用户名: 密码: 验证码:
水稻抗纹枯病QTL qSB-9~(Tq)的遗传分析和精细定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纹枯病是世界性的水稻3大病害之一。水稻对纹枯病的抗性属于典型的数量性状。迄今,在水稻的多个研究群体上一共检测到30个左右的抗纹枯病QTL,涉及全部的水稻12条染色体。水稻第9染色体是发现抗纹枯病QTL次数最多的染色体。其中来自相对抗病品种特青(Teqing)第9染色体的抗纹枯病QTL qSB-9~(Tq)被不同研究者多次定位到,具有较高的重演性,并受到较多的关注。因此,本研究围绕qSB-9~(Tq)开展了一系列的遗传研究,并对其进行了精细定位。主要研究结果如下。
     采用标记辅助选择结合性状鉴定的回交验证策略,构建了Teqing与相对感病亲本Lemont(轮回亲本)的回交群体,每个回交世代均以RM201和RM6971作为qSB-9~(Tq)的双侧标记对其进行选择。于回交BC_5F_1世代证实qSB-9~(Tq)是一个真实的抗性QTL(QRL,quantitative resistance locous),而且利用分子标记RM201和RM6971对其选择是有效的。在此基础上,为了更精确地评价qSB-9~(Tq)的抗病效应,我们适当扩大目标区间的选择范围,利用覆盖该QRL置信区间的7个多态性分子标记进行前景选择,于BC_6_1世代用114个均匀覆盖水稻12条染色体的分子标记对前景选择的中选单株进行背景选择,从中筛选出前景标记基因型均为杂合型,且在所有背景标记位点上均与轮回亲本Lemont完全一致的1个单株。连续两年对该单株的扩繁后代(BC_6F_2)及随后获得的近等基因系(BC_6F_3)采取完全随机试验和随机区组试验2种不同的试验设计,对qSB-9~(TqTq)纯合型、qSB-9~(LeLe)纯合型和qSB-9~(TqLe)杂合型等3种基因型个体(BC_6F_2)和近等基因系(BC_6F_3)间的病级差异分别进行统计分析。结果表明:两种实验设计结果表现出一致的趋势,即qSB-9~(Tq)存在于分子标记RM242-Y92.5之间,可减轻病级0.7-1级(0-9级病情分级系统)左右,且其抗性表现为几乎完全的显性特征。
     之前在水稻品种Jasmine85和明恢63(Minghui63)的第9染色体上也分别定位到抗纹枯病QTL,根据其有利等位基因的来源分别被命名为qSB-9~(J85)和qSB-9~(MH63)。通过分子标记与水稻物理图谱间的整合分析,发现qSB-9~(J85)、qSB-9~(MH63)和qSB-9~(Tq)等3个QTL的置信区间相近或局部重叠。采用标记辅助选择结合性状鉴定的回交验证策略,以感病亲本Lemont为轮回亲本构建Jasmine85/Lemont和Minghui63/Lemont两个回交组合的拟染色体片段代换系群体。在两个不同的回交世代对这2个QTL进行了验证,证实qSB-9~(J85)和qSB-9~(MH63)真实位于第9染色体上的分子标记RM6971-RM201区间内,而根据上述分析,qSB-9~(Tq)也很可能位于该区间内。这3个QRL在杂合状态下平均可减轻病级1.0级左右,初步推测它们可能是同一个QRL。
     本课题组之前已经利用Teqing/Lemont(轮回亲本)组合的回交群体证实了水稻品种Lemont第11染色体上的抗纹枯病QTL qSB-11~(Le)。本研究利用相同组合,也证实了来自Teqing第7染色体的抗水稻纹枯病QTLqSB-7~(Tq)。在此基础上,为了研究qSB-9~(Tq)与这两个QRL之间的聚合效应及相互之间的互作关系,我们利用3个QRL的双侧分子标记辅助连续回交结合性状鉴定,通过将Teqing与Lemont(轮回亲本)杂交并连续回交,构建了这3个QRL的一套近等基因系。在一致的遗传背景下,对各QRL的主效应、聚合效应及其互作关系进行了研究。结果显示,3个QRL单独存在或在聚合状态下均能显著提高水稻品种对纹枯病的抗性水平,而且,不同QRL之间普遍存在互作关系。
     为了更有效地开展qSB-9~(Tq)的标记辅助育种以及对其进行克隆和抗性机理的研究,我们采用构建目标区间染色体单片段叠代系的策略,对qSB-9~(Tq)进行了精细定位研究。首先在其选择区间RM242-Y92.5(第三章)以及外侧一定距离内,发展和筛选到在两个亲本间具有多态的PCR分子标记共22个,其平均物理间距为319.753kb,可较高密度地覆盖整个大区间。利用这些分子标记,对本论文第三章近等基因系构建过程中获得的1个BC_6F_1中选单株(背景为轮回亲本Lemont基因型,仅在目标大区间为杂合基因型)进行标记检测,结果显示该单株的22个标记位点均为杂合型。随后我们对其自交后代进行标记检测,并根据不同的标记基因型,构建了在不同标记间发生交换重组的44类共894个染色体单片段代换系(染色体单片段叠代系)。于2007年正季选择其中的240个叠代系,进行2个区组重复的田间接种试验,于抽穗期后30天调查各叠代系的病级和病指。随后对各叠代系的几个主要农艺性状进行调查,并发现在大区间内存在一个控制分蘖角的主效QTL(大分蘖角基因来自供体亲本Teqing)。为了排除该分蘖角QTL对病情的干扰,我们选择不携带该大分蘖角基因的叠代系对qSB-9~(Tq)进行精细定位。对叠代系两个重复的病级和病指进行联合聚类分析。采用的聚类方法分别为系统聚类的离差平方和法,以及动态聚类的最小组内平方和法。以动态聚类结果为基础,系统聚类方法结果为参考,对各叠代系进行抗感分型并确定目标QTL的左右边界,从而实现qSB-9~(Tq)的精细定位。结果表明,在整个目标大区间内存在2个抗纹枯病QTL,分别位于分蘖角QTL的左侧和右侧,分别命名这2个QTL为L-qSB-9~(Tq)和R-qSB-9~(Tq)。这两个QRL的物理区间分别为Z77.2-Y77.7和Y86-Y90.2,区间大小分别为180.875Kb和207.724 kb。
     综上所述,本研究首次在近等基因系的水平下,研究了一个水稻抗纹枯病QTL qSB-9~(Tq)的效应和作用方式。该QRL的抗性表现为几乎完全的显性,预示着其在水稻杂种优势利用方面具有较大的应用潜力。同时,该QRL与qSB-11~(Le)和qSB-7~(Tq)之间存在的互作关系,也暗示着其在分子标记辅助聚合育种中具有潜在的利用价值。进一步对其进行精细定位研究,不仅可以更高效地进行qSB-9~(Tq)的分子标记辅助育种,而且还将为该QRL的克隆和数量抗性机理研究打下坚实的基础。
Sheath blight(SB) disease is one of the three most serious diseases in rice worldwide.The resistance to rice sheath blight is a typical quantitative trait.Until now,approximately 30 QTLs contributing to rice SB resistance had been detected in different populations.Each of the 12 rice chromosomes had been shown to possess one or more of the 30 QTLs.Several SB resistance QTLs(qSB) had been detected on chromosome 9.However,separate research endeavors had generated rice QTL data using different parental individuals and populations.Several researchers had detected a resistance QTL qSB-9~(Tq) on Teqing chromosome 9.In this study,a set of genetic analyses and fine mapping for qSB-9~(Tq) were conducted.
     The strategy of marker-assisted selection(MAS) combined with backcross identification was adopted to construct a backcross combination of Teqing/Lemont(recurrent parent) and two molecular markers RM201 and RM6971 were used for selecting qSB-9~(Tq) in each generation.In BC_5F_1 generation,qSB-9~(Tq) was validated and proved that it could be selected by two molecular markers RM201 and RM6971 efficiently.In order to accurately evaluate the resistant effect of qSB-9~(Tq) in BC_6 generation,seven molecular markers flanking qSB-9~(Tq) were used for foreground selection and other 114 molecular markers evenly distributed on other regions of rice genome were adopted for background selection.One single BC_6F_1 plant with heterozygous genotype of qSB-9~(Tq) and the same background as Lemont were gained and harvested.Three genotypic individuals of qSB-9~(TqTq),qSB-9~(LeLe) and qSB-9~(TqLe), distinguished by detecting marker genotypes flanking the QTL,were gained in BC_6F_2 generation and then formed the NILs in BC_6F_3 generation in two consecutive years.Two different experiment designs were adopted and both the results suggested that qSB-9~(Tq) located between two molecular markers RM242 and Y92.5 on chromosome 9,and it was a dominant quantitative resistance QTL(QRL,quantitative resistance locous) which could reduce disease rating about 0.7-1.0 score under Rush's '0-9' disease rating system.
     Two rice sheath blight(SB) resistance QTLs had been previously detected on chromosome 9 of Jasmine85 and Minghui63,respectively.According to the origin of these resistance alleles,their corresponding QTLs were named qSB-9~(J85) and qSB-9~(MH63),respectively.An integrated analysis between molecular markers and a rice physical map revealed that the intervals of the two QTLs and qSB-9~(Tq) were adjacent or partially overlapping.Marker genotype detection combined with backcross identification was applied to construct two backcross populations of Jasmine85/Lemont(recurrent parent) and Minghui63/Lemont(recurrent parent) and then 10 HCSSLs(heterozygous chromosome substitution segment lines) of each backcross combination were gained.Sequentially the two QTL intervals were validated in two different generations.The results suggested that qSB-9~(J85) and qSB-9~(MH63) were truly located in the interval of RM201 and RM6971 on chromosome 9 and the qSB-9~(Tq) on chromosome 9 of Teqing might be also in this interval.These three QRLs could reduce a disease rating score by a value of 1.0 for heterozygous genotypes and were speculated to be identical.
     Moreover,The QTL of resistance to rice sheath blight,mapped on chromosome 11 of Lemont had been validated and named qSB-11~(Le).In this study,another QRL on chromosome 7 of Teqing was also confirmed using the same backcross combination of Teqing/Lemont(recurrent parent) and named qSB-7~(Tq).Together with qSB-9~(Tq),the effects and pyramiding effects of the three QRLs were studied by using a set of near-isogenic lines(NILs) under the background of Lemont.The results indicated that the three QRLs could improve the ability of resistance to rice sheath blight significantly in their single or pyramiding status.Furthermore,there were certain interactions existed among these three QRLs in this study.
     In order to clone and study the QRL furthermore,and conduct MAS for qSB-9~(Tq) more efficiently,the strategy of constructing chromosome single substitution segment lines(CSSSLs) was adopted to carried out fine mapping of the QRL.Twenty two polymorphic molecular markers were developed and screened,which could cover the interval with high density that the average physical distance was 319.753kb.These markers were used for detecting the single plant gained from the backcross combination of Teqing/Lemont in Chapter3,and the genotypes of the 22 markers were all heterozygous.Then 894 CSSSLs of 44 classes were gained according to different genotypes of the 22 markers.Two hundred and forty CSSSLs were selected for field experiment with two repeats in 2007.Disease rating and disease index were investigated 30 days after late tillering stage.Then 6 agronomic traits were also investigated and a major QTL conferring tiller angle from Teqing was discovered.In order to eliminate the disturbance of the existence of the QTL, CSSSLs without carrying the QTL were selected to conduct fine mapping for qSB-9~(Tq).Two clustering approaches were used for clustering the CSSSLs by analyzing disease rating and disease index in two field repeats together. according to the clustering results the borders of the target QTLs were analyzed.The results indicated that there existed two QRLs in the interval of RM242 and Y93.5,which were L-qSB-9~(Tq) in the interval Z77.2-Y77.7 and R-qSB-9~(Tq) in the interval Y86-Y90.2 with their interval distances were 180.875kb and 207.724kb respectively.
     To sum up,the paper first reported and studied the effect and functional mode of the QTL conferring resistance to rice sheath blight in a relatively resistant cultivar Teqing under the condition of NILs.The QRL exhibited almost complete dominance,which would accelerate the utilization of qSB-9~(Tq) into the practice of hybrid rice breeding.Furthermore,there existed certain interactions between qSB-7~(Tq),qSB-11~(Le) and qSB-9~(Tq) suggested the utilization of qSB-9~(Tq) in QRL pyramiding breeding.So,it is urgent to carry out fine mapping and cloning the QRL,which would benefit the efficiency of MAS breeding and lay a foundation for the theoretical study of the qSB-9~(Tq).
引文
[1]Song W Y,Wang G L,Chen L L,et al.A receptor kinase-like protein encoded by the rice disease resistance gene,Xa21.Sci,1995,270:1804-1806.
    [2]Wang G L,Ruan D L,Song W Y,et al.Xa21D encodes a receptor-like molecule with a leucine-rieh repeat domain that determines race-specific recognition and is subject to adaptive evolution.Plant Cell,1998,10:765-779.
    [3]Sun X L,Cao Y L,Yang Z F,et al.Xa26,a gene conferring resistance to Xanthomonas oryzae pv.oryzae in rice,encodes an LRR receptor kinase-like protein.Plant J,2004,37:517-527.
    [4]Jiang G H,Xia Z H,Zhou Y L,et al.Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5(Xa5) in comparison with its homolog TFIIAcl.Mol Gen Genomics,2006,275:354-366.
    [5]Gu K Y,Yang B,Tian D S,et al.R gene expression induced by a type-Ⅲeffector triggers disease resistance in rice.Nature,2005,435:1122-1125.
    [6]Chu Z H,Yuan M,Yao,J L,et.al.Promoter mutations of an essential gene for pollen development result in disease resistance in rice.Genes & Dev.2006,20:1250-1255.
    [7]Yoshimura S,Yamanouchi U,Katayose Y,et al.Expression of Xal,a bacterial blight-resistance gene in rice,is induced by bacterial inoculation.PNAS,1998,95:1663-1668.
    [8]Wang Z X,Yano M,Yamanouchi U,et al.The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes.Plant J,1999,19:55-64.
    [9]Bryan G T,Wu K S,Farrall L,et al.A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta.Plant Cell,2000,12:2033-2045.
    [10]Liu X Q,Lin F,Wang L,et al.The in silico map-based cloning of Pi36,a rice coiled-coil-nucleotide-binding site-leucine-rich repeat gene that confers race-specific resistance to the blast fungus.Genetics,2007,176:2541-2549.
    [11]Qu S H,Liu G F,Zhou B,et al.The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice.Genetics,2006,172:1901-1914.
    [12]Zhou B,Qu S H,Liu G F,et al.The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to magnaporthe grisea.MPMI,2006,19,2006: 1216-1228.
    
    [13] Chen X W, Shang J J, Chen D X, et al. A β -lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006, 46: 794-804.
    
    [14] Lin F, Chen S, Que Z Q, et al. The blast resistance gene Pi37 encodes a nucleotide binding site-leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome. Genetics, 2007, 177: 1871-1880.
    
    [15] Bent A F, Kunkel B N, Dahlbeck D, et al. RPS2 of Arabidopsis thaliana: a Ieucine-rich repeat class of plant disease resistance genes, Sci, 1994, 265: 1856-1860.
    
    [16] Warren R F, Henk A, Mowery P, et al. A mutation within the Ieucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell, 1998, 10: 1439-1452.
    
    [17] Gassmann W, Hinsch M E and Staskawicz B J. The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J, 1999, 20: 265-277.
    
    [18] Grant M R, Godiard L, Straube E, et al. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. 5c/, 1995, 269: 843-846.
    
    [19] Boyes D C, Nam J, and Dang J L. The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. PN AS, 1998, 95: 15849-15854.
    
    [20] Acharya B R, Raina S, Maqbool S B, et al. Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae. Plant J. 2007, 50: 488-499.
    
    [21] Shirano Y, Kachroo P, Shah J, et al. A gain-of-function mutation in an Arabidopsis toll interleukinl receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell, 2002, 14: 3149-3162.
    [22] McDowell J M, Dhandaydham M, Long T A, et al. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell, 1998, 10: 1861-1874.
    
    [23] D Peter, Eddy B,.Crute I R, et al. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J, 2002, 21: 177-188.
    
    [24] Botella M A, Parker J E, Frost L N, et al. Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell, 1998, 10: 1847-1860.
    
    [25] Biezen E A, Freddie C T, Kahn K, et al. Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. Plant J, 2002, 29: 439-451.
    
    [26] Parker J E, Coleman M J, Szab6 V, et al. The Arabidopsis Downy Mildew Resistance Gene RPPS shares similarity to the toll and interleukin-i receptors with N and L6. Plant Cell, 1997, 9: 879-894.
    
    [27] To M, Brown D, Cooper A, et al. Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9. Plant Physiology, 2004, 135: 1100-1112.
    
    [28] Takahashi H, Miller J, Nozaki Y, et al. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J, 2002, 32: 655-667.
    
    [29] Cooley M B, Pathirana S, Wu H J, et al. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell, 2000, 12: 663-676.
    
    [30] Deslandes L, Olivier J, Theulie F, et al. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. PNAS, 2002, 99: 2404-2409.
    [31] Diener A C and Ausubel F M. Resistance to Fusarium oxysporum, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics, 2005, 171: 305-321.
    [32] Xiao S Y, Ellwood S, Calis O, et al. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Sci, 2001, 291: 118-120.
    [33] Sweat T A, Lorang J M, Bakker E G, et al. Characterization of natural and induced variation in the LOV1 gene, a CC-NB-LRR gene conferring victorin sensitivity and disease susceptibility in Arabidopsis. MPMI. 2008, 21: 7-19.
    [34] Salmeron J M, Oldroyd G E D, Rommens C M T, et al. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell, 1996, 86: 123-133.
    [35] Ori N, Eshed Y, Paran L, et al. The I2C family from the wiit disease resistance locus 12 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell, 1997, 9: 521-532.
    [36] Milligan S B, Bodeau J, Yaghoobi J, et al. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell, 1998, 10: 1307-1319.
    [37] Jablonska B, Ammiraju J S S, Bhattarai K K, et al. The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1.Plant Physiology, 2007, 143: 1044-1054.
    [38] Brommonschenkel S H, Frary A, Frary A, et al. The broad-spectrum Tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. MPMI, 2000, 13: 1130-1138.
    [39] Schornack S, Ballvora A, Giirlebeck D, et al. The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NBS-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J, 2004, 37: 46-60.
    [40] Ernstl K, Kumar A, Kriseleit D, et al. The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J, 2002, 31: 127-136.
    
    [41] Martin G B, Brommonschenkel S H, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Sci, 1993,262: 1432-1436.
    
    [42] Jones D A, Thomas C M, Hammond-Kosack K E, et al. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Sci, 1994, 266: 789-793.
    
    [43] Dixon M S, Jones D A, Keddie J S, et al. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell, 1996, 84: 451-459.
    
    [44] Thomas C M, Jones D A, Parniske M, et al. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum ldentifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell, 1997, 9: 2209-2224.
    
    [45] Takken F L W, Thomas C M, Joosten M H A J, et al. A second gene at the tomato Cf-4 locus confers resistance to Cladosporium fulvum through recognition of a novel avirulence determinant. Plant J, 1999, 20: 279-288.
    
    [46] Dixon M S, Hatzixanthis K, Jones D A, et al. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell, 1998, 10: 1915-1925.
    
    [47] Kawchuk L M, Hachey J, Lynch D R, et al. Tomato Ve disease resistance genes encode cell surface-like receptors. PNAS, 2001, 98: 6511-6515.
    
    [48] Zhou F S, Kurth J, Wei F S, et al. Cell-autonomous expression of barley Mlal confers race-specific resistance to the powdery mildew fungus via a Rarl-Independent signaling pathway. Plant Cell, 2001, 13, 337-350.
    
    [49] Halterman D, Zhou F S, Wei F S, et al. The MLA6 coiled-coil, NBS-LRR protein confers Avr Mla6-dependent resistance specificity to Blumeria graminis f. sp.hordei in barley and wheat. Plant J, 2001, 25: 335-348.
    [50] Shen Q H, Zhou F S, Bieri S, et al. Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell, 2003, 15: 732-744.
    [51] Halterman D A and Wise R P. A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA 6 and MLA 13 alleviates dependence on RAR1 for disease signaling. Plant J, 2004, 38: 215-226.
    [52] Brueggeman R, Rostoks N, Kudrna D, et al. The barley stem rust-resistance gene Rpgl is a novel disease-resistance gene with homology to receptor kinases. PNAS, 2002, 99: 9328-9333.
    [53] Büschges R , Hollricher K, Panstruga R , et al. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 1997, 88: 695-705.
    [54] Yahiaoui N, Srichumpa P, Dudler R, et al. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J, 2004, 37: 528-538.
    [55] Huang L, Brooks S A, Li W L, et al. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics, 2003, 164: 655-664.
    [56] Feuillet C, Travella S, Stein N, et al. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat {Triticum aestivum L.) genome. PNAS, 2003, 100: 15253-15258.
    [57] Lagudah E S, Moullet O, and Appels R. Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome, 1997, 40: 659-665.
    [58] Majnik J D, Ogbonnaya F C, Moullet O, et al. The Crel and Cre3 nematode resistance genes are located at homeologous loci in the wheat genome. MPMI, 2003, 16: 1129-1134.
    [59] Lawrence G J, Finnegan E J, AyliffeIb M A, et al. The L6 gene for flax rust resistance 1s related to the Arabidopsis bacteria resistance gene RPSP and the tobacco Viral resistance gene N. Plant Cell, 1995, 7: 1195-1206.
    [60] Ellis J G, Lawrence G J, Luck J E, et al. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell, 1998, 11: 495-506.
    [61] Anderson P A, Lawrence G J, Morrish B C, et al. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell, 1997, 9: 641-651.
    [62] Dodds P N, Lawrence G J, and Ellis J G. Six amino acid changes confined to the leucine-rich repeat P-Strand/p-Turn motif determine the difference between the P and P2 rust resistance specificities in flax. Plant Cell, 2001, 13: 163-178.
    [63] Bendahmane A, Kanyuka K, and Baulcombe D C. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell, 1999, 11:781-791.
    [64] Vossen E A G, Voort J N A M R, Kanyuka K, et al. Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J, 2002, 23: 567-576.
    [65] Ballvora A, Ercolano M R, WeiB J, et al. The R1 gene for potato resistance to late blight {Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J, 2002, 30: 361-371.
    [66] Collins N, Drake J, Ayliffe M, et al. Molecular characterization of the maize Rp 1-D rust resistance haplotype and its mutants. Plant Cell, 1999, 11: 1365-1376.
    [67] Johal G S and Briggs S P. Reductase activity encoded by the HM1 disease resistance gene in maize. Sci, 1992, 258: 985-987.
    [68] Multani D S, Meeley R B, Paterson A H, et al. Plant-pathogen microevolution: Molecular basis for the origin of a fungal disease in maize. PNAS, 1998,95: 1686-1691.
    [69] Meyers B C, Chin D B, Shen K A, et al. The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell, 1998, 10: 1817-1832.
    [70]Tai T H,Dahlbeck D,Clark E T,et al.Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato.PNAS,1999,96:14153-14158.
    [71]Radwan O,Mouzeyar S,Nicolas P,et al.Induction of a sunflower CC-NBS-LRR resistance gene analogue during incompatible interaction with Plasmopara halstedii.Journal of Experimental Botany,2005,56:567-575.
    [72]Whitham S,Dinesh-Kumar S P,Choi D,et al.The product of the tobacco mosaic virus resistance gene N:Similarity to toll and the interleukin-1receptor.Cell,1994,78:1101-1115.
    [73]Cai D G,Kleine M,Kifle S,et al.Positional cloning of a gene for nematode resistance in sugar beet.Sci,1997,275:832-834.
    [74]Chisholm S T,Coaker G,Day B,et al.Host-microbe interactions:Shaping the evolution of the plant immune response.Cell,2006,124:803-814.
    [75]王关林,方宏筠.植物基因工程.第二版,2002,科学出版社.
    [76]Schreiber V,Hunting D,Trucco C,et al.A dominant-negative mutant of human poly(ADP-ribose) polymerase affects cell recovery,apoptosis,and sister chromatid exchange following DNA damage.PNAS.1995,92:4753-4757.
    [77]Parick J K,Jeffery C Y,and Michael R S.T-DNA as an insertional mutagen in Arabidopsis.Plant Cell,1999,11:2283-2290.
    [78]Ramachandran,S and Sundaresan,V.Transposons as tools for functional genomics.Plant physiol biochem,2001,39:243-252.
    [79]Ota K,Kameoka M,Tanaka Y,et al.Expression of histone acetyl-transferases was down-regulated in poly(ADP-ribose)polymerase-1-deficient murine cells.Biochem Biophys Res Commun.2003,310:312-317.
    [80]Maes T,Keukeleire PD,and Gerats T.Plant tagnology.Trends Plant Sci,1999,4:90-96.
    [81]Sundaresan V,Springer P,VolpeT,et al.Patterns of gene actions in plant development revealed by enhancer trap and gene trap transposable elements.Genes Dev, 1995,9: 1797-1810.
    [82] Wilson K, Long D, Swinburne J, et al. Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2.Plant Cell, 1996, 8: 659-671.
    [83] Jeon JH, Lee S, Jung KH, et al. T-DNA insertional mutagenesis for functional genomics in rice.Plant J, 2000, 22: 561-570.
    [84] Springer P S. Gene trap: Tools for plant development and genomics. Plant cell, 2000, 12: 1007-1020.
    [85] Smith D L, Fedoroff N V. LRP1, a gene expressed in lateral and adventitious root primordial of Arabidopsis. Plant Cell, 1995, 7: 735-745.
    [86] Gu Q, Ferrandiz C, Yanofsky M F, et al. The FRUIIFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development, 1998, 125: 1509-1517.
    [87] Tsugeki R, Fedoroft N V. Genetic ablation of root cap cells in Arabidopsis. PNAS, 1999, 96: 1294-1296.
    [88] Fobert P R, Labbé H, Compoulos J, et al. T-DNA tagging of a seed coat-specific cryptic promoter in tobacco. Plant J, 1994, 6: 567-577.
    [89] Fedoroff N, Furtek D, Nelson O. Cloning of the bronze locus in maize by a simple and gene ralizable procedure using the trans-ponsable controlling element activator (Ac). PNAS, 1984, 81: 3825-3829.
    [90] Jones J D G, Carland F C, Lim E, et al. Preferntial transposition of the maize element activator to linked chromosomal locations in tabacco.Plant Cell, 1990,2: 701-701.
    [91] Kumar A and Bennetzen JL. Plant retrotransposons. Annul Review of Genetics, 1999, 33: 479-532.
    [92] Hamer L, De Zwaan T M, Montenegro-Chamorro M V, et al. Recent advances in large-scale transposon mutagenesis (review).Current Opin. Chem. Biol., 2001, 5:67-73.
    [93] Judson N, Mekalanos J J. Transposon-based approaches to identify essential bacterial genes (review). Trends Microbiol, 2000, 8: 521-526.
    [94]Virginia W.Saturation mutagenesis using maize transposons.Current Opinion in Plant Biology,2000,2:103-107.
    [95]Glazier A M,Nadeau J H and Aitman T J.Finding genes that underly complex traits.Sic,2002,298:2345-2349.
    [96]Salvi S and Tuberose R.To clone or not to clone plant QTLs:Present and future challenges.Trends Plant Sci.,2005,10:297-304.
    [97]王春芳,严长杰,梁国华,等.水稻F2无性系群体的构建及其特征分析.扬州大学学报(农业与生命科学版),2002,23:41-45.
    [98]Wang D L,Zhu J,Li Z K,et al.Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches.Theor Appl Genet,1999,99:1255-1264.
    [99]Lin H X,Yamamoto T,Sasaki T,et al.Characterization and detection of epistatic interactions of 3 QTLs,Hd1,Hd2,and Hd3,controlling heading date in rice using near-isogenic lines.Theor Appl Genet,2000,101:1021-1028.
    [100]Yamamoto T,Lin H X,Sasaki T,et al.Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny.Genetics,2000,154:885-891.
    [101]Abiola O,Angel J M,Avner P,et al.The nature and identification of quantitative trait loci:a community's view.Nat.Rev.Genet.,2003,4:911-916.
    [102]Eshed Y and Zamir D.An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL.Genetics,1995,141:1147-1162.
    [103]Frary A,Nesbitt T C,Grandillo S,et al.fw2.2:a quantitative trait locus key to the evolution of tomato fruit size.Sci.2000,289:85-88.
    [104]Fridman E,Carrari F,Liu Y S,et al.Zooming in on a quantitative trait for tomato yield using interspecific introgressions.Sci.2004,305:1786-1789.
    [105]左示敏,殷跃军,张丽,等.水稻抗纹枯病QTL gSB-11的育种价值及其进一步定位.中国水稻科学,2007,21:136-142.
    [106]Stam L F and Laurie CC.Molecular dissection of a major gene effect on a quantitative trait:The level of alcohol dehydrogenase expression in drosophila melanogaster.Genetics,1996,144:1559-1564.
    [107]Mackay,T F.The genetic architecture of quantitative traits.Annu.Rev.Genet,2001,35:303-339.
    [108]Wayne M L and McIntyre L M.Combining mapping and arraying:An approach to candidate gene identification.PNAS,2002,99:14903-14906.
    [109]Doebley J,Stec A and Hubbard L.The evolution of apical dominance in maize.Nature,1997,386:485-488.
    [110]Werner J D,Borevitz J O,Warthmann N,et al.Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation.PNAS,2005,102:2460-2465.
    [111]Li C B,Zhou A L and Sang T.Rice domestication by reducing shattering.Sci,2006,113:1936-1939.
    [112]Konishi S,Izawa T,Lin S Y,et al.An SNP caused loss of seed shattering during rice domestication.Sci,2006,312:1392-1396.
    [113]Simons K J,Fellers J P,Trick H N,et al.Molecular characterization of the major wheat domestication gene Q.Genetics,2006,172:547-555.
    [114]Rensink W A and Buell C R.Microarray expression profiling resources for plant genomics.Trends in Plant Sci,2005,10:603-609.
    [115]Ren Z H,GaoJ P,Li L G,et al.A rice quantitative trait locus for salt tolerance encodes a sodium transporter.Nat Genet,2005,37:1141-1146.
    [116]Zhang Z Y,Ober J A and Kliebenstein D J.The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis.Plant Cell,2006,18:1524-1536.
    [117]Wisser R J,Sun Q,Hulbert S H,et al.Identification and characterization of regions of the rice genome associated with broad-spectrum,quantitative disease resistance.Genetics,2005,169:2277-2293.
    [118]Perchepied L,Kroj T,Tronchet M,et al.Natural variation in partial resistance to Pseudomonas syringae is controlled by two major QTLs in Arabidopsis thaliana.PLoS ONE,2006,1:1-10.
    [119]左示敏,等.植物数量抗病基因克隆及其抗性机理的研究进展.分子植物育种,2006,4:603-613.
    [120]Reuber T L,Plotnikova J M,Dewdney J,et al.Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants. Plant J, 1998, 16: 473-485.
    [121] Li ZK, Luo L J, Mei H W, et al. A "defeated" rice resistance gene acts as a QTL against a virulent strain of Xanthomonas pryzae pv.Oryzae. M.Gen.Genet, 1999, 261: 58-63.
    [122] Li Z K, Sanchez A, Angeles E, et al. Are the dominant and recessive plant disease resistance genes similar? A case study of rice R genes and Xanthomonas pryzae pv. oryzae races. Genetics, 2001, 159: 757-765.
    [123] Ellis C, Karafyllidis I, and Turner J G. Constitutive Activation of Jasmonate Signaling in an Arabidopsis Mutant Correlates with Enhanced Resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. MPMI, 2002, 15: 1025-1030.
    [124] Xing T, Rampitsch C,Miki B I, et al. MALDI-Qq-TOF-MS and transient gene expression analysis indicated co-enhancement of β-1,3-glucanase and endochitinase by tMEIC2 and the involvement of divergent pathways. Physiol Mol Plant Pathol, 2003, 62: 209-217.
    [125] Xiong L Z, and Yang Y N. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 2003, 15: 745-759.
    [126] Chenault K D, Melouk H A, and Payton M E. Field reaction to sclerotinia blight among transgenic peanut lines containing antifungal genes. Crop Sci, 2005, 45: 511-515.
    [127] Storey J D and Tibshirani R. Statistical significance for genome wide studies. PNAS, 2003, 100: 9440-9445.
    [128] Walia H, Wilson C, Zeng L H, et al. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol, 2007, 63: 609-623.
    [129] Zhou J, Wang X F, Jiao Y L, et al. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol, 2007, 63: 591-608.
    [130] Jorstad T S, Langaas M, and Bones A M. Understanding sample size: what determines the required number of microarrays for an experiment? Trends in Plant Sci, 2007, 12: 46-50.
    [131] Tao Y, Xie Z Y, Chen W Q, et al. Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell, 2003, 15: 317-330.
    [132] Lian X, Wang S P, Zhang J W, et al. Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Molecular Biology, 2006, 60: 617-631.
    [133] Brem R B, Yvert G, Clinton R, et al. Genetic dissection of transcriptional regulation in budding yeast. Sci, 2002, 296: 752-755.
    [134] Kliebenstein D J, West M A, Leeuwen H V, et al. Identification of QTLs controlling gene expression networks defined a priori. BMC Bioinformatics, 2006, 7: 308-325.
    [135] Marilyn W A L, Kim K, Kliebenstein D J, et al. Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics, 2007, 175: 1441-1450.
    [136] Sahi C, Singh A, Kumar K, et al. Salt stress response in rice: genetics, molecular biology, and comparative genomics. Functional & Integrative Genomics, 2006, 6: 263-284.
    [137] Price A H. Believe it or not, QTLs are accurate! Trends Plant Sci, 2006, 11:213-217.
    [138] Ishiimaru K, Ono K, and Kashiwagi T. Identification of a new gene controlling plant height in rice using the candidate-gene strategy. Planta, 2004, 218: 388-395.
    [139] Ulf L, Joanna P, George C, et al. Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J, 1996, 9: 13-20.
    [140] Nadeau J H, and Frankel W N. The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs. Nat Genet, 2000, 25: 381-384.
    [141] Korstange R, and Puigen B. From QTL to gene: the harvest begins. Nat Genet, 2002, 31:235-236.
    [1]Rush M C,and Lee F N.Sheath blight.In:Webster,R.K.,Gunnell,P.S.(Eds.),Compendium of Rice Diseases.APS Press,St.Paul,MN,1992,pp.22-23.
    [2]Lee F N,Rush M C.Rice sheath blight:a major rice disease.Plant Dis,1983,67:829-832.
    [3]Marchetti M A.Potential impact of sheath blight on yield and milling quality of short statured rice lines in the southern United States.Plant Dis,1983,67:162-165.
    [4]Marchetti M A,and Bollich C N.Quantification of the relationship between sheath blight severity and yield loss in rice.1991,Plant Dis,75:773-775.
    [5]Gangopadhyay S,and Chakrabarti N K.Sheath blight of rice.Rev Plant Pathol.1982,61:451-460.
    [6]Savary S,Willocquet L,and Teng P S.Modeling sheath blight epidemics on rice tillers.Agric Syst.1997,55:359-384.
    [7]Groth D E,and Bond J A.Initiation of rice sheath blight epidemics and effects of application timing of azoxystrobin on disease incidence,severity,yield and milling yields.Plant Dis.2006,90:1073-1078.
    [8]Groth D,and Lee F.Rice diseases.In:Smith,C.W.,Dilday,R.H.(Eds.),Rice Origin,History,Technology,and Production.Wiley,Hoboken,NJ,2003,pp.413-436.
    [9]廖皓年,肖陵生,王华生.水稻纹枯病发生历史及演变原因简析.广西植保,1997,3:35-38.
    [10]陈集双,葛超新,张炳欣.几种作物上及土壤中的丝核菌类群鉴定.浙江农业大学学报,1990,16(增刊2):219-224.
    [11]蒙姣荣,张超冲,韦刚.广西水稻、玉米上丝核菌菌丝融合群鉴定.《植物病害研究与防治》,刘仪主编,中国农业科技出版社,1998:3-5.
    [12]Groth D E,and Bond J A.Effects of cultivars and fungicides on rice sheath blight,yield,and quality.Plant Dis,2007,91:1647-1650.
    [13]桥冈良夫.稻品种的纹枯病及菌核病抵抗性.育种学杂志,1951,1(1):21-26.
    [14]Wu K S.Breeding for resistance against sheath blight.IRRI,1984.
    [15]彭绍裘,曾昭瑞,张志光.水稻纹枯病及其防治.上海,上海科学技术出版社,1986.
    [16]Mekenzie K S,Rush M C,and Groth D E.Registration of two disease-resistant germplasm lines of rice.Crop Sci,1986,26:839-840.
    [17]潘学彪,Rush M C.美国的水稻纹枯病抗病遗传育种研究.江苏农学 院学报,1997a,18(1):57-63.
    [18]Xie Q J,Linscombe S D,Rush M C,et al.Registration of LSBR-33 and LSBR-5 sheath blight-resistant germplasm lines of rice.Crop Sci,1992,32:507.
    [19]杨家珍.筛选水稻抗纹枯病抗源品种的研究.安徽农业科学,1982,(2):62-65.
    [20]王文相,杨家珍,顾江涛,等.水稻品种对纹枯病抗性鉴定研究.安徽农业科学,1992,(3):250-254.
    [21]朱立宏,沙学延,张红生,等.水稻抗纹枯病的遗传研究.《主要农作物抗病性遗传研究进展》,朱立宏主编.南京,江苏科学出版社,1990:139-152.
    [22]陈宗祥,邹军煌,徐敬友,等.对水稻纹枯病抗源的初步研究.中国水稻科学,2000,14(1):15-18.
    [23]潘学彪,陈宗祥,张亚芳,等.水稻抗纹枯病育种成效的初步评价.中国水稻科学,2001,15(3):218-220.
    [24]张丽.重要水稻育种亲本在两个抗纹枯病数量基因座位(QTL)的基因型鉴定.扬州大学硕士论文,2007.
    [25]Oard J H.Development of sheath blight resistant germplasm and male sterile lines for wide crosses.In:Louisiana Rice Research Board,published by Wayne Wild Midland.Louisiana Farm Bureau.1994.
    [26]向珣朝,王世全,何立斌,等.一个高抗水稻纹枯病突变体的发现及其遗传特性的初步分析.作物学报,2005,31(9):1236-1238.
    [27]Chen K P,Zhan Q C,Xing Q H,et al.Tagging and mapping of rice sheath blight resistance gene,Theor Appl Genet,2003,106(2):293-297.
    [28]Jentong F.Evaluation of a dwarf rice secession from Chinese as a source of sheath blight resistance.Thesis for M.S.,Louisiana State Univ.,Supervisor:Rush M C.1985,p76-81.
    [29]Sha X Y,and Zhu L H.Resistance of some rice varieties to sheath blight (ShB).Int.Rice Res.News Lett.,1989,14:7-8.
    [30]Pan X B,Rush M C,Sha X Y,et al.Major gene,nonallelie sheath blight resistance from the rice cultivars Jasmine85 and Teqing.Crop Sci,1999,39:338-346.
    [31]Li,Z.K.,Pinson,S.R.M.,Marshetti,M.A.,et al.Characterization of quantitative trait loci(QTLs) in cultivated rice contributing to field resistance to sheath blight(Rhizoctonia solani).Theor Appl Genet,1995,91:382-388.
    [32]Zou J H,Pan X B,Chen Z X,et al.Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars(Oryza sativa L.).Theo Appl Genet,2000,101:569-575.
    [33]Kunihiro Y,Qian Q,Sato H,et al.QTL analysis of sheath blight resistance in rice(Oryza sativa L.).Acta Genetica Sinica,2002,29(1):50-55.
    [34]Han Y P,Xing Y Z,Chert Z X,et al.Mapping QTLs for horizontal resistance to sheath blight in an elite rice restorer line,Minghui 63.Acta Genetica Sinica,2002,29(7):565-570.
    [35]Sato H,Ideta O,Audo I,et al.Mapping QTLs for sheath blight resistance in the rice line WSS2.Breeding Sci,2004,54(3):265-271.
    [36]Pinson S R M,Capdevielle F M,and Oard J H.Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines.Crop Sci,2005,45:503-510.
    [37]潘学彪,张亚芳,左示敏等.试论作物重要数量性状基因的鉴定和应用.扬州大学学报(农业与生命科学版),2005,26:50-55.
    [38]左示敏,殷跃军,张丽,等.水稻抗纹枯病QTL qSB-11的育种价值及其进一步定位.中国水稻科学,2007,21(2):136-142.
    [39]谭彩霞,纪雪梅,杨勇,等.水稻回交世代中两个抗纹枯病主效数量基因的鉴定与标记辅助选择.遗传学报,2005,32(4):399-405.
    [40]Venu R C,Jia Y L,Gowda M,et al.RL-SAGE and microarray analysis of the rice transcriptome after Rhizoctonia solani infection.Mol Genet Genomics,2007,278:421-431.
    [41]Zhao C J,Wang A R,Shi Y J,et al.Identification of defense-related genes in rice responding to challenge by Rhizoctonia solani.Theor Appl Genet,2008,116:501-516.
    [42]Marshall D S,Rush M C.Relation between infection by Rhizoctiona solani and R.Oryzae and disease severity in rice,Phytopathology,1980,70:941-946.
    [43]陈志谊,王玉环,殷尚智.水稻纹枯病抗性机制研究.中国农业科学,1992,25(4):41-46.
    [44]张红生,朱立宏,沙学延,等.水稻纹枯病抗性机理的初步研究.《主要农作物抗病性遗传研究进展》,朱立宏主编.南京,江苏科学技术出版社,1990,153-164.
    [45]童蕴慧,徐敬友,潘学彪,等.水稻植株对纹枯病菌侵染反应及其机理的初步研究.江苏农业研究,2000,04:45-47.
    [46]胡建,陈云,陈宗祥,等.壳寡糖对水稻纹枯病不同抗性品种几丁质酶诱导的研究.江苏农业研究,2001,21(4):37-40.
    [47]Sriram S,Babu S,Nandakumar R,et al.Differential expression of defense-related proteins and sheath blight symptoms of rice in response to active and inactive Rhizoctonia solani toxin.Archiv Phytopath Plant Pro,2002,34(5):293-306.
    [48]Piero,R.M.di.et al.Cellulase production by Fusarium oxysporum f.sp vasinfectum and the role in pathogenicity on cotton plants.Phytopathological,2000,26:336-341.
    [49]韩月澎.水稻株型对纹枯病抗性和产量性状影响的研究.扬州大学硕士学位论文,2001.
    [50]陈恩会.两个新抗源中水稻纹枯病抗性的遗传分析及其和相关农艺性状的QTL定位.扬州大学硕士学位论文,2004.
    [51]左示敏,张亚芳,殷跃军,等.田间水稻纹枯病抗性鉴定体系的确立与完善.扬州大学学报(农业与生命科学版),2006,27(4):57-61.
    [52]潘学彪,陈宗祥,徐敬友,等.不同接种调查方法对抗水稻纹枯病遗传研究的影响.江苏农学院学报,1997b,18(3):27-32.
    [53]Eizenga G C,Lee F N,and Rutger J N.Screening Oryza Species Plants for Rice Sheath Blight Resistance.Plant Disease,2002,86:808-812.
    [54]Singh A,Rohilla R,Singh U S,et al.An improved inoculation technique for sheath blight of rice caused by Rhizoctonia solani.Can.J.Plant Pathol, 2002,24:65-68.
    [56]过崇俭,陈志谊.水稻纹枯病致病力分化及品种抗性鉴定技术的研究.中国农业科学,1985,5:50-57.
    [57]Wasano K,Oro S,and Kido Y.The syringe inoculation method for selecting rice plants resistant to sheath blight,Rhizoctonia solani.Jpn.J.Trop.Agric,1983,27:131-134.
    [58]Rush,M C,Hoff B J,and Mcllrath W O.A uniform disease rating system for rice disease in the United States.Proc 16~(th) Rice Teeh Working Group,Lake Charles,Louisana,USA,1976,pp 64.
    [59]Park D S,Sayler R J,Hong Y G,et al.A Method for Inoculation and Evaluation of Rice Sheath Blight Disease.Plant Dis,2008,92:25-29.
    [60]Jia Y,Correa-Victoria F,McClung A,et al.Rapid Determination of Rice Cultivar Responses to the Sheath Blight Pathogen Rhizoctonia solani Using a Micro-Chamber Screening Method.Plant Disease,2007,485-489.
    [1]潘学彪,Rush MC.美国的水稻纹枯病抗病遗传育种研究.江苏农学院学报,1997,18(1):57-63.
    [2]Lee F N,and Rush M C.Rice sheath blight:a major rice disease.Plant Dis,1983,67:829-832.
    [3]廖皓年,肖陵生,王华生.水稻纹枯病发生历史及演变原因简析.广西植保,1997,3:35-38.
    [4]Li Z K,Pinson S R M,Marshetti M A,et al.Characterization of quantitative trait loci(QTLs) in cultivated rice contributing to field resistance to sheath blight(Rhizoctonia solani).Theor Appl Genet,1995,91:382-388.
    [5]Zou J H,Pan X B,Chen Z X,et al.Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars(Oryza sativa L.).Theor Appl Genet,2000,101(4):569-575.
    [6]国广泰史,钱前,佐腾宏之,等.水稻纹枯病QRL分析.遗传学报,2002,29(1):50-55.
    [7]韩月澎,刑永忠,陈宗祥,等.杂交水稻亲本明恢63对纹枯病水平抗性的QTL定位.遗传学报,2002,29(7):565-570.
    [8]Sato H,Ideta O,Audo I,et al.Mapping QTLs for sheath blight resistance in the rice line WSS2.Breeding Science,2004,54(3):265-271.
    [9]Pinson S R M,Capdevielle F M,and Oard J H.Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines.Crop Sci,2005,45:503-510.
    [10]谭彩霞,张亚芳,陈宗祥,等.两个抗水稻纹枯病主效数量基因的鉴定.中国生物工程杂志,2004,24(4):79-80.
    [11]谭彩霞,纪雪梅,杨勇,等.水稻回交世代中两个抗纹枯病主效数量基因的鉴定与标记辅助选择.遗传学报,2005,32(4):399-405.
    [12]Murray M G,and Thompson W F.Rapid isolation of high molecular weight plant DNA.Nucleic Acids Res,1980,8:4321-4325.
    [13]Ji Q,Lu J F,Chao Q,et al.Delimiting a rice wide-compatibility gene S_5~n to a 50kb region.Theor Appl Genet,2005,111:1495-1503.
    [14]潘学彪,陈宗祥,徐敬友,等.不同接种调查方法对抗水稻纹枯病遗传研究的影响.江苏农学院学报,1997,18(3):27-32.
    [15]陈宗祥,邹军煌,韩月澎,等.抗水稻纹枯病遗传研究的改良方法及其验证.中国水稻科学,2002,16(1):74-76.
    [16]Eizenga G C,Lee F N,and Rutger J N.Screening Oryza species plants for rice sheath blight resistance.Plant Dis,2002,86:808-812.
    [17]Rush M C,Hoff B J,and Mcllrath W O.A uniform disease rating system for rice disease in the United States.In:Proc 16~(th) Rice Tech Working Group.Lake Charles,Louisiana:[s.n.],1976:64.
    [18]潘学彪,张亚芳,左示敏,等.试论作物重要数量性状基因的鉴定和应 用.扬州大学学报(农业与生命科学版),2005,26(2):50-55.
    [19]左示敏,殷跃军,张丽,等.水稻抗纹枯病QTL qSB11的育种价值及其进一步定位.2007,21(2):136-142.
    [20]Yamamoto T,Lin H X,Sasaki T,et al.Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny.Genetics,2000,154:885-891.
    [21]Lin H X,Yamamoto T,Sasaki T,et al.Characterization and detection of epistatic interactions of 3 QTLs,Hd1,Hd2,and Hd3,controlling heading date in rice using nearly isogenic lines.Theor Appl Genet,2000,101:1021-1028.
    [22]Lin F,Xue S L,Zhang Z Z,et al.Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 x Wangshuibai population Ⅱ:Type Ⅰresistance.Theor Appl Genet,2006,112:528-535.
    [23]George M L C,Prasanna B M,Rathore R S,et al.Identification of QTLs conferring resistance to downy mildews of maize in Asia.Theor Appl Genet,2003,107:544-551.
    [24]Romagosa I,Han F,Ullrich S E,et al.Verification of yield QTL through realized molecular marker-assisted selection responses in a barley cross.Molecular Breeding,1999,5:143-152.
    [25]Brown G R,Bassoni D L,Gill G P,et al.Identification of quantitative trait loci influencing wood property traits in loblolly pine(Pinus taeda L.).Ⅲ.QTL verification and candidate gene mapping.Genetics,2003,164:1537-1546.
    [26]Wang D L,Zhu J,Li Z K,et al.Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches.Theor Appl Genet.1999,99:1255-1264.
    [27]Kroymann J,and Mitchell-Olds T.Epistasis and balanced polymorphism influencing complex trait variation.Nature,2005,435:95-98.
    [1]Lee F N,and Rush M C.Rice sheath blight:a major rice disease.Plant Dis,1983,67:829-832.
    [2]Danson J,Wasano K,and Nose A.Infection of rice plants with the sheath blight fungus causes an activation of pentose phosphate and glycolytic pathways.European Journal of Plant Pathol,2000,106:555-561.
    [3]Sriram S,Babu S,Nandakumar R,et al.Differential expression of defense-related proteins and sheath blight symptoms of rice in response to active and inactive Rhizoctonia solani toxin.Archiv Phytopathol Plant Prot,2002,34(5):293-306.
    [4]潘学彪,Rush M C.美国的水稻纹枯病抗病遗传育种研究.江苏农学院学报,1997,18(1):57-63.
    [5]陈宗祥,邹军煌,徐敬友,等.对水稻纹枯病抗源的初步研究.中国水稻科学,2000,14(1):15-18.
    [6]刘永峰,陈志谊,吉健安,等.江苏省水稻主栽及区试品种对水稻纹枯病的抗性分析.江苏农业科学,2006(1):27-28。
    [7]Zhang S,Chen Q Z,Lu L,et al.Assessment of the variety resistance to Pyricularia grisea and Rhizoctonia solani induced under the natural condition in Hubei Province.Journal of Huazhong Agricultural University,2006,25(3):236-240.
    [8]Li Z K,Pinson S R M,Marshetti M A,et al.Characterization of quantitative trait loci(QTLs) in cultivated rice contributing to field resistance to sheath blight(Rhizoctonia solani).Theor Appl Genet,1995,91:382-388.
    [9]Pan X B,Rush M C,Sha X Y,et al.Major gene,nonallelic sheath blight resistance from the rice cultivars Jasmine 85 and Teqing.Crop Sci.1999,39:338-346.
    [10]Zou J H,Pan X B,Chen Z X,et al..Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars(Oryza sativa L.).Theor Appl Genet.2000,101(4):569-575.
    [11]韩月澎,刑永忠,陈宗祥,等.杂交水稻亲本明恢63对纹枯病水平抗性的QTL定位.遗传学报,2002,29(7):565-570.
    [12]国广泰史,钱前,佐腾宏之,等.水稻纹枯病QRL分析.遗传学报,2002,29(1):50-55.
    [13]Sato H,Ideta O,Audo I,et al.Mapping QTLs for sheath blight resistance in the rice line WSS2.Breeding Sci,2004,54(3):265-271.
    [14]Pinson S R M,Capdevielle F M,and Oard J H.Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines.Crop Sci,2005,45:503-510.
    [15]谭彩霞,纪雪梅,杨勇,等.水稻回交世代中两个抗纹枯病主效数量基因的鉴定与标记辅助选择.遗传学报,2005,32(4):399-405.
    [16]左示敏,殷跃军,张丽,等.水稻抗纹枯病QTL qSB-11的育种价值及其进一步定位.2007,21(2):136-142.
    [17]Eshed Y,and Zamir D.An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL.Genetics,1995,141:1147-1162.
    [18]Abiola O,Angel J M,Avner P,et al.The nature and identification of quantitative trait loci:a community's view.Nat.Rev.Genet,2003,4:911-916.
    [1]Lee F N,Rush M C.Rice sheath blight:a major rice disease.Plant Dis,1983,67:829-832.
    [2]潘学彪,Rush M C.美国的水稻纹枯病抗病遗传育种研究.江苏农学院学报,1997,18(1):57-63.
    [3]廖皓年,肖陵生,王华生.水稻纹枯病发生历史及演变原因简析.广西植保,1997,(3):35-38.
    [4]Danson J,Wasano K,Nose A.Infection of rice plants with the sheath blight fungus causes an activation of pentose phosphate and glycolytic pathways.European Journal of Plant Pathol,2000,106:555-561.
    [5]Sriram S,Babu S,Nandakumar R,et al.Differential expression of defense-related proteins and sheath blight symptoms of rice in response to active and inactive Rhizoctonia solani toxin.Archiv Phytopathol Plant Protec,2002,34(5):293-306.
    [6]陈宗祥,邹军煌,徐敬友,等.对水稻纹枯病抗源的初步研究.中国水稻科学,2000,14(1):15-18.
    [7]刘永峰,陈志谊,吉健安,等.江苏省水稻主栽及区试品种对水稻纹枯病的抗性分析.江苏农业科学,2006,(1):27-28.
    [8]Han Y P,Xing Y Z,Gu S L,et al.Effect of morphological traits on sheath blight resistance in rice.Acta Botanica Sinica,2003,45(1):825-831.
    [9]Li Z K,Pinson S R M,Marshetti M A,et al.Characterization of quantitative trait loci(QTLs) in cultivated rice contributing to field resistance to sheath blight(Rhizoctonia solani).Theor Appl Genet,1995,91:382-388.
    [10]Pan X B,Rush M C,Sha X Y,et al.Major gene,nonallelic sheath blight resistance from the rice cultivars Jasmine 85 and Teqing.Crop Sci,1999,39:338-346.
    [11]Zou J H,Pan X B,Chen Z X,et al.Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars(Oryza sativa L.).Theor Appl Genet,2000,101(4):569-575.
    [12]国广泰史,钱前,佐藤宏之,等.水稻纹枯病QRL分析.遗传学报,2002,29(1):50-55.
    [13]韩月澎,邢永忠,陈宗祥,等.杂交水稻亲本明恢63对纹枯病水平抗性的QTL定位.遗传学报,2002,29(7):565-570.
    [14]Sato H,Ideta O,Audo I,et al.Mapping QTLs for sheath blight resistance in the rice line WSS2.Breeding Sci,2004,54(3):265-271.
    [15]Pinson S R M,Capdevielle F M,Oard J H.Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines.Crop Sci,2005,45:503-510.
    [16]潘学彪,张亚芳,左示敏,等.试论作物重要数量性状基因的鉴定和应用.扬州大学学报:农业与生命科学版,2005,26(2):50-55.
    [17]谭彩霞,纪雪梅,杨勇,等.水稻回交世代中两个抗纹枯病主效数量基因的鉴定与标记辅助选择.遗传学报,2005,32(4):399-405。
    [18]左示敏,殷跃军,张丽,等.水稻抗纹枯病QTL qSB-11的育种价值及其进一步定位.中国水稻科学,2007,21(2):136-142.
    [19]George M L C,Prasanna B M,Rathore R S,et al.Identification of QTLs conferring resistance to downy mildews of maize in Asia.Theor Appl Genet, 2003, 107: 544-551.
    [20] Lin H X, Yamamoto T, Sasaki T, et al. Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using near-isogenic lines. Theor Appl Genet, 2000, 101: 1021-1028.
    [21] Lin F, Xue S L, Zhang Z Z, et al. Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419×Wangshuibai population. II: Type I resistance. Theor Appl Genet, 2006, 112: 528-535.
    [22] Yamamoto T, Lin H X, Sasaki T, et al. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000, 154: 885-891.
    [23] Kroymann J and Mitchell-Olds T. Epistasis and balanced polymorphism influencing complex trait variation. Nature, 2005, 435: 95-98.
    [24] Wang D L, Zhu J, Li Z K, et al. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theor Appl Genet, 1999,99: 1255-1264.
    [1]Glazier A M,Nadeau J H and Aitman T J.Finding genes that underly complex traits.Sic,2002,298:2345-2349.
    [2]Salvi S and Tuberose R.To clone or not to clone plant QTLs:Present and future challenges.Trends Plant Sci.,2005,10:297-304.
    [3]Frary A,Nesbitt T C,Grandillo S,et al.fw2.2:a quantitative trait locus key to the evolution of tomato fruit size.Sci.2000,289:85-88.
    [4]Yano M,Katayose Y,Ashikari M,et al.Hd1,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Aradbidopsis flowering time gene CONSTANS.Plant Cell,2000,12:2473-2484.
    [5]Ishiimaru K,Ono K,and Kashiwagi T.Identification of a new gene controlling plant height in rice using the candidate-gene strategy.Planta,2004,218:388-395.
    [6]左示敏,殷跃军,张丽,等.水稻抗纹枯病QTL qSB-11的育种价值及其进一步定位.中国水稻科学,2007,21(2):136-142.
    [7]何风华,席章营,曾瑞珍,等.利用单片段代换系定位水稻抽穗期QTL.中国农业科学,2005,38(8):1505-1513.
    [8]Yano M,Katayose Y,Ashikari M,et al.Hd1,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS.Plant Cell,2000,12:2473-2484.
    [9]Takahashi Y,Shomura A,Sasaki T,et al.Hd6,a rice quantitative trait locus involved in photoperiod sensitivity,encodes the a subunit of protein kinase CK2.PNAS,2001,98:7922-7927.
    [10]Kojima S,Takahashi Y,Kobayashi Y,et al.Hd3a,a rice ortholog of the Arabidopsis FT Gene,promotes transition to flowering downstream of Hd1under short-day conditions.Plant and Cell Physiology,2002,43:1096-1105.
    [11]肖静,胡治球,王学枫,等.一种基于似然极大的动态聚类方法及其应用.作物学报,2007,33(1):70-76.
    [12]顾世梁.实现动态聚类全局最优的一种算法.江苏农学院学报,1996,17:57-65.
    [13]Yu B S,Li Z W,Li H X,et al.TAC1,a major quantitative trait locus controlling tiller angle in rice.Plant J,2007,52,891-898.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700