleate pool boiling curve hysteresis for GEWA-Tsurfaces in saturated R-113[J]. Experimental Thermal and Fluid Science,1990,3(2):249-255
    [22]Joshi H.M., Webb R.L.. Heat transfer and friction in the offset strip fin heat exchanger[J]. International Journal of heat and mass transfer,1987,30(1):69-84
    [23]Hector L.G., Schmid S.R.. Simulation of asperity plowing in an atomic forcemicroscope Part I:Experimental and theoretical [J]. Journal of Materials ProcessingTechnology,1998,215(1-2):247-256
    [24]Kim M., Lee J., Yook S.. Correlations and optimization of a heat exchanger withoffset-strip fins[J]. International Journal of Heat and Mass Transfer,2011,54(9-10):2073-2079
    [25]王世平,廖西江,邓颂九,等.锯齿形翅片管强化冷凝给热的实验研究及准则方程[J].工程热物理学报,1984,5(4):374-377
    [26]Babus B.F., Akintunde K., Probert S.D.. Thermal performance of a pin-fin assembly [J].Int.J. Heat and Fluid Flow,1995,16(1):50-55
    [27]You H.I., Chang C.H.. Numerical prediction of heat transfer coefficient for a pin-finchannel flow [J]. ASME J. of Heat Transfer,1999,121:639-645
    [28]丁铭,阎昌琪.整体针翅管强化传热试验研究[J].核动力工程,2005,26(5):452-470
    [29]张正国,王世平,林培森.花瓣形翅片管的强化传热研究概况[J].核动力工程,1997,26(4):11-14
    [31]Zhang Z.G., Tao X., Fang X.M.. Experimental study on heat transfer enhancement of ahelically baffled heat exchanger combined with three-dimensional finned tubes[J]. AppliedThermal Engineering,2004,24(14-15):2293-2300
    [31]Zhang Z.G., Yu Z.Z., Fang X.M.. An experimental heat transfer study for helicallyflowing outside petal-shaped finned tubes with different geometrical parameters [J]. AppliedThermal Engineering,2007,27(1):268-272
    [32]周德明,汤勇,张娟,等.一种A型三维外翅片管滚压-犁切加工[J].机械工程师,2002,2:41-44
    [33]Wan Z.P., Tang Y.. Production of integral serrated outside finned tube using acombined method of rolling and wedging/extruding [J]. International Journal of MachineTool&Manufacture,2010,50(5):487-490
    [34]刘崴,汤勇,刘亚俊,等.柱面三维翅结构加工方法及毛刺生成分析[J].华南理工大学学报(自然科学版),2004,32(5):9-13
    [35]Bergles A.E.. Enhanced heat transfer: Endless frontier, or mature and routine[J].Journal of Enhanced Heat Transfer,1999,6:2-4
    [36]Bergles A.E.. Advanced enhancement-third generation heat transfer technology or the“Final Fronier”[J]. Transaction of the Institute of Chemistry Engineering, Part A.2001,79:437-444
    [37]林宗虎,汪军,李瑞阳,等.强化传热技术[M],北京:化学工业出版社,2007
    [38]Cheng W.Y., Wang C.C., Hu R.. Film condensation of HCFC-22on horizontal enhancedtubes [J]. International Communications in Heat Transfer,1996,23(1):79-90
    [39]Honda H., Takata N., Takamatsu H., et al. Condensation of downward-flowingHFC134a in a staggered bundle of horizontal finned tubes: effect of fin geometry [J].International Journal of Refrigeration,2002,25(1):3-10
    [40]张正国,文磊,高学农,等. R407水冷冷凝器传热强化的实验研究[J].工程热物理学报,2002,23(4):482-484
    [41]张正国,方晓明.螺旋隔板花瓣管水冷冷凝器的传热强化研究[J].暖通空调,2003,33(6):57-58
    [42]Randall D.L., Eckels S.J.. Effect of inundation upon condensation heat transferperformance of R-134a[J]. International Journal of HVAC&R Research,2005,11(4):527-543
    [43]Jung D., Kim C.B., Hwang S.M., et al. Condensation heat transfer coefficients ofR22,R407C,and R410A on a horizontal plain, low fin, and turbo-C tubes[J]. InternationalJournal of Refrigeration,2003,26(4):485-491
    [44]Gstoehl D., Thome J.R.. Film Condensation of R-134a on Tube Array with Plain andEnhanced Surfaces: Part II-Empirical Prediction of Inundation Effects [J]. Journal of HeatTransfer,2006,128:33-43
    [45]Yang K.S., Chu W.H., Chen.I.Y, et al. A comparative study of the airside performanceof heat sinks having pin fin configurations[J]. International Journal of Heat and MassTransfer,2007,50(23-24):4661-4667
    [46]Zhang D.C., Ji W.T., Tao W.Q.. Condensation heat transfer of HFC134horizontal lowthermal conductivity tubes[J]. International Communications in Heat and Mass Transfer,2007,34(8):917-923
    [47]Kang Y.T., Hong H., Lee Y.S.. Experimental correlation of falling film Condensation onenhanced tubes with HFC134a;low-fin and turbo-C tubes[J]. International Journal ofRefrigeration,2007,30(5):805-811
    [48]Kundu B.. Approximate analytical method for prediction of performance and optimumdimensions of pin fins subject to condensation of quiescent vapor [J]. International Journalof Refrigeration,2009,32(7):1657-1671
    [49]Jung D., Cho Y., Park K.. Flow condensation heat transfer coefficient of R22, R134a,R407C and R410A inside plain and microfin tubes [J]. International Journal ofRefrigeration,2004,27(1):25-32
    [50]Yun R., Heo J., Kim Y.. Film condensation heat transfer characteristics of R134a onhorizontal stainless steel integral-fin tubes at low heat transfer rate[J]. International Journalof Refrigeration,2009,32(5):865-873
    [51]吴昌顺.不同制冷工质在水平不锈钢光管和强化管管外的冷凝传热强化研究[D].广州:华南理工大学,2010
    [52]Xu X.G., Xia L., Chan M.Y.,et al.A Modified McQuiston model for evaluatingefficiency of wet fin considering effect of condensate film moving on fin surface [J]. EnergyConversion and Management,2008,49(8):2403–2408
    [53]廖强,朱恂,辛道明.水平三维肋管管外凝结换热实验与分析[J].工程热物理学报,2004,25(1):103-105
    [54]朱恂,李刚,廖强,等.水平三维肋管管外含不凝性气体的水蒸汽凝结换热的实验研究[J].动力工程,2006,26(5):694-698
    [55]Nass E..Experimental investigation of heat transfer and pressure drop in serrated-fintube bundles with staggered tube layouts [J]. Applied Thermal Engineering,2010,30(13):1531-1537
    [56]夏伟,吴斌,汤勇,等.整体翅片管的劈切-挤压工艺[J].中国有色金属学报,2001,11(1):27-30
    [57]Xia W., Wu B., Tang Y., et al. On chop-extrusion of integral-fin copper tubes[J]. Journalof Materials Processing Technology,2003,2003,1(1-3)138:385-389
    [58]袁启龙,李言,郑建明,等.切削-挤压翅片管成形过程的研究[J].中国机械工程,2005,16(17):1550-1552
    [59]袁启龙,李言,肖继明,等.切削-挤压复合成形技术[J].中国有色金属学报,2005,15(6):860-864
    [60]袁启龙.切削-挤压复合成形技术及其实验研究[D].西安:西安理工大学,2008
    [61]刘占斌.翅片管换热过程的数值模拟及实验研究[D].西安:西安理工大学,2008
    [62]万珍平,徐燕小,汤勇,等.三维整体高翅片强化传热铝管刨削成形机理[J].有色金属学报[J].2011,21(3):554-559
    [63]Tang Y., Liu S.D., Xia W., et al. The establishment and analysis of fin formation modelduring ploughing process[J]. Journal of Materials Processing Technology,2003,138(1-3):390-393
    [64]Chen P., Tang Y., Liu X.K., et al. Formation of integral fins function-surface byextrusion-ploughing process[J]. Transaction of Nonferrous Metals Society of China,2006,16(10):1029-1034
    [65]陆龙生.管式均热板多孔壁面沟槽式复合毛吸液芯成形机理研究[D].广州:华南理工大学,2009
    [66] TangY., LU L.S., XIA W., et al. Manufacture and testing of micro-columns enhancedboiling structure and its ramification on copper material[J]. Journal of Central Universityof Technology,2008,138:222-227
    [67]WAN Z.P., YAN H., TANG Y.. Forming mechanism of integral serrated high fins byplowing-extruding based on variational feed [J]. Transactions of Nonferrous Metals Societyof China,2010,20(3):400-404
    [68]向建化.大功率LED微小型相变热沉制造及性能研究[D].广州:华南理工大学,2010
    [69]XIANG J.H., TANG Y., YE B.Y., et al. Compound forming technology of outside3Dintegral fin of copper tubes [J]. Trans Nonferrous Met Soc China,2009,19(2):335-340
    [70]崔长华.螺纹的滚压加工[M].北京:机械工业出版社,1978
    [71]齐会萍.螺纹冷滚压理论与工艺参数研究[D].太原:太原科技大学,2007
    [72]王君丽.花键管增量式两轮冷滚轧工艺及数值模拟[D].武汉:武汉理工大学,2009
    [73]郭建亮.细长轴类工件车削加工的研究[D].哈尔滨:哈尔宾工业大学,2006
    [74]周世杰,李瑞珍,李峰等,小直径超细长轴车削工艺方法解决[J],矿山机械.2010,18(3):554-559
    [75]周泽华.金属切削原理[M].上海:上海科学技术出版社,1991
    [76]闫洪,周天瑞.塑性成形原理[M].北京:清华大学出版社,2004
    [77]张幼桢.金属切削理论[M].北京:航空工业出版社,1988
    [78]吴永孝.微量车削与超精车削加工法[J].哈尔滨工业大学学报,1980,6
    [79]张文生,张飞虎,李立军.超精密切削时刀具切削刃的作用机理分析[J].中国机械工程,2004,15(15):1320-1322
    [80]杨军,吴能章.斜角切削刀具刃口曲率半径分析[J].西南科技大学学报,2006,21(4):80-84
    [81]Armarego E J A,Brown R H.On the size effect in metal cutting[J].International Journalof Production Research,1962,1(3):75-99.
    [82]Yuan Z.J.,Zhou M.,Dong S.. Effect of diamond tool sharpness on minimum cuttingthickness and cutting surface integrity in ultra-precision machining.Journal of MaterialsProcessing Technology,1996,62:327-330
    [83]K.Shintani,M.Ueki,Y.Fujimura. Optimum tool geometry of CBN tool for continuousturning of carburized steel[J].International Journal of Machine Tools and Manufacture,1989,29(3):403-13.
    [84]Jeffrey D,Thiele,Shreyes N..Effect of cutting edge geometry and workpiece hardnesson surface generation in the finish hard turning of AISI52100steel[J].Journal of Materialsprocess Technology,1999(94):216-226.
    [85]J.Rech,Y.C.Yen, M.J.Sehaff,et al. Influence of cutting edge radius on the wearresistance of PM-HSS milling inserts[J].Wear,2005(259):1168-1176.
    [86]方晓明.基于单切削刃-圆弧挤压刀具的整体外翅片铜管犁切/挤压成形机理研究
    [D].广州:华南理工大学,2011
    [87]李世杰,末思远,林兵等.剪切角新模型研究[J].天津大学学报,1999,20(19):2368-2371.
    [88]Stabler G V. The fundamental geometry of cutting tools[J].proc instMethEngrs,1951,165:14-21.
    [89]郑健燕,汤勇,曾志新等.外翅片管加工时飞边的形成机理[J].华南理工大学自然科学版,1999,27(6):128-131.
    [90]万珍平,燕辉,葛子平等.三维整体外翅片管滚压-犁切/挤压成形工艺[J].中国机械工程,2009,20(19):2368-2371.
    [91]孙泓.我国凝汽器换热管材料的发展趋势[J].电站辅机,2009,30(2):1-4.
    [92]王庭俊,周建华.1Cr18Ni9Ti不锈钢的切削加工[J].工具技术,2009,43(7):63-67.
    [93]周泽华.金属切削原理[M].上海:上海科学技术出版社,1991
    [94]Chang C.S., Tsai G.C.. A force model of turning stainless steel with worn tools havingnose radius[J]. Journal of Materials Processing Technology,2003,142(1):112-130
    [95]Herranz L.E., Munoz-Cobo J.L., Palomo M.J.. Modeling condensation heat transfer ona horizontal finned tube in the presence of noncondensable gases[J]. Nuclear Engineeringand Design,2000,201(2-3):273-288
    [96]Sabir H.M., Eames I.W., Suen K.O.. The effect of non-condensable gases on theperformance of film absorbers in vapour absorption systems[J]. Applied ThermalEngineering,1999,19(5):531-541
    [97]Chen C.K., Lin Y.T.. Turbulent film condensation in the presence of non-condensablegases over a horizontal tube[J]. International Journal of Thermal Sciences,2009,48(9):1777-1785
    [98]陈敏恒,从得滋,方图南,等.化工原理[M].北京:化工学院出版社,1998
    [99]Ganzevlse F.L.A. Temperatures and the condensate heat resistance in dropwisecondensation of multicomponent mixtures with inert gases[J]. International Journal of Heatand Mass Transfer,2002,45(15):3233-3243
    [100]朱冬生,孙荷静.蒸汽滴状冷凝传热机理和实现方法的研究进展[J].流体机械,2009,37(10):63-67
    [101]Ma X.H., Chen J.B., Xu D.Q., et al. Influence of processing conditions of polymerfilm on dropwise condensation heat transfer[J]. International Journal of Heat and MassTransfer,2002,45(16):3405-3411
    [102]Kananeh A.B., Rausch M.H., Froba A.P., et al. Experimental study of dropwisecondensation on plasma-ion implanted stainless steel tubes[J]. International Journal of Heatand Mass Transfer,2006,49(25-26):5018-5206
    [103]Rose J W. Fundamentals of condensation heat Transfer: Laminar condensation [J].International Journal of Heat and Mass Transfer,1988,49(31):5018-357-375
    [104]Marto.. Film condensation heat transfer measurements on horizontal tubes:Problemsand progress[J].1992,5(4):556-569
    [105]杨世铭,陶文铨.传热学[M].北京:化学工业出版社,1998
    [106]夏清,陈常贵.化工原理[M].天津:天津大学出版社,2005
    [107]梁晋文,陈林才,何贡.误差处理与实验数据[M].北京:中国计量出版社,1989
    [108]黄素逸,瘳四清.竖直通道中自然对流的流动阻塞和热阻塞[J].华中理工大学学报,1995,3(23):152-155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700