用户名: 密码: 验证码:
基于压缩感知和稀疏表示的地震数据重建与去噪
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油气勘探的不断深入,勘探目标区构造和环境越来越复杂,加剧了地震勘探数据的不规则和不完整情况,影响对资料的处理和解释,并最终影响油气判断。但是,受Nyquist采样定理限制,传统的重建方法对采样率要求较高,采集和采样也不能灵活适应实际环境,勘探成本较大。本文基于新发展的压缩感知理论,将地震勘探采集阶段的资料测量和处理阶段的数据重建有机结合起来,充分利用地震资料在字典变换域的稀疏化特征,发展了更加灵活的采样和去噪策略,在大幅降低采样率和节约成本的同时,获得了理想的处理效果。
     根据近几年在信号处理领域得到完善并快速发展的压缩感知理论,远低于传统Nyquist采样率的不完整数据也能够得到理想重建。基于此理论框架,本文主要研究了地震数据压缩重建中的稀疏表示和采样格式两个关键问题。在稀疏表示方面,首先研究了常用的傅里叶基函数方法,并针对目前该类技术中完全随机采样的不足,发展了泊松碟采样格式,以控制采样间隔。接下来,采用能够更优表示地震数据的曲波变换,构建了基于曲波变换稀疏促进策略的地震数据重建技术,极大地提高了重建质量,也降低了对采样率的要求。在采样格式方面,本文在该领域首次引入具有蓝色噪声频谱特征的采样方法,对包括Jitter采样、泊松碟采样和最远点采样在内的该类方法进行了分析和研究,验证了此类方法的有效性,对地震资料采集和不完整数据重建都有重要指导意义。
     在上述数据规则化过程中,不可避免地会引入人为噪声,同时,实际地震资料也常受噪声干扰,严重影响包括数据重建在内的处理和解释工作。传统的去噪方法(如变换域阈值法),会在地震波前附近导致不光滑畸变现象,影响地震资料的质量。本文将全变差最小化技术和曲波阈值方法相结合,在去除地震噪声的同时,压制了不光滑干扰现象。此外,为了改善当前变换基函数不能根据目标地震数据特征自适应调整的状况,本文引入了具有学习能力的超完备冗余字典思想,将字典的构造和地震数据去噪过程有机结合起来,在完成稀疏表示的同时,去除了地震噪声,取得了较好效果。
Along with the further exploration of oil and gas, the potential fields and conditions for exploration are becoming more complex, which often increasingly distorts the acquired seismic data sets to be incomplete and irregular. It will affect the following data processing and interpretation, and then the identification of oil and gas. However, due to the limit of Nyquist sampling theory, most traditional reconstruction techniques require high-rate samples, and the way of survey and sampling cannot be adjusted to the practical conditions properly, which will increase the exploration costs. Based on a newly developed theory named compressive sensing and sparse representations for seismic records, this thesis presents a compressed reconstruction technique with more effective sampling schemes and denoising strategies for seismic data processing, by combining the two steps of seismic exploration with data recording and recovery. Both sampling rate and cost can be reduced by this technique, as well as the data quality being improved.
     According to the well-developed compressive sensing theory from signal processing field, it is even possible to recover extraordinarily incomplete data under its corresponding Nyquist rate. Based on this frame, firstly, this thesis studies two of the principal issues for compressed seismic data reconstruction, i.e., sparse representations and sampling schemes. As to the first issue, starting with Fourier basis, we use Poisson Disc sampling to control gaps between samples, which compensates drawbacks of the currently used random sampling. Further more, we employ curvelet transform, which is regarded to be the optimally sparse representation for seismic data, developing a curvelet-based recovery strategy by sparsity-promoting inversion, which requires much less samples as well as achieving higher-quality reconstruction. As to the second issue, this thesis introduces sampling schemes with blue noise spectrum into this field, including Jitter sampling, Poisson Disc sampling and Farthest Point sampling. We analyze their advantages and show the effectiveness through numerical experiments. These researches have great significances for seismic data acquisition and reconstruction.
     During the process of data regularization mentioned above, some artificial noise is probably involved. In addition, the practical seismic profiles acquired are also often interfered by real noise. Both would affect seismic processing and interpretation, including data reconstruction. The traditional transform-based methods, e.g., thresholding in transformed domain, usually cause non-smooth distortions in the vicinity of discontinuities like wavefronts, which would confuse the expected seismic features. In this thesis, total variation minimization strategy is employed, combining with curvelet threshoding method, in order to suppress this phenomenon, and the involved noise is eliminated as well. Further more, in order to improve the current sparse representations which cannot be adjusted to the targeted seismic data adaptively, this thesis introduces the idea of learning overcomplete redundant dictionary to deal with seismic noise, which is shrunk during the training and constructing process of the dictionary.
引文
[1]仝中飞. Curvelet阈值迭代法在地震数据去噪和插值中的应用研究[硕士学位论文].长春:吉林大学, 2009
    [2]高建军,陈小宏,李景叶,等.基于非均匀Fourier变换的地震数据重建方法研究.地球物理学进展, 2009, 24(5): 1741-1747
    [3]刘保童.一种基于傅里叶变换的去假频内插方法及应用.煤田地质与勘探, 2009, 37(2): 63-67
    [4]王培茂.地震勘探数据压缩相关技术研究及应用[硕士学位论文].长春:吉林大学, 2004
    [5] Fenelon L. Nonequispaced discrete curvelet transform for seismic data reconstruction[D]. Vancouver: University of British Columbia, 2008
    [6] Candes E J, Romberg J. Practical Signal Recovery from Random projections. Proceedings of SPIE Computational Imaging III, 2005: 76-86
    [7] Candes E J, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Math, 2005, 99: 1207-1223
    [8] Candes E J, Romberg J. Quantitative robust uncertainty principles and optimally sparse decompositions. Foundations of Computational Mathematics, 2006, 6: 227-254
    [9] Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52: 489-509
    [10] Candes E J, Wakin M B. An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, 25(2): 21-30
    [11] Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52: 1289-1306
    [12] Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, 2001, 47: 2845-2862
    [13] Larner K, Rothman D. Trace interpolation and the design of seismic surveys. Geophysics, 1981, 46: 407-415
    [14] Spitz S. Seismic trace interpolation in the F-X domain. Geophysics, 1991, 67: 794-890
    [15] Claerbout J F, Fomel S. Image estimation by example: Geophysical Soundings Image Construction (GEE). California: Stanford Exploration Project, 2004
    [16] Claerbout J F, Nichols D. Interpolation beyond aliasing by (tau,x)-domain PEFs. 53rd Annual Conference and Exhibition of EAGE, 1991
    [17] Canning A, Gardner G H F. Regularizing 3D data sets with DMO. Geophysics, 1996, 61(4): 1103-1114
    [18] Ronen J. Wave equation trace interpolation. Geophysics, 1987, 52(7): 973-984
    [19] Chemingui N, Biondi B. Handling the irregular geometry in wide azimuth surveys. 61th Annual International Meeting of Society of Exploration Geophysicists, 1991: 32-35
    [20] Nemeth T, Wu C, Schuster G T. Least-squares migration of incomplete reflection data. Geophysics, 1999, 64: 208-221
    [21] Kuehl H. Least-squares wave-equation migration/inversion[D]. University of Alberta, 2002
    [22] Sacchi M D, Ulrych T J, Walker C. Interpolation and extrapolation using a high-resolution discrete Fourier transform. IEEE Transaction on Signal Processin, 1998, 46: 31-38
    [23] Xu S, Zhang Y, Pham D, et al. Antileakage Fourier transform for seismic data regularization. Geophysics, 2005, 70: V87-V95
    [24] Zwartjes P M, Sacchi M D. Fourier reconstruction of nonuniformly sampled, aliased data. Geophysics, 2007, 72(1): V21-V32
    [25] Trad D O, Ulrych T J. Radon transform: beyond aliasing with irregular sampling. 6th International Congress of the Brazilian Geophysical Society, 1999
    [26] Trad D O, Ulrych T J, Sacchi M D. Latest view of sparse Radon transforms. Geophysics, 2003, 68: 386-399
    [27] Hennenfent G, Herrmann F J. Sparseness-constrained data continuation with frames: applications to missing traces and aliased signals in 2/3-D. 75th Annual International Meeting of Society of Exploration Geophysicists, 2005
    [28] Hennenfent G, Herrmann F J. Irregular (sub-)sampling: from aliasing to noise. 69th EAGE Conference and Exhibition, 2007
    [29] Hennenfent G, Herrmann F J. Simply denoise: wavefield reconstruction via jittered undersampling. Geophysics, 2008, 73(3): 19-28
    [30] Herrmann F J, Hennenfent G. Non-parametric seismic data recovery with curvelet frames. Geophysical Journal International, 2008, 173(1): 233-248
    [31] King G A, Leong T K, Flinchbaugh B E. The role of interpolation in seismic resolution. 54th Annual International Meeting of Society of Exploration Geophysics, 1984: 766-767
    [32] Lu L. Application of local slant-stack to trace interpolation. 55th Annual International Meeting of Society of Exploration Geophysics, 1985: 560-562
    [33] Bardan V. Trace interpolation in seismic data-processing. Geophysical Prospecting, 1987, 38: 343-358
    [34] Kao C. A trace interpolation method for spatially aliased and irregularly spaced seismic data. 71st Annual Meeting of Society of Exploration Geophysicists, 1997: 1108-1110
    [35] Jakubowicz H. Wavefield reconstruction. 64th Annual International Meeting of Society Exploration Geophysics, 1994: 1557-1560
    [36]国九英,周兴元. F-K域等道距道内插.石油地球物理勘探, 1996, 31(2): 210-218
    [37]国九英,周兴元,俞寿朋. F-K域等道距道内插.石油地球物理勘探, 1996, 31(1): 28-34
    [38] Gulunay N, Chambers R E. Unaliased f-k domain trace interpolation(UFKI). 66th Annual International Meeting of Society of Exploration Geophysicists, 1996: 1461-1464
    [39] Gulunay N. Seismic trace interpolation in the Fourier transform domain. Geophysics, 2003, 68(1): 355-369
    [40] Liu B. Multi-dimensional reconstruction of seismic data[D]. University of Alberta, 2004
    [41] Kostov C. Finite aperture slant-stack transforms. California: Stanford Exploration Project, Report 61, 1989: 261-280
    [42] Darche G. Spatial interpolation using fast parabolic transform. International Meeting of Society of Exploration Geophysics, 1990: 1647-1650
    [43] Kabir N. Implementation and applications of the generalized Radon transform[D]. Delft University of Technology, 1992
    [44] Schonewille M A, Duijndam A J W. Decomposition of signal an d noise for sparsely sampled data using a mixed- Fourier/Redon transform. International Meeting of Society of Exploration Geophysics, 1996: 1438-1441
    [45] Sacchi M, Ulrych T J. High-resolution velocity gathers and offset space reconstruction. Geophysics, 1995, 60(4): 1169-1177
    [46] Duijndam A J W, Schonewille M A, Hindriks C O H. Reconstruction of band-limited signals, irregularly sampled along one spatial direction. Geophysics, 1999, 64: 524-538
    [47] Hindriks C O H, Duijndam A J W. Reconstruction of 3D seismic signals irregularly sampled along two spatial coordinates. Geophysics, 2000, 65: 253-263
    [48] Zwartjes P M. Fourier reconstruction with sparse inversion[D]. Delft University of Technology, 2005
    [49] Gulunay N, Chambers R E. Generalized fk domain trace interpolation. 67th Annual International Meeting of Society of Exploration Geophysicists, 1997: 1100-1103
    [50] Abma R, Kabir N. 3D interpolation of irregular data with a POCS algorithm. Geophysics, 2006, 71: E91-E97
    [51]喻玲娟,谢晓春.压缩感知理论简介.数字视频, 2008, 32(12): 16-18
    [52]许郡.基于DCT与DWT的水印算法的比较分析.南通航运职业技术学院学报, 2009, 8(3): 75-106
    [53] Lustig M, Donoho D L, Santos J, et al. Compressed sensing MRI. IEEE Signal Processing Magazine, 2008, 25(2): 72-82
    [54] Oka A, Lampe L. A compressed sensing receiver for UWB impulse radio in bursty applications like wireless sensor networks. Physical Communication, 2009, 30(14): 2802-2811
    [55]衡彤.小波分析及其应用研究[博士学位论文].成都:四川大学, 2003
    [56] Gabor D. Theory of communications. Proceedings of the Institute of Electrical Engineers, 1946, 93: 429-457
    [57] Chikkerur S, Cartwright A N, Govindaraju V. Fingerprint enhancement using STFT analysis. Pattern Recognition, 2007, 36(2): 303-312
    [58]王斌,曹刚.小波变换在提高地震资料分辨率中的应用综述.内蒙古石油化工, 2008, (4): 20-22
    [59] Daubechise I. Ten lectures on wavelets. Philadelphia: Society for Industrial and Applied Mathematics, 1992
    [60] Morlet J. Wave propation and sampling theory and complex waves. Geophysics, 1982, 4: 215-235
    [61]程冰洁,徐天吉.地震信号的多尺度频率与吸收属性.新疆石油地质, 2008, 29(3): 314-317
    [62]黄捍东,张如伟,郭迎春.地震信号的小波分频处理.石油天然气学报, 2008, 30(3): 87-91
    [63]吴招才,刘天佑.地震数据去噪中的小波方法.地球物理学进展, 2008, 23(2): 493-499
    [64] Candes E J, Demanet L, Donoho D L, et al. Fast discrete curvelet transforms. Multiscale Modeling and Simulation, 2005, 5: 861-899
    [65] Candes E J, Donoho D L. New tight frames of curvelets and optimal representations of objects with C2 singularities. Commun. Pure Appl. Math., 2004, 57: 219-266
    [66] Ma J, Plonka G. A review of curvelets and recent applications. IEEE Signal Processing Magazine, 2010, 27(2): 118-133
    [67] Herrmann F J, Wang D, Hennenfent G, et al. Curvelet-based seismic data processing: A multiscale and nonlinear approach. Geophysics, 2008, 73(1): A1-A5
    [68] Neelamani R, Baumstein A, Gillard D. Coherent and random noise attenuation using the curvelet transform. The Leading Edge, 2008, 27(2): 240-248
    [69] Hennenfent G, Herrmann F J. Seismic denoising with nonuniformly sampled curvelets. Comput. Sci. Eng., 2006, 16(25): 16-25
    [70] Herrmann F J, Boeniger U, Verschuur D J. Nonlinear primary-multiple separation with directional curvelet frames. Geophysical Journal International, 2007, 170: 781-799
    [71] Tang G, Shahidi R, Ma J, et al. Two-dimensional randomized sampling schemes for curvelet-based sparsity-promoting seismic data recovery. Geophysical Prospecting, 2010
    [72] Tang G, Shahidi R, Herrmann F J, et al. Higher dimensional blue-noise sampling schemes for curvelet-based seismic data recovery. 79th Annual International Meeting of Society of Exploration Geophysicists, 2009
    [73] Herrmann F J, Erlangga Y A, Lin T. Compressive simultaneous fullwaveform simulation. Geophysics, 2009, 74: A35-A40
    [74] Sun B, Ma J, Chauris H, et al. Solving the wave equation in the curvelet domain: a mulit-scale and multi-directional approach. J. Seismic Exploration, 2009, 18: 385-399
    [75] Elad. M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image process, 2006, 15(12): 3736-3745
    [76] Protter M, Elad M. Image sequence denoising via sparse and redundant representations. IEEE Trans. Image process, 2009, 18(1): 27-35
    [77] Anstey N. Whatever happened to ground roll. The Leading Eage, 1986, 5(3): 40-45
    [78] Ongkiehong L, Askin H. Towards the universal seismic acquisition technique. First Break, 1988, 5: 435-439
    [79] Vermeer G J O. Seismic wavefield sampling. Tulsa, Okla: Society of Exploration Geophysics, 1990
    [80] Vermeer G J O. Symmetric sampling. The Leading Edge, 1991, 10(11): 21-27
    [81] Vermeer G J O. 3D symmetric sampling. 64th Annual International Meeting of Society of Exploration Geophysicists, 1994
    [82] Vermeer G J O. 3-D symmetric sampling. Geophysics, 1998, 63(5): 1629-1647
    [83] Ashton C P. Brad Bacon and Christian Deplante. 3D seismic survey design. Oilfield Review, 1994, 6(2): 19-32
    [84] Alkan E, Hardage B. Was that Survey crew sober?. Geophysical Corner, AAPG Explorer, 2007: 40-41
    [85] Lustig M, Alley M, Vasanawala S, et al. Autocalibrating parallel imaging compressed sensing using L1 spirit with poisson-disc sampling and joint sparsity constraints. Sedonathe ISMRM Workshop on Data Sampling and Image Reconstruction, 2009
    [86] Shan H, Ma J, Yang H. Comparisons of wavelets, contourlets and curvelets in seismic denoising. J. Appl. Geophysics, 2009, 69: 103-115
    [87] Canales L. Random noise reduction. 54th Annual International Meeting of Society of Exploration Geophysicists, 1984: 525-572
    [88] Kappus M, Harding A, Orcutt J. A comparison of t-p transform methods. Geophysics, 1990, 55: 1202-1215
    [89] Li Y, Yang B, Li Y, et al. Combining SVD with wavelet transform in synthetic signal denoising. ICWAPR '07, 2007: 1831-1836
    [90] Kelly S E. Gibbs Phenomenon for Wavelets. Applied and Computational Harmonic Analysis, 1996, 111(1): 29-43
    [91] Shim H, Volkmer H. On the Gibbs Phenomenon for Wavelet Expansions. Journal of Approximation Theory, 1996, 145(1): 20-32
    [92]刘喜武,刘洪,刘彬.反假频非均匀地震数据重建方法研究.地球物理学报, 2004, 47(2): 299-305
    [93]孟小红,郭良辉,张致付,等.基于非均匀快速傅里叶变换的最小二乘反演地震数据重建.地球物理学报, 2008, 51(1): 235-241
    [94] Wang Y, Luo Y, Schuster G T. Interferometric interpolation of missing seismic data. Geophysics, 2009, 74(3): I37-I45
    [95]张军华,吕宁,田连玉,等.地震资料去噪方法技术综合评述.地球物理学进展, 2006, 21(2): 546-553
    [96]周立杰,王维宏.叠前含随机噪声地震数据抛物Radon变换法重建.勘探地球物理进展, 2007, 30(4): 280-285
    [97] Dippe M A Z, Wold E H. Antialiasing through stochastic sampling. Proceedings of SIGGRAPH 85, 1985: 69-78
    [98]陆基孟.地震勘探原理(上、下册).山东:中国石油大学出版社, 2006.
    [99]罗丹. F-K域地震道插值方法研究[硕士学位论文].成都:成都理工大学, 2009
    [100] Wang Y. Seismic trace interpolation in the f-x-y domain. Geophysics, 2002, 67(4): 1232-1239
    [101] Elad M, Starck J L, Querre P, et al. Simulataneous Cartoon and Texture Image Inpainting using Morphological Component Analysis (MCA). Applied and Computational Harmonic Analysis, 2005, 19(3): 340-358
    [102] Vogel C R. Computational Methods for Inverse Problems. Philadelphia: Society for Industrial and Applied Mathematics, 2002
    [103] Daubechies I, Defrise M, Mol C D. An iterative thresholding algorithm for linear inverse problems with a sparsity constrains. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457
    [104] Pope G. Compressive sensing: A summary of reconstruction algorithms[D]. Eidgenossische Technische Hochschule (ETH), Zurich, 2009
    [105] Starck J L, Elad M, Donoho D L. Redundant multiscale transforms and their application to morphological component separation. Advances in Imaging and Electron Physics, 2004, 132: 287-348
    [106] Donoho D L, Elad M. Optimally sparse representation in general (non-orthogonal) dictionaries via L1 minimization. Proceedomgs of National Academy of Science of U.S.A, 2002: 2197-2202
    [107] Gribonval R, Nielsen M. Sparse representations in unions of bases. IEEE Trans. on Inf. Theory, 2004, 49(12): 3320-3325
    [108] Elad M. Optimized Projections for Compressed-Sensing. IEEE Trans. Signal Processing, 2007, 55(12): 5695-5702
    [109] Elad M, Bruckstein A M. A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inform. Theory, 2002, 48(9): 2558-2567
    [110] Chauris H, Nguyen T. Seismic demigration/migration in the curvelet domain. Geophysics, 2008, 73: S35-S46
    [111] Schmeelk J. Wavelet transforms on two-dimensional images. Mathematical and Computer Modelling, 2002, 85(5): 389-392
    [112] Hong G, Zhang Y. Wavelet-based image registration technique for high-resolution remote sensing images. Computers & Geosciences, 2008, 63(4): 227-234
    [113] Wang J Z. Wavelets and Imaging Informatics: A Review of the Literature. Journal of Biomedical Informatics, 2001, 420(2): 169-180
    [114] Candes E J, Donoho D L. Curvelets - a surprisingly effective nonadaptive representation for objects with edges. Curves and Surface Fitting, Saint-Malo: Vanderbilt University Press, 1999: 105-120
    [115] Ignjatovic Z, Bocko M F. A method for efficient interpolation of discretetime signals by using a blue-noise mapping method. IEEE ICASSP, 2005: 213-216
    [116] Long A S. The revolution in seismic resolution: High density 3d spatial sampling developments and results. the Meeting of Australian Society of Exploration Geophysicists, 2004
    [117] Laszlo S K. Stochastic sampling of two-dimensional images. COMPUGRAPHICS 95, 1995: 292-299
    [118] Cook R L. Stochastic sampling in computer graphics. ACM Transactions on Graphics, 1986, 5(3): 51-72
    [119] Eldar Y, Lindenbaum M, Porat M, et al. The farthest point strategy for progressive image sampling. IEEE Transactions on Image Processing, 1997, 6(9): 1305-1315
    [120] Mitchell D. Generating antialiased images at low sampling densities. Proc. of the 14th annual conf. on computer graphics and interactive techniques, 1987: 65-72
    [121] Theu?l T, Moller T, Groller M E. Optimal Regular Volume Sampling. Proceedings of the conference on Visualization '01, San Diego, California: IEEE Computer Society, 2001: 91-98
    [122] Grundland M, Patera J, Zuzana M, et al. Image Sampling with Quasicrystals. Image sampling on quasicrystals, 2009, 5(75): 1-23
    [123] Verschuur D, Berkhout A J, Wapenaar C P A. Adaptive surface-related multiple elimination. Geophysics, 1992, 57: 1166-1177
    [124] Broadhead M K. The impact of random noise on seismic wavelet estimation. The Leading Eage, 2008, 27(2): 226-230
    [125] Durand S, Froment J. Reconstruction of wavelet coefficients using total variation minimization. SIAM J. Sci. Comput, 2003, 24(5): 1754-1767
    [126] Chan T F, Zhou H M. Total variation improved wavelet thresholding in image Compression. In Proc. Seventh International Conference on Image Processing, 2000: 391-394
    [127] Ma J, Hussaini M, Vasilyev O V, et al. Multiscale geometric analysis of turbulence by curvelets. Physics of Fluids, 2009, 21(7): 1-19
    [128]卢成武,宋国乡.带曲波域约束的全变差正则化抑噪方法.电子学报, 2008, 36(4): 646-649
    [129] Newark O S. Denoising with higher order derivatives of bounded variation and an application to parameter estimation. Computing, 1998, 60: 1-27
    [130]沈维燕.基于Contourlets和全变差的一种图像去噪方法的研究[硕士学位论文].南京:南京理工大学, 2006
    [131] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992, 62(1): 63-67
    [132] Ma J, Fenn M. Combined complex ridgelet shrinkage and total variation minimization. SIAM J. Sci. Comput. , 2007, 28(3): 984-1000
    [133] Vogel C R, Oman M E. Iterative method for total variation denoising. SIAM J. Sci. Comput., 1996, 17(1): 227-238
    [134]李敏,冯象初,杨文杰.基于全变差和小波硬阈值的图像去噪.信号处理, 2006, 22(6): 917-919
    [135]张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解.科学通报, 2006, 51(6): 628-632
    [136] Protter M, Elad M. Image sequence denoising via sparse and redundant representations. IEEE Transactions on Image Processing, 2009, 18(1): 27-35
    [137]邓承志.图像稀疏表示理论及其应用研究[博士学位论文].武汉:华中科技大学, 2008
    [138]肖泉,丁兴号,王守觉,等.基于自适应超完备稀疏表示的图像去噪方法.仪器仪表学报, 2009, 30(9): 1886-1890
    [139] Chen S, Donoho D L, Saunders M. Atomic decomposition by basis pursuit. SIAM J Sci Comput, 1999, 20: 33-61
    [140] Friedman J H, Stuetzle W. Projection pursuit regression. Journal of the American Statistical Association, 1981, 76(3): 817-823
    [141] Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuits: Recursive function approximation with applications to wavelet decomposition. Proceedings of the 27th Asilomar Conference in Signals, Systems, and Computers, 1993
    [142] Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Transaction on Signal Process, 1993, 41(12): 3397-3415
    [143] Meyer F G. Fast compression of seismic data with local trigonometric bases. Proc. SPIE 3813, Wavelet VII, 1999: 648-658
    [144] Wang Y, Wu R. Seismic data compression by an adaptive local cosine/sine transform and its effects on migration. Geophysical Prospecting, 2000, 48: 1009-1031
    [145] Zheludev V A, Kosloff D D, Ragoza E Y. Compression of segmented 3D seismic data. International Journal of Wavelets, Multiresolution and Information Processing, 2004, 2(3): 269-281
    [146] Bremaud P, Massoulie L, Ridolfi A. Power spectra of random spike fields and related processes: 2002
    [147] Bartlett M S. The spectral analysis of point processes. Journal of the Royal Statistical Society, Series B (Methodological), 1963, 25: 264-296

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700