用户名: 密码: 验证码:
玉米光周期敏感相关性状的QTL定位与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光周期是影响植物生长发育的关键环境因素之一。玉米是短日照植物,光周期敏感性是不同纬度和不同海拔地区间玉米种质资源交流的主要限制因子。研究热带玉米的光周期反应的分子机理,弱化玉米的光周期敏感性,不但有利于玉米种质的扩增与创新、提高玉米品种对不同地理纬度和播种季节的适应性,而且还能在玉米开花时间的光周期调控方面进行有益的探索。
     本研究以对光周期钝感的温带自交系黄早4和对光周期敏感的热带自交系CML288为亲本配置了温热组合黄早4×CML288,通过单粒传法构建了一套重组自交系群体(RIL)。2006年在河南郑州长日照环境下对包含207个家系的F7代RIL的群体进行了田间鉴定,考察了光周期敏感相关性状株高和叶片数的动态发育状况,结合构建的遗传连锁图谱,对考察的性状进行了发育动态的QTL定位分析。2007年在河南郑州、河南洛阳和北京昌平3个地点2个不同的光周期环境下,对包含201个家系的F10代RIL群体及包含278个杂交组合的永久F2群体进行了田间鉴定,考察了总气生根层数和有效气生根层数等光周期敏感性相关的性状,结合构建的遗传连锁图谱进行了QTL定位、遗传效应以及与环境互作效应的分析,主要结果如下:
     1、选用玉米基因组的713对SSR引物对亲本进行多态性筛选,以F7代和F10代重组近交系为基础材料,构建了两个包含237个SSR标记的重组近交系遗传连锁图,总长度分别为1753.6与1974.7cM,平均间距分别为7.40与8.33cM。两张图谱有很好的一致性,与IBM群体连锁图谱相比在图谱总长度、分子标记总数和平均间距均仍有一定差距,但共同SSR标记在连锁图谱位置非常一致。
     2、利用F7代重组自交系群体,在郑州环境下共检测到20个不同的控制株高发育的QTL,分布在除第2染色体外的所有9条染色体上,其中非条件QTL 11个,条件QTL 16个。检测到11个不同的与叶片数有关的QTL,分别位于第1、2、4、7、8、9和第10染色体上,其中非条件QTL 8个,条件QTL 6。株高和叶片数的QTL在不同时期的表达是不一样的,有些QTL在连续的几个时期都被检测到,有些QTL只能在特定时期检测到。没有一个QTL能在测定的所有时期都有效应,说明可能没有一个基因能在玉米生长的所有阶段都表达。
     3、F10代RIL群体和永久F2群体田间试验结果表明,总气生根层数和有效气生根层数方差分析的F值均达到极显著水平;群体性状分布的偏斜度、峰度绝对值均小于1,符合正态分布,且均有较大的变异幅度,呈现数量性状的遗传特点。结果还表明,总气生根层数和有效气生根层数两个性状均受加性和显性基因效应的共同作用,在总气生根层数上黄早4对CML288表现部分显性效应,而在有效气生根层数上CML288对黄早四表现部分显性效应。总气生根层数与有效气生根层数间均呈极显著的表型相关和遗传相关。总气生根层数的广义遗传力较高。4、利用RIL群体共检测到6个控制总气生根层数的QTL和4个控制有效气生根层数的QTL。控制总气生根层数的QTL分别位于玉米的第1,5,6,7,9,10条染色体上。控制有效气生根层数的QTL分别位于玉米的第3,5,9和第10条染色体上,加性效应绝对值和贡献率都不大。利用IF2群体共检测到8个控制总气生根层数的QTL和7个控制有效气生根层数的QTL。控制总气生根层数的QTL分别位于玉米的第1,2,5,7,8,10条染色体上,其中3个具有显著的显性效应。检测到7个控制有效气生根层数QTL,分别位于玉米的第5,6,8,9和第10条染色体上。
     5、两个群体在3个地点(两个不同的光周期环境)共检测到2个相同的总气生根层数QTL和1个相同的有效气生根层数QTL。控制总气生根层数的QTL分别为位于第7染色体umc1426-umc1159区间的的qTAR7-1和位于第10染色体umc1873-umc1077的qTAR10-1,其中qTAR10-1为主效QTL,可解释17.88 %的表型变量。控制有效跟层数的QTL为位于第10染色体umc1873-umc1077的qEAR10-1,也是主效QTL,可解释6.37%的表型变量。在两个群体中都检测到多对上位性互作QTL,且所解释的表型变异占一定比例,表明上位性效应在气生根的遗传中大量存在,尤以永久F2群体居多。绝大多数QTL及上位性与环境间均无显著的互作效应,仅在IF2群体中检测到作用效应极小的3个QTL与环境互作。
     6、综合上述试验结果表明,株高和叶片数的动态发育QTL定位以及总气生根层数和有效气生根层数均在第10染色体的umc1873附近检测到主效QTL,表现为一因多效或基因紧密连锁,说明该位点附近可能含有控制光周期敏感的主要基因,该实验也可为其进一步精细定位等研究奠定基础。
Photoperiod is a major environment factor affecting plant development. Maize is short day plant and flowering time is affected by photoperiod. Sensitivity to photoperiod limits the potential for successful exchange of germplasm across different latitudes. Therefore, it is vital for maize breeders to understand the genetic basis of photoperiod sensitivity in their efforts to integrate tropical germplasm into temperate zone maize breeding.
     For resolving the genetic basis of photoperiod sensitivity in maize, in this research , a population of 207 recombinant inbred lines (F7) derived from a temperate and tropical inbred line cross were developed . In zhengzhou location of 2006, we detected the plant height and leaf numbers the two photoperiod relevant senstivity traits in different development periods, combining with the genetic linkage map, we detected the conditional QTLs and unconditional QTLs. In the base of F7 recombinant inbred lines ,we constrcted a F10 recombinant inbred lines, and an immortalized F2 population of 278 F1 cross which was constrcted by intercrossing of RIL population. The immortalized F2 population and the RIL population were evaluated in three location of two different photoperiod environment in 2007. Total aerial root numbers and effective aerial root numbers, the performinance data of the two photoperiod sensitivity relevant traits in RIL population and immortalized F2 popultion were used for QTL mapping and digenic interaction analysis. The main results obtained in this study were concluded as follow:
     1. Two genetic linkage maps, both containing 237 SSR polymorphic markers was constructed using F7 and F10 RIL populations, spanned a total length of 1753.6 and 1974.3 cM with an average space between two makers of 7.40 and 8.33 cM, respectively.
     2、In zhengzhou location, using the F7 RIL popution, 20 plant heigth QTLs were detected, distributing in the 9 chromosomes except the No. 2 chromosome, including 11 unconditional QTLs and 16 conditional QTLs ;11 leaf number QTLs were detected, distributing in the 1、2、4、7、8、9 and the 10 chromosomes ,including 8 unconditional QTLs and 6 conditional QTLs. In different stages, the expression of the plant numbers and the leaf numbers were different, some of them can be detected in several continuous times, while some others could be detected only in specific stages. None QTL can be detected in all the stages, it showed that none QTL can express in all the stages.
     3、In the three locations of two different photoperiod , the Total aerial root numbers and Effective aerial root numbers in the RIL (F10) and IF2 poputions both have significant differences, the frequency of all traits show continuous changes and normally distribution,so the two population can be used in QTL mapping and analysis. The conclusion also showed that the total aerial root numbers and the effective aerial root numbers were synergy effected by the additive effect and the dominant effect. The Total aerial root numbers and effective aerial root numbers was registered as phenotypic correlation and genotype correlation, the broad-sense heritability of the total aerial root numbers was higher than the effective aerial root numbers.
     4、6 QTLs that controlling total aerial root and 4 QTLs that controlling effective aerial root were detected in the F10 RIL, they were located in the 1,5,6,7,9,10 chromosomes and 3,5,9,10 chromosomes, respectively. The additive effect absolute value and the contribute value of all the QTLs that contriolling the effective aerial roots were low. 8 QTL that controlling total aerial root and 7 QTL that controlling effective aerial root were detected in the IF2 popution, they were located in the 1,2,5,7,8,10 chromosomes with 3 dominant effect and 5,6,8,9,10 chromosomes, respectively.
     5、Two similar total aerial root numbers QTLs and one sililar effective aerial root numbers were detected in the RIL(F10) and IF2 poputions in three different locations. The QTLs that controlling the total aerial root numbers were qTAR7-1 and qTAR10-1, located in umc1426-umc1159 segment of chr.7 and umc1873-umc1077 of chr.10, respectively. qTAR10-1 was the main effect QTL, can explained phenotypic variation 17.88%. qEAR10-1, the main effect QTL that controlling the effective aerial root numbers, also located in umc1873-umc1077 of chr.10, can explained phenotypic variation 6.37%. Using QTLNetwork2.0 software, epistasis was detected in the F10 RIL and IF2 poputions, they can explain some of the phenotype variations. It shows that the epistasis was abound exist in the heredity of the aerial roots, much more in the IF2 poputions, especially. Most of the QTLs and epistasis, detected in the RIL(F10) and IF2 poputions, have no significient interactions with the environment. There are only 3 interactions between QTLs and environment in the IF2 popution, all of them have low effect.
     6、We conclude that a main effect photoperiod sensitive QTL that located in the umc1873 region of chromosome 10 were detected in all the triats in the 3 poputions,it shows pleiotropic or closely linked each other, it is the base for the fine mapping and breeding.
引文
1. Aastveit, AH. and Aastveit, K. 1993. Effects of genotype environment interactions on genetic correlations. Theor Appl Genet. 86: 1007-1013.
    2. ALLARD H A. Complete or partial inhabition of flowering in certain plants when days are too short or too long.J Agric Res,1938, 57(3):775-789.
    3. Allison, J.C.S. and Daynard TB. Effects of change in time of flowing, induced by altering photoperiod or temperature, on attributes related to yield in maize. Crop Sci ,1979,19, 1-4.
    4. Atehley W R , Zhu J.DeveloPmental quantitative genetics , conditional epigenetic variability and growth in mice.Genetics,1997.147(10):765一776
    5. Bonhomme R, Derieu M, Emeades GO . Flowering of dives maize cultivars in relation to temperature and period in mutilocation field trials. Crop Sci,1994, 34:156-164.
    6. Brigitte G, Claude W , et al. Analysis of photoperiod sensitivity within a collection of tropical maize populations. Genetic Resources and Crop Evolution, 2002, 49: 471-481.
    7. Cao G Q, Zhu J, He C X, et al1.QTL analysis for ep istatic effects and QTL environment interaction effects on final height of rice (Oryza sati2 va L1) Acta1Genetica1Sinica, 2001, 28 (2) : 135-143
    8. Cao G, Zhu J, He C, et al. Impact of epistasis and QTL×environment interaction on the developmental hehavior of plant height in rice (Oryza,satimf L). Theor Appl Genet, 2001, 107:153-160
    9. Chardon F, Hourcade D, Combes V, Charcosset A. Mapping of a spontaneous mutation for early flowering time in maize highlights contrasting allelic series at two-linked QTL on chromosome 8. Theor Appl Genet ,2005,112 (1), 1–11.
    10. Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A . Genetic architecture of flowering time in maize as inferred from QTL meta-analysis and synteny conservation with the rice genome. Genetics, 2004,162: 2169–2185.
    11. Chen Y H, Zhang X Q, Chang S H, Wu L C, Wu J Y, Xi Z Y . Studies on the Heredity of the Traits Related to the Photoperiod sensitive Phenomenon Among the Temperate×Tropical Crosses in Maize Scientia Agricultura Sinica ,2003, 36 (3):248-253
    12. Churchill G A,Doerge RW.Empirical threshold values for quantitative traitmapping. Genetics, 1994,138:963-971.
    13. Colasanti J, Yuan Z, Sundaresan V. The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize.Cell ,1998, 93, 593-603.
    14. Colasanti J, Tremblay R, Wong AY, Coneva V, Kozaki A, and Mable BK. The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants. BMC Genomics,2006, 7,158.
    15. Colasanti, J., Z. Yuan and V. Sundaresan, The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell,1998,93:593-603.
    16. Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theor Appl Genet ,2006,113: 1–10
    17. Ellis R.H., R.J.Sumerfield and G.O. Edmeades. Photoperiod, temperature, and the intervial from tassel inititation to emergence of maize. Crop Sci,1992,32: 398-403.
    18. Ellis RH, Sumerfield RJ , Edmeades GO . Photoperiod, temperature, and the intervial from sowing inititation to emergence of maize. Crop Sci,1992,32, 1225-1232.
    19. Fedorov AK. Physiological-genetic bases of growing-season length in cereal crops. Biol Bull Acad Sci USSR,1987,14(5), 409-415.
    20. Francis C A ,Grogan C O,Sperling D W. Identification of photoperiod in sensitive stains of maize.Crop Sci,1969, 9(5):675-677.
    21. Francis CA, Grogan CO And Sperling DW. Identification of photoperiod insensitive strains of maize(zea mays L.). Crop Sci ,1969,9, 675-677.
    22. Francs CA. Photoperiod sensitivity and adaption in maize. Proc Annu Corn Sorghum Res Conf ,1972,27, 119-131.
    23. Goodman M M. Choosing and using tropical corn germplasm. Proc Annu Corn Sorghum Res Conf ,1992, 47, 47-64.
    24. Goodman M M, 2004. Developing temperate inbreds using tropical germplasm: Rationale, results, conclusions. Maydica 49: 209-220.
    25. Goodman M M, Moreno J, Castillo F, Holley RN, Carson ML. Using tropical maize germplasm for temperate breeding. Maydica,2000, 45:221–234
    26. Goodman M M,2005. Broadening the U.S. maize germplasm base. Maydica 50:203-214.
    27. Goodman MM . Exotic maize germplasm: status, prospects, and remedies. Iowa State J Res,1985, 59:497–527
    28. Gouesnard B, Rebourg C, Welcker C and Charcosset A . Analysis of photoperiod sensitivity within a collection of tropical maize populations. Genetic Resources and Crop Evolution ,2002,49, 471-481.
    29. Guo H,Yang H, Mockder TC,Lin C.Regulation of flowering time by Arabidopsisphotoreceptors. Science ,1998,279, 1360-1363.
    30. H.Lu,J.Romero-Severson,R.Bernardo. Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet,2002, 105:622-628
    31. Hallauer A R, Mirarda J N. Quantitative genetics in maize breeding.Amen, Iowa: Iowa State Univ. Press, 1981. 375-402.
    32. Hua J P , Xing Y Z , Wu W R , Xu C G, Yu S B , Sun XL , Zhang Q F. Single2locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA , 2003 , 100 : 2574-2579
    33. Hua J P , Xing YZ , Xu C G, Sun XL , Yu S B , Zhang Q F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics , 2002 ,162 : 1885-1895
    34. Hua J P, Xing Y Z, Xu C G, Genetic Dissection of an Elite Rice Hybrid Revealed That Heterozygotes Are Not Always Advantageous for Performance. Genetics,2002,162: 1885–1895
    35. Hunter R B ,Hunt L A,Kannenberc L W.Photoperiod and temperature effects on corn.Can J Plant sci,1974, 54(1):71-78
    36. Jansen RC and Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics,1994,136:1447-1455.
    37. Jiang, C., Edmeades, G. O.,Armstead, I. et al. Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers. Theor. Appl. Genet, 1999 ,99: 1106–1119.
    38. Jines MP, Balint-Kurti P, Robertson-Hoyt LA, Molnar T,. Holland J B, Goodman MM . Mapping resistance to Southern rust in a tropical by temperate maize recombinant inbred topcross population.Theor. Appl. Genet. 2007 ,114:659–667
    39. Kao CH, Zeng ZB and Teasdale RD. Multiple interval mapping for quantitative trait loci. Generics,1999,152:1203-1216.
    40. Kearsey M J .The principles of QTL analysis (a minimal mathematics approach). J Exp Bot,1998,49:1619-1623.
    41. Kheiralla A I, Whittington W J. Genetic analysis of growth in tomato: the F1 generation. AnnBot,1962,26:489-504
    42. Kiniry JR, Ritchie JT, Musser RL. The photoperiod sensitive interval in maize. Agron J,1983, 75, 687-690.
    43. Knapp, S. J., W. W.Stroup and W.M.Ross, 1985: Exact confidence intervals for heritability on a progeny mean basis. Crop Sci. 25: 192-194.
    44. Koester RP, Sisco PH ,Stuber CW .Identification of quantitative trait loci controlling days to flowering and plant height in two near-isogenic lines of maize. Crop Sci. 1993, 33, 1209-1216.
    45. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T and Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol ,2002, 43, 1096-1105.
    46. Kozaki A, Hake S, Colasanti J. The maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties. Nucleic Acids Res 2004, 32, 1710-1720.
    47. LANDER E S, BOTSTE IN D. M app ing mendelian factors underlying quantitative traits using RFLP inkagemaps. Genetics, 1989, 12 (1) : 185 - 199.
    48. Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M.J. Daly, E.S. Lincoln, and L. Newburg. 1987. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181.
    49. Létizia CK, Veyrieras JB, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D and Charcosset A . Maize adaptation to temperate climate: relationship with population structure and polymorphism in the Dwarf8 gene. Genetics 2006,172, 2449-2463.
    50. LIN Y R ,SCHERTZ K F,PATERSON A H, et al.Comparative analysis of QTL s affecting p lant height and maturity across the Poaceae , in reference to an inter specific sorghum population. Genetics, 1995, 141:391 411
    51. Lin HX, Ashikari M, Yamanouchi U, Sasaki T, and Yano M. Mapping quantitative trait locus,Hd9 controlling heading date in rice. Breed Sci,2002, 52, 35-41.
    52. Lin HX, Liang ZW, Sasaki T and Yano M. Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling HD in rice. Breeding Sci , 2003, 53, 51-59.
    53. Lincoln S, Daly M, Lander E. Mapping genetic mapping with MAPMAKER/EXP3.0. Cambridge:MA:Whitehead institute Technical Report, 1992.
    54. Moreau L, Charcosset A , Gallais A. Experimental evaluation of several cycles of marker - assisted selection in maize1Euphytica, 2004, 137:111~118
    55. Moreau L, Charcosset A , Gallais A1. Experimental evaluation of several cycles of marker - assisted selection in maize1Euphytica, 2004, 137:111~118
    56. Moreau L, Charcosset A, Gallais A. Stability of QTL effects investigated in a large range of environmental conditions for grain yield and related traits in Maize. Theor Appl Genet 2004,110, 92–105
    57. Moutiq R, Ribaut J-M, Edmeades GO, Krakowsky MD, Lee M .Elements of genotype–environment interaction: genetic components of the photoperiod response in maize. In: Kang MS (ed) Quantitative genetics, genomics, and plant breeding. CABI, New York, 2002, pp 257–267
    58. Muchow RC and Carberry PS. Environmental control of phenology and leaf growth in a tropically adapted maize. Field Crop Research 1989,20, 221-236.
    59. Muszynski MG, Dam T, Li B, Shirbroun DM, Hou Zl, Bruggemann E, Archibald R, Ananiev EV, and Danilevskaya ON. delayed flowering1 Encodes a Basic Leucine Zipper Protein That Mediates Floral Inductive Signals at the Shoot Apex in Maize. Plant Physiology,2006, 142, 1523 - 1536.
    60. Riska B , Atchley W , Rutledge J. A genetic analysis of targeted growth in mice. Genetics ,1984, 107 :79-101
    61. Rood SB and Major DJ. Responses of early corn inbreds to photoperiod. Crop Sci. 1980 ,20, 679-682.
    62. Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L, Isaac P, Edwards K, Phillips RL. Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol. Biol. 2002, 48, 601–613.
    63. SAR I GM , KRAJEW SKI P, D I F N , et al. Genetic analysis of drought tolerance in maize by molecular markers.Ⅱ. Plant height and flowering. Theor App l Genet,1999, 99: 289 - 295.
    64. Sari Gorla M,Krajewski P, Di Fonzo N,Villa M, Frova C. Genetic analysis of drought tolerance in maize by molecular markers. Plant height and flowering. Theor Appl Genet,1999, 99:289-295.
    65. Sax K.The association of size diferences with seed-coat pattern and pigmentation in Phaseolus vulgaris.Genetics,1923,8:552-560.
    66. Sheehan MJ, Kennedy ML, Costich DE, Thomas P. Brutnell TP. Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. Plant J. 2007, 49: 338–353
    67. Struik PC, Doorgeest M and Boonman G. Environmental effects on flowering characteristics and kernel set of maize (Zea mays L.). Netherlands J of Agric Sci,1986,34, 469-484.
    68. Stuber CW, Moll RH, Goodman MM, Schafer HE and Weir BS. Alozyme frequency changes associated with selection for increased grain yield in maize (Zea mays L). Genetics,1980,95:225-236.
    69. Stuber, C W., Lincoln, S E., Wolff, D W. et al. Identification of genetic factorscontributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992,132: 823–839.
    70. Tanksley SD. Mapping polygenes. Annual Reviews of Genetics.1993, 27:205-233.
    71. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet,2001, 28, 286–289
    72. Vladutu C, Mclaughlin J and Phillips RL. Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics, 1999,153, 993–1007.
    73. Wang C L , Cheng F F, Sun Z H . Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theor Appl Genet ,2008), 117:1129–1139
    74. Wang S., C. J. Basten, and Z.-B. Zeng. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC.2007, ( http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)
    75. Worland AJ, B?rner A, Korzun V, Li WM, Petrovic S, Sayers EJ The influence of photoperiod genes to the adaptability of European winter wheat. Euphytica,1998, 100:385–394
    76. Xu Y B , Shen Z T. Diallel analysis of tiller number at different growth stages in rice ( Oryza sativa L. ). Theor Appl Genet,1991,83:243-249
    77. Yamamoto T, Kuboki Y, Lin SY, Sasaki T and Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet ,1998, 97, 37-44
    78. Yamamoto T, Lin HX, Sasaki T and Yano M.Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000,154, 885-891
    79. Yan J B , Tang H, Huang Y Q et al.Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid1Euphytica, 2006, 149: 121~131
    80. Yan J B , Tang H, Huang Y Q et al1Quantitative trait loci mapp ing and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid1Euphytica, 2006, 149: 121~131
    81. Yan J Q, Zhu J, He C X, et al. Quantitative trait loci analysis for development behavior of tiller number in rice (Oryza sarioa L)Theor Appl Genet, 1998,97: 267-274
    82. Yan J Q, Zhu J, He C, et al. Molecular dissection of developmental behavior of plant height in rice (Orvzn saliva L). Genetics,1998, 150(11): 1257-1265
    83. Yano M, Kojima S,Takahashi Y, Lin HX and Sasaki T. Genetic control of flowering time in rice, a short-day plant. Plant Physiology ,2001,127, 1425-1429
    84. Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y and Sasaki T. Identification of quantitative trait loci controlling HD in rice using a high-density linkage map. Theor Appl Genet ,1997,95, 1025-1032
    85. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L,Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y and Sasaki T. A major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopisis flowering time gene CONSTANS. Plant Cell,2000, 12, 2473-2483
    86. Yanovsky MJ and Kay SA. Molecular basis of seasonal time measurement in Arabidopsis. Nature ,2002,419, 308 - 312.
    87. ZENG Z B. Precision mapp ing of quantitative trait loci Genetics, 1994, 136: 1457 - 1468.
    88. Zeng ZB. Theoretical basis for separation of multiple linked gene efects in mapping quantitative trait loci.Proceedings of the National Academy of Sciences of USA,1993, 90: 10972-10976.
    89. Zeng ZB.Precision mapping of quantitative trait loci.Genetics,1994,136, 1457-1468.
    90. Zhu J, Weir B S.Mixed model approaches for genetic quantitative traits. In: Chen L S, Ruan S G, and zhu J (eds) Advanced Topics in Biomathematics: Proceedings of international Conference on mathematical Biology.Singapore:World Scientific publishing Co ,1998,321-330.
    91. Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics , 1995 , 141 :1633-1639
    92.陈彦惠,吴连成,吴建宇,等.两种纬度生态条件下热带,亚热带玉米群体的鉴定.中国农业科学,2000, 33 (增刊): 40 - 48.
    93.陈彦惠,张向前,常胜合,等.热带玉米光周期敏感相关性状的遗传分析.中国农业科学, 2003, 36 (3) :248 - 253.
    94.陈彦惠,王利明,戴景瑞.热带、亚热带自交系与中国温带玉米种质杂交种的研究.中国农业大学学报,2000,5(1),50-57.
    95.陈彦惠,吴连成,吴建宇.两种纬度生态条件下热带亚热带玉米种质群体的鉴定.中国农业科学,2000,33 (增刊), 40-48.
    96.陈彦惠,张向前.热带玉米光周期敏感相关性状的遗传分析.中国农业科学,2003,36(3), 248-253.
    97.陈彦惠,张向前,常胜合,等.热带玉米光周期敏感相关性状的遗传分析。中国农业科学,2003,36(3):248-253.
    98.陈彦惠,常胜合,吴连成.温热玉米杂交种基本营养生长期遗传的初步研究.华北农学报,2000,15(2), 15-20.
    99.程芳芳.玉米光周期敏感相关性状的QTL定位.郑州:河南农业大学硕士论文. 2007.
    100.戴俊英,鄂玉江,顾慰连.玉米根系的生长规律及其与产量关系的研究[J].作物学报,1988,14 (4):310- 324.
    101.董海合,李凤华,才卓,等.热带玉米与温带玉米种质杂交农艺性状的差异.华北农学报,2005,20(5):17-20.
    102.冯芬芬,董海合,周旭东. CIMMYT玉米自交系与群体鉴定初报.作物杂志,1998,(增):24-27.
    103.高伟,陈晓,库丽霞,任永哲,常胜合,王铁固,陈彦惠.玉米类LFY基因的克隆及其在不同光周期条件下的表达.作物学报,2006,32,1256-1260.
    104.高用明.复杂上位性及其与环境互作的QTL定位方法和杂种优势预测研究.杭州:浙江大学博士论文.2001
    105.高用明,朱军,宋佑胜,等.水稻永久F2群体抽穗期QTL的上位性及其与环境互作效应的分析.作物学报,2004,30(9):849-854.
    106.高用明,朱军,宋佑胜等.水稻永久F2群体抽穗期QTL的上位性及其与环境互作效应的分析.作物学报. 2004,vol 30,9,849-854
    107.郭国亮,李培良,张乃生,等.热带suwan玉米群体遗传变异的研究.玉米科学,2001,9(4):
    6-9.
    108.郭海鳌,王玉杰,刘家云.热带和亚热带高原种质的研究与利用.玉米科学.1995,3(2):1-3
    109.郭平仲,C.O. Gardner, M. Obaidi.玉米单株穗数及其他数量性状的基因效应与遗传变异分析.遗传学报,1986,13(1):35-42.
    110.郭瑞.玉米光周期敏感相关基因的QTLs定位及性状分析.郑州:河南农业大学硕士论文.2005
    111.郭瑞,王海斌,陈彦惠.温、热生态环境下玉米生育性状的遗传研究.2005,6:25-29.
    112.何慈信,朱军,严菊强等.水稻叶挺长发育动态的QTL分析.中国水稻科学,2000,14(4) :193 -198
    113.贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10.
    114.李得孝,员海燕,武玉华,周联东.玉米抗倒伏性状的遗传分析.西北农业学报,2004,13(2): 43~46
    115.李德芳,刘为杰等.红麻对短光钝感材料的发掘及其研究.作物学报,1996,22(1):50-54.
    116.李少昆等.不同密度对玉米根系在大田土壤中的分布、重量的调节及与地上部分的关系.玉米科学,1993,1(3):43–491
    117.李玉玲,董永彬,牛素贞.爆裂玉米3个膨爆特性的非条件和条件QTL分析.分子植物育种,2006, 4 (3),372-380
    118.刘纪麟,玉米育种学.北京:农业出版社. 1991
    119.刘培利,林琪,隋方功等.系高产特性的研究.玉米科学,1994,2(1):59 - 63.
    120.刘永建,张莉萍,潘光堂,等. C IMMYT玉米种质群体主要农艺性状的遗传变异和光周期敏感性.西南农业学报, 1999, 12(3),30 - 34.
    121.刘永建,张莉萍,潘光堂,等.CIMMYT玉米种质群体主要农艺性状的遗传变异和光周期敏感性.西南农业学报,1999,12(3):30-34.
    122.刘宗华,谢惠玲,王春丽等.氮胁迫和非胁迫条件下玉米不同时期叶绿素含量的QTL分析.植物营养与肥料学报,2008,14(5):845- 851
    123.陆卫平,张其龙,卢家栋等.玉米群体根系活力与物质积累及产量的关系.作物学报,1999,Vol.25, 6,718-722.
    124.路明,周芳,谢传晓等.玉米穗长上位效应和Q×E互作效应分析.作物杂志,2007,4,12-14
    125.苗果园,张云亭,候跃生,等.温光互作对不同生态型小麦品中发育效应的研究.作物学报,1993,19(6):489-495.
    126.莫惠栋.数量遗传学的新发展一数量性状基因图谱的构建和应用.中国农业科学,1996,29(2):8-16.
    127.任永哲,陈彦惠,库丽霞,常胜合,高伟,陈晓.玉米光周期反应及一个相关基因的克隆.中国农业科学,2006,39(7),1487-1494.
    128.任永哲,陈彦惠,库丽霞,等.玉米光周期反应研究简报.玉米科学,2005,13(4):86-88.
    129.沈利爽,何平,徐云碧,等.水稻DH群体的分子连锁图谱及基因组分析.植物学报,1998,40(12), 1115-1122.
    130.石春海,吴建国,樊龙江等.不同环境条件下稻米透明度的发育遗传分析.遗传学报,2002,29(1),59-61
    131.史桂荣,曹靖生,郭小明,等.黑龙江省常用玉米杂交种光周期特性的研究.玉米科学,2004,12(3):16-19.
    132.孙朝辉,王翠玲,吴连成等温带和热带玉米重组自交系群体的株高QTL分析.河南农业大学学报,2009,1,6-9
    133.汤华,严建兵,黄益勤,等.玉米5个农艺性状的QTL定位.遗传学报, 2005, 32 (2) : 203 - 209.
    134.汤华,严建兵,黄益勤,等.玉米5个农艺性状的QTL定位.遗传学报,2005,32(2),203-209.
    135.王翠玲.玉米光周期敏感性及相关性状的QTL定位及杂种优势机理研究.郑州:河南农业大学博士论文.2008.
    136.王立河,张翼,刘松涛.不同生长物质对玉米根系生长发育的影响.河南农业大学农业职业学院,河南农业科学, 2004 ,4,18-20
    137.王树安.作物栽培学各论(北方本),1995
    138.王忠孝.山东玉米,1998,72-78
    139.吴国海.玉米几个数量性状在不同发育阶段的基因效应分析.遗传学报,1987,14 (5) :363-369
    140.吴建伟,刘成,石云素,等.不同水分条件下玉米株高和穗位高的QTL分析.植物遗传资源学报,2005,6(3):266 - 271.
    141.吴景锋.我国玉米杂交种发展的主要历程、差距和对策.玉米科学,1995,3(1),1-5.
    142.吴连成.玉米在不同光周期下的开花转换机制.郑州:河南农业大学博士论文.2008.
    143.吴为人,李维明,卢浩然,基于最小二乘估计的数量性状基因座的复合区间定位法.福建农业大学学报,1996,25:394一399
    144.吴为人,李维明,卢浩然.建立一个重组自交系群体所需的自交代数(英文),福建农业大学学报,1997,26(2):129-132.
    145.邢永忠,徐才国.作物数量性状基因研究进展.遗传,2001,23(5):498-502.
    146.薛光行,申岳正.试议光敏不育水稻育性转换的光温作用模式.作物学报,1995,21(2):198-203.
    147.严建兵,汤华,黄益勤等.不同发育时期玉米株高QTL的动态分析.2003,48,18,1959-1964
    148.严建兵,汤华,黄益勤,等.玉米F2群体分子标记偏分离的遗传分析,遗传学报,2003,30(10):913-918.
    149.杨青华,高尔明,马新明.砂姜黑土玉米根系生长发育动态研究.作物学报Vel 26,5 587-593
    150.杨荣,潘光堂.热带玉米种质群体墨白962光周期驯化不同世代的遗传变异研究.中国农业科学,2000,33(增刊):93-98.
    151.于永涛,张吉民,石云素,等.利用不同群体对玉米株高和叶片夹角的QTL分析.玉米科学, 2006, 14(2): 88 - 92.
    152.余四斌,李建雄,徐才国等.上位性效应是水稻杂种优势的重要遗传基础.中国科学,(C辑), 28 (4),333-342
    153.余先驹,王秀全,何丹等.玉米自交系根系性状遗传初步分析2004,17,(4),426-429
    154.张凤路, Mugo S.不同玉米种质对长光周期反应的初步研究.玉米科学,2001, 9(4),54-56.
    155.张世煌,石德权等.系统引进和利用外来玉米种质.作物杂志,1995,1,7-9.
    156.张世煌,石德权,徐家舜,等.对两个亚热带优质蛋白玉米群体得适应性混合选择研究Ⅱ.作物学报,1995,21(5):513-519.
    157.张世煌,石德权,徐家舜,等.对两个亚热带优质蛋白玉米群体的适应性混合选择研究.作物学报,1995,21(3):271-280.
    158.张世煌,石德权,徐家舜等.对两个亚热带优质蛋白玉米群体得适应性混合选择研究Ⅰ.作物学报,1995,21(3):271-280.
    159.张世煌,赵琦.CIMMYT玉米项目的种质改良研究.世界农业,1996,(4):17-20.
    160.张世煌等.在玉米育种方案中利用外来种质的途径.作物杂志,1995,1:7-9.
    161.张文英,程君奇,朱军等.上位性及其在遗传育种研究中的应用.生物信息学,2004,2,39-41
    162.张志明,赵茂俊,潘光堂,等.玉米SSR连锁图谱构建与株高及穗位高QTL定位.作物学报, 2007, 33(2) : 341 - 344.
    163.张志明,赵茂俊,潘光堂等,玉米SSR连锁图谱构建与株高及穗位高QTL定位.作物学报,2007,33(2):341-344.
    164.赵文明(2008).玉米株型相关性状QTL定位与分析.郑州:河南农业大学硕士论文.
    165.朱军,季道藩,许馥华.陆地棉花铃动态的遗传分析.见:中国棉花学会等.国际棉花学术讨论会文集.北京:中国农业科技出版社,1993.294-302
    166.朱献玳,陈学留,刘益同.玉米根系的生长及其在土壤中的分布.莱阳农学院学报,1991,8 (1):15 - 19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700