用户名: 密码: 验证码:
固始鸡安卡鸡资源群体3号染色体重要经济性状的QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受人类基因组研究所取得的巨大进展的影响和启示,动物基因组学的研究已展现出光辉灿烂的前景。与人类基因组研究不同,动物基因组的研究与经济性状有关的染色体区域、目标是要精细定位畜禽中控制重要经济性状位点在遗传图谱中的位置,并利用这些信息来改良畜禽品种。本文正是基于这样的背景,采用微卫星标记,对鸡进行基因组扫描,寻找影响鸡重要经济性状的染色体区域,探索一条DNA分子标记辅助选择进行动物分子育种的途径,并为构建高密度的遗传图谱以及将来能够进行以图谱为基础的基因型选择奠定基础。
     本研究利用固始鸡和安卡鸡为试验素材建立参考家系,采用F2代设计方法,建立了正反交7个家系,849只性状分离个体。在第三条染色体上选取了10对微卫星标记对这些个体进行扫描。用Cervus2.0软件分析结果显示10个多态标记的等位基因数为2-5个,杂合度为0.483-0.706,多态信息含量为0.367-0.653。10个微卫星标记均有较高的多态信息含量,为该资源群体从分子水平上的研究提供了可靠的依据。
     对实验群体的的肉质性状表型数据、屠体性状表型数据、生长性状表型数据以及血液生化指标进行了描述统计分析。相关分析的结果表明各表型值存在一定程度的变异,为数量性状QTL的定位提供了保障。
     采用SAS统计软件中的非均衡数据的方差分析对标记座位与各性状指标间是否存在显著性差异进行了分析,检测到的10个标记中有7个标记与肉质性状指标间差异显著;10个标记与屠体性状、生长性状以及血液生化指标间存在不同程度的相关。
     用QTL Express在线分析软件对各性状间进行QTL定位分析, QTL定位结果显示:
     肉质性状检测到了1个QTL,103cM处检测到了影响脂肪含量的QTL。
     生长性状检测到了20个QTL,分别为:143cM处检测到了影响12周胫长的QTL;274cM处检测到了影响8周胸深的QTL;104cM处检测到了影响4周胸角和8周体斜长的QTL;253cM处检测到了影响4周体斜长的QTL;103cM处检测到了影响12周胸角的QTL;146cM处检测到了影响12周胸骨长和12周体斜长的QTL;243cM处检测到了影响4周骨盆宽的QTL;255cM处检测到了影响4周胫围、8周胫围、4周胸骨长、8周胸骨长以及0-12周体重的QTL;
     屠体性状检测到了8个QTL,分别为:255cM处检测到了影响全净膛重、半净膛重、胰腺重、胸肌重、腿肌重、屠体重的QTL;59cM处检测到了影响翅重的QTL;111cM处检测到了影响肌胃重的QTL;
     血液生化指标中检测到了5个QTL,分别为:162cM处检测到了影响γ-谷氨酰转肽酶的QTL;67cM处检测到了影响碱性磷酸酶的QTL;59cM处检测到了影响胆碱脂酶的QTL;216cM处检测到了影响高密度脂蛋白的QTL;142cM处检测到了影响肌酸磷酸激酶的QTL。
With the development of human genome research, the research of animal genomics has made huge progress. Different from human genome study, the aim of animal genomics is to look for the location chromosome, where there are quatitation trait locus(QTL).Upon this background, this thesis managed to established a chicken resource family, perform the genome scanning vis the microsatellite markers, hunt the chromosome fragments that contain the loci affecting the economical traits, and explore a proper method in the animal breeding via DNA molecular marker assistant selection as well.
     Gushi-Anak Crossing Generation F2 Chicks were used in the paper. Form the resulting F2. This generation hybrid chickens included 849 segregation progenies deried from seven families.10 microsatellite DNA markers on chromosome 3 were genotyped. The statistic results by Cervus2.0 software demonstrated that the allele of the selected microsatellite markers was from 2 to 5,the heterozygosity of these markers was from 0.483 to 0.706 and the polymorphism information content was from 0.367 to 0.653. These markers were a high polymorphic,which could substantially guarantee the rehabihy of the result of the research on the molecule level.
     The phenotypes of Experimental groups on Meat Quality Traits growth Traits, Carcass Traits Blood Biochemical Index were analyzed, The statistical analysis demonstrated there was variation for every trait in certain extent,this ensured the location of QTL.
     SAS statistical software in the non-balanced data analysis of variance (GLM) tags on all seats and groups carcasses traits indicators. every traits of different tag-point genotypes phenotype mean the existence of significant differences. Between 7 markers in the 10 markers were significant with meat quality Traits, 10 markers are varying degrees of related with growth Traits, Carcass Traits and Blood Biochemical Index.
     QTL express on line analysis program was used, the QTL mapping analysis of the every trait were carried out by interval mapping. The result indicated.
     1 QTL were detected in the meat quality Traits, fat content at 103cM.
     20 QTL were detected in the growth Traits, 12-week-aged tibia length at 143cM; 8-week-aged chest depth at 274cM; 4-week-aged chest angle, 8-week-aged body length at 104cM; 4-week-aged body length at 253cM; 12-week-aged chest angle at 103cM; 12-week-aged body length and length of breastbo at 146cM; 4-week-aged coxa width at 243cM; we found 11 QTL infiuencing 4-week-aged shank girth ; 8-week-aged shank girth ; 4-week-aged length of breastbo; 8-week-aged length of breastbo ;0-12--week-aged weight at 255cM
     8 QTL were detected in the carcass Traits, wing weight at 59cM. gizzard weight at 111cM. we found 6 QTL infiuencing eviscerated yield, eviscerated yield with giblet, pancreas weight, leg muscle weight and breast muscle weight and carcass weight at 255cM
     5 QTL were detected in the blood biochemical index, GGT at 162cM. AKP at 67cM. CHE at 59cM. HDL at 216cM. CK at 142cM.
引文
[1] Groenen M A M, Cheng H H,,Bumstead N,et al. A consensus linkage map of the chicken genome[J].Genome Research,2000,10: 137?147.
    [2] Navarro P,Visscher P M,Knott S A,et al,Mapping of quantitative trait loci affecting organ weights and blood variables in a broiler layer cross[J].Poultry science,2005,46(4:)430-442.
    [3] De koning D J,Haley C S,Windsor D,et al. Segregation of QTL for production traits in commercial meat-type chickens[J].Genet Res,2004,83(3):211-220.
    [4] Carlborg O,Hocking P M, Burt D W,et al.Simultaneous mapping of epistatic QTL in chickens reveals clusters of QTL pairs with similar genetic effects on growth[J]. Genet Res,2004,83(3):197-209.
    [5] De koning D J , Windsor D , Hocking P M , et al.Quantitative trait locus detection in commeracial broiler lines using candidate regions[J].Anim Sci, 2003,81(5):1158-1165.
    [6] Sewalem A , Morrice D M, Law A ,et al.Mapping of quantitative trait loci for body weight at three,six,and nine weeks of age in a broiler layer cross[J].Poultry science,2002,81(12):1775-1881.
    [7] Ikeobi C O,Woolliams J A ,Morrice D R,et al.Quantitative trait locI affecting fatness in the chicken[J]. Anim Genet,2002,33(6): 428-435.
    [8] Carlborg O,Kerje S, Schutz K, et al.A global search reveals epistatic interaction between QTL for early growth in the chicken[J].Genome Res,2003,13(3): 413-421.
    [9] Jacobsson L, Park H B, Wahlberg P,et al.Many QTLs with minor additive effects are associated with a large difference in growth between two selection lines in chickens[J].Genet Res,2005,86(2): 115-125.
    [10] Jensen P,Keeling L,Schutz K,et al.Feather pecking in chickens is genetically related to behavioural and development taits[J].Phtsiol Behav,2005,86(12): 52-60.
    [11] Schreiweis M A,Hester P Y,Moody D E. Identification of quanatiative trait loci associated with bone traits and body weight in an F2 resource population of chickens[J].Genet Sel Evol, 2005, 37(6): 677-698.
    [12] Takahashi H,Tsudzuki M,Sasaki O,et al.A chicken linkage map based on microsatellite markers genotyped on a japanese large Game and White Leghorn cross[J].Anim Genet,2005,36(6): 463-467.
    [13] Abasht B,Pitel F, Lagarrigue S,et al.Fatness QTL on chicken chromosome 5 and interaction with sex[J].Genet Sel Evol,2006,38(3): 297-311.
    [14] Nones k,Ledur M C,Ruy D C, et al.Mapping QTLs on chicken chromosome 1 forperformance and carcass traits in a broiler×layer cross[J].Anim Genet,2006,37(2): 95-100.
    [15] Gao Y,Hu X X,Deng X M, et al.Linkage mapping of the SCN8Agene to chicken linkage group E22C19W28[J].Anim Genet,2005,36(3): 284.
    [16]胡晓湘.通过基因组扫描定位鸡重要经济性状基因的初步研究[D],2001,北京:中国农业大学.
    [17]黄银花.利用多重PCR进行鸡全基因组扫描[J].自然科学进展.2001,11(9):950-954.
    [18] McQueen H A,Fantes J,Cross S H,et al.CpG islands of chicken are concentrated on microchromosomes[J].Nat Genet,1996,12(3):321-324.
    [19] Smith J,Bruley C K,Paten I R,et al.Diferences in gene density on the chicken microchromosomes and microchromosomes a tool for gene discovery in vertebrate genomes[J].Anim Genet,2000,31(2):96-103.
    [20]廖林川,孟海英,侯一平等.用温度调控高效液相色谱探索基因组单核苷酸多态性的方法研究[J].中华医学遗传学杂志,2000,17(3):204-207.
    [21] Schmid M,Nanda I,Guttenbach M,et al.First report on chicken genes and chromosomes 2000[J]. Cytogenet Cell Genet,2000,90(3-4):169-218.
    [22] Smith J, Burt D W,Parameters of the chicken genome[J]. Anim Genet,1998,,29(4):290-294.
    [23] Wallis J W,Aerts J, Groenen M A,et al. A Physical map of the chicken genome[J]. Nature,2004,432(7018):761-764
    [24] Lander E S,Botstein D. Mapping mendelian factors underlying quanatitative traits using RFLP linkage maps[J].Genetics,1989,121(1):185-199.
    [25] Zeng Z B. Precision mapping of quanatitative trait loci[J]. Genetics,1994,136(4):1457-1468.
    [26] Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics[J].Genetics, 1995,141(4):1633-1639.
    [27]沈伟,李兰,潘志杰等.标记辅助选择(MAS)及其影响因素[J].黄牛杂志,2002,28(1): 35-38.
    [28]马玉萍,潘晓亮,赵宗胜等.畜禽QTL定位研究[J].畜牧兽医杂志,2003,22(6):17-19.
    [29]唐辉.从数量性状基因座作图到标记辅助选择[J].中国畜牧杂志,2003,39(2):44-45.
    [30]蒋隽,施启顺,吴小林等.家猪1号染色体微卫星标记与背膘厚的相关性[J].湖南农业大学报(自然科学版),2002,28(2):133-134.
    [31]侯建国,李加琪,陈瑶生等.微卫星DNA标记与猪肉质性状的相关分析[J].华南农业人学学报,2003,24(2):63-66.
    [32]姜运良,杜立新.奶牛重要经济性状的QTL作图[J].国外畜牧科技,1998,25(6):25-28.
    [33]苏玉虹,熊远著,张勤等.大白x梅山猪资源家系生长性状QTL的检测[J].遗传学报,2002, 29(7):565-570.
    [34]左波,熊远著,苏玉虹等.利用24个微卫星进行猪数量性状定位及其遗传效应分析[J].畜牧兽医学报.2003,34(21):39-146.
    [35]龚道清,张军,李辉等.尾分析法检测肉鸡肥度性状关联的RAPD标记[J].扬州大学学报(农业与生命科学版),2002,23(3):21-24.
    [36]AshellM S,RoxroadJ R C E,MillerR H,et al.Detection of loci affecting milk production and health traits in an elite US Holstein population using microsatellite markers[J].Anim Genet,1997,28:216-212.
    [37]Blattman A N, Kirkpatricck B W, et al. A search for quantitative trait loci for ovulation rate in cattle[J].AnimGenet, 1996,27:157-162.
    [38]Spelman R. J, Coppieters W, Karim L,et al. Quantitative trait loci analysis for five milk production traits on chromosome six in the Dutch Hosltein-Friesian population[J].Genetics, 1996,144:1799-1808.
    [39]Wu X L, Lee C. Combined interval mapping of quantitative trait loci using mixed models inreference families with complex pedigree and its application to chromosome 13 QTL of swine[J]. Anim Sci, 2001,79:340.
    [40]Wu X L,Lee C,Jiang J,et Al.Mapping aquantitative trait locus for growth and backfat on porcine chromosome 18[J] .Asian-Aust J Anim Sci,2001,14(12):1665-1669.
    [41]邓学梅,李俊英.李宁等基于F-2群体的鸡重要生长性状遗传分析[J].遗传学报,2001,28(9):801-807.
    [42]王颖,李辉等.鸡OBR基因内含子8单核普酸多态性与体脂性状的相关研究[J].遗传学报,2004,31(3):265-269.
    [43] Zeng Z B.Precision mapping of quantitative trait loci[J].Genetics,1994,136:1457-1468
    [44]Van kaam.wholegenome scan in chicken for QTL affecting growth and feed efficiency[J].PoulSci, 1999 ,78:15-23.
    [45]Knott S A ,andHaleyC S,Maximum likelihood mapping of quantitative trait loci using full-sib families[J]. Genetics,1992,132(4):1211-22.
    [46]Knott S A,Elsen J M,Haley C S.method for multiple-marker mapping of quantitativetrait loci in half-sib population[J].Theoretical and applied Genetics,1996, 93:71-80.
    [47]Knott S A,Neale D B,Sewell M M,et.al.multiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine[J]. Theoretical and applied Genetics,1997,94:810-820.
    [48] Romanov M N,Sazanov A A.,Smimov A F.First centry of chicken gene study and maping-a look back and forward Worlds[J] .Poultry science Journal,2004,60:19-41.
    [49]孙玉民,罗明主编.畜禽肉品学[M],山东科学技术出版社,1989,478.
    [50] Ikeobi C O N,Woolliams J A,Mortice D R,et a1.Quantitative trait loci affecting fatness in thechicken[J].Animal Genetics,2002,33:428—435.
    [51] Danyel G J.Jenne, Addie L J. Vereijken.Confirmation of quantitative trait loci affecting fatness in chickens[J].Genetics Selection Evolution,2005,37: 215-228.
    [52] K Nones, M C Ledur, D C Ruy, E E Baron,Mapping QTLs on chicken chromosome 1 for performance and carcass traits in a broiler x layer cross[J].Animal Genetics,2005,37: 95-100.
    [53] McElroy J P,Kim J J,Harry D E.Identification of trait loci affecting white meat percentage and other growthand carcass traits in commercial broiler chickens[J].Poult Sci,2006,85(4):593-605.
    [54] Zhou J,Deeb N,Ashwell C M.Genome-wide Linkage Analysis to Identify Chromosomal Regions Affecting Phenotypic Traits in the Chicken II Body Composition[J]. Poult Sci,2006,85(10):1712-21.
    [55] B Abasht, F Pitel, S Lagarrigue. Fatness QTL on chicken chromosome 5 and interaction with sex[J]. Genetics Selection Evolution,2006,38: 297-311.
    [56] Van Kaan,J bchm,et al.Whole genome scan in chicken for quantitative trait loci affecting carcass traits.Poultry Science,1999,78:1091-1099.
    [57]杜志强.通过基因组扫描定位鸡的重要性状基因座[D].中国农业大学博士学位论文,2003.
    [58] Rabie T S,Crooijmans R P, Bovenhuis H.Genetic mapping of quantitative trait loci affecting susceptibility in chicken to develop pulmonary hypertension syndrome[J].Animal Genetics ,2005,36(6):468-76.
    [59] Van Kaam J B,Groenen M A,Bovenhuis H.Whole genome scan in chickens for quantitative trait loci affecting carcasstraits[J].Poult Sci,1999,78(8):1091-9.
    [60] Deeb N, Lamont SJ. Use of a novel outbred by inbred F1 cross to detect genetic markers for growth[J]. Animal Genetics,2003 ,34(3):205-12.
    [61] Sewalem A,Morrice DM,Law A.Mapping of quantitative trait loci for body weight at three, six, and nine weeksof age in a broiler layer cross[J].Poult Sci,2002,81(12):1775-81.
    [62] Kerje S,Carlborg O,Jacobsson L.The twofold difference in adult size between the red junglefowl and WhiteLeghorn chickens is largely explained by a limited number of QTLs[J]. Animal Genetics,2003,34(4):264-74.
    [63] Siwek M,Cornelissen S J,Buitenhuis AJ.Quantitative trait loci for body weight in layers differ from quantitative traitloci specific for antibody responses to sheep red blood cells[J].Poult Sci,2004,3(6):853-9.
    [64]Tatsuda K, Fujinaka K. Genetic mapping of the QTL affecting body weight in chickens using a F2 family[J].Br Poult Sci,2001,42(3):333-7.
    [65]Jacobsson L,Park HB,Wahlberg P.Many QTLs with minor additive effects are associated with alarge difference ingrowth between two selection lines in chickens[J].Genet Res,2005,86(2):115-25.
    [66] Zhou J,Deeb N,Ashwell C M.Genome-wide Linkage Analysis to Identify Chromosomal Regions Affecting Phenotypic Traits in the Chicken I.Growth and Average Daily Gain[J].Poult Sci,2006,85(10):1700-11.
    [67] Jennen D G,Vereijken A L,Bovenhuis H.Detection and localization of quantitative trait loci affecting fatness inbroilers[J].Poult Sci,2004,83(3):295-301.
    [68] Schreiweis M A,Hester P Y,Moody D E.Identification of quantitative trait loci associated with bone traits and bodyweight in an F2 resource population of chickens[J].Genet Sel Evol,2005,37(6):677-98.
    [69] Sasaki O,Odawara S,Takahashi H.Genetic mapping of quantitative trait loci affecting body weight, egg characterand egg production in F2 intercross chickens.Animal Genetics[J],2004, 35(3):188-94.
    [70]Navarro P,Visscher PM,Knott SA.Mapping of quantitative trait loci affecting organ weights and blood variablesin a broiler layer cross[J].Br Poult Sci,2005,46(4):430-42.
    [71]Park H B,Jacobsson L,Wahlberg P.QTL analysis of body composition and metabolic traits in an intercross betweenchicken lines divergently selected for growth[J]. Physiol Genomics.2006,25(2):216-23.
    [72] Lagarrigue S,Pitel F,Carre W,Abasht B.Mapping quantitative trait loci affecting fatness and breast muscle weight inmeat-type chicken lines divergently selected on abdominal fatness[J].Genet Sel Evol,2006,38(1):85-97.
    [73] Barbara Wardecka.Rafal Olszewski,Kazimierz Jaszczak.Relationship between microsatellite marker alleles on chromosome 1-5 originating from the Rhode Island REd and Geen-legged Partrigenous breeds and egg production and quality traits in F2 mapping population[J].Journal of Applied Genetics,2002,43(3): 319-329.
    [74] Tuiskula-Haavisto M,de Koning D J,Honkatukia M.Quantitative trait loci with parent-of-origin effects in chicken[J].Genet Res,2004, 84(1):57-66.
    [75]包文斌,束婧婷,张红霞.29个微卫星标记与淮南麻黄鸡体重的相关性分析[J].中国家禽,2006,28(5):17-19.
    [76]河南省地方优良畜禽品种志[M].郑州:河南科学技术出版社,1986.
    [77]Jaszczak Kardecka B,Olszewski R,et al.A new reference family(Green-legged Partrigenus×Rhode Island Red) for mapping QTLs in laying hens[J].Animal Scence Paters and Reports,2001,19(2):131-139.
    [78]Zhou H,Lamont S J.Association of transforming growth factor beta genes with quantitative trait loci foranti body response kinetics in hens[J].Animal Genetics,2003,34(4):275-278.
    [79]Siwek M,Corenlissen S J,Nieuwland M G,et al. Detection of QTL for immune response to sheep red blood cells in laying hens[J].Animal Genetics,2003, 34(6):422-428.
    [80]康相涛,李国喜,孙桂荣等.固始鸡与安卡鸡资源群的组建及F2代群体体重Compertz生长模型参数分析[C].中国动物遗传育种研究进展—第十三次全国动物遗传育种学术讨论会论文集,2005,8:57-62.
    [81]岳永生,刘源.微卫星DNA分子标记及其在动物遗传育种中的应用[J].畜牧兽医杂志,2007,23(5):16-19.
    [82]胡沈荣,王昕,陈宏.应用微卫星标记定位畜禽QTL的研究进展[J].家畜生态学报,2007,28(4):97-99.
    [83]叶朗惠.微卫星标记在畜禽遗传育种中的应用[J].畜牧与饲料科学,2005,1:41-42.
    [84]徐鹏,周令华,田丽萍,相建海.从中国对虾ESTs中筛选微卫星标记的研究[J].水产学报,2003,27(3):213-217.
    [85]杨宁.家禽生产学[M].北京:中国农业出版社,2002.
    [86]孙玉民.畜禽肉品学[M].济南:山东科学技术出版社:1993.
    [87]Chen H,Leibenguth F,Restriction endonuclease analysis of mitochondrial DNA of three farm animal species,cattie,sheep and goats [J].Comp Biochem Physiol,1995,3:643-649.
    [88]AM Soumillion..Gentlc variation in the porcine myogenin gene locus[J].Mammlian Genome,1997,(8):564-568.
    [89]萨姆布鲁克,弗里奇,曼尼阿蒂斯.分子克隆实验指南[M],第3版,北京:科学出版社,1998:465-469.
    [90] Tristan Marshall.cervus2.0[M].the university of Edinburgh,UK,2001.
    [91]高玉时,王克华,陈国宏.鸡微卫星DNA标记与肉品质性状关系研究[J].畜牧兽医学报,2006,37(7):650~655.
    [92]包文斌,陈国宏,王克华.微卫星DNA标记与肉鸡腹脂率的相关分析[J].遗传育种,2006,42(9):5-7.
    [93]高玉时,王克华,屠云洁.鸡F2群体的屠宰性状与微卫星DNA标记相关性研究[J].南京农业大学学报,2007,30(3):139~142.
    [94]陈运棣.家鸡肉用性状微卫星标记的连锁分析[J].武汉:华中农业大学,2002.
    [95]李红霞.黄羽肉鸡主要经济性状与微卫星标记的相关分析[J].遗传,2004,26 (6):854-858.
    [96]包文斌,周群兰,吴信生.微卫星标记与仙居鸡体重的相关性[J].安徽农业科学,2005,33(4):652-653.
    [97]白文林,罗光彬.尹荣焕微卫星DNA标记与边鸡生长性状关系的研究[J].安微农业科学,2005,33(3):453-454.
    [98]张福宜,高玉时,王克华.鸡微卫星指纹与屠宰性状关系的研究[J].中国家禽,2005,9(1):111-114.
    [99]陈晖,郑丽帧,陈岩锋.鸡的微卫星DNA标记与胴体性状的相关分析[J].中国家禽,2004,8(1):137-140.
    [100]梅承君,康相涛,孙桂荣.对固始鸡与安卡鸡F_2资源群体血液生化指标的研究[J].江西农业大学学报,2007,29(2):257-261.
    [101]M Tsudzuki,S Onitsuka,R Akiyama,et al.Identification of quantitative trait loci affecting shank length, body weight and carcass weight from the Japanese cockfighting chicken breed,Oh-Shamo (Japanese Large Game) [J]. Cytogenet Genome Res,2007,117:288–295.
    [102] Ott J. Analysis of Human Genetic Linkage (revised edi-tion) [J]. Baltimore: Johns Hopkins University Press, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700