用户名: 密码: 验证码:
核与辐射安全集成仿真方法与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何准确预知核与辐射环境下从业人员受到的辐射剂量,尽量降低核与辐射危害一直是辐射防护领域关注的重要问题。仿真科学将理论和实验研究连接起来,己被广泛应用于计算机模拟核与辐射环境下应用方案的设计、评估和优化,其分析过程一般表现为跨平台、跨领域、多用户协作之间的迭代优化。随着网络与通信、高性能计算、虚拟现实、可视化等信息技术的快速发展,为从整体行为上高保真集成仿真核与辐射环境下的作业过程、高效开展核设计和分析提供了可能。
     本文在此背景下结合当前相关先进信息技术与理论,就如何高保真模拟核与辐射环境下作业过程、尽可能降低职业辐照剂量等相关问题展开了系统深入地研究。主要工作以及创新点描述如下:
     1)在充分调研国内外研究现状的基础上,系统分析了核与辐射安全集成仿真需求,结合当前先进信息技术,构建了一套支持多种服务模式、基于组件技术的面向核与辐射安全集成仿真的层次化、模块化系统架构,提供了作业方案交互设计、仿真和分析、人员剂量管理、虚拟培训等多种服务需求的集成仿真解决方案;
     2)提出并发展了基于自适应八叉树与视锥体裁剪技术的大规模复杂场景实时渲染方法和基于GPU的不规则数据场与任意几何体叠加可视化方法,从简化渲染数据量、避免数据规则化处理等多个环节对耦合辐射数据场的大规模复杂仿真场景交互式渲染过程进行了优化,提高了仿真场景渲染的效率解决了大规模复杂仿真场景难以在单机上实时渲染的问题;
     3)在上述研究基础上,完成了核与辐射安全集成仿真系统RVIS2.0系统的设计与开发,为从整体行为上高保真集成仿真核与辐射环境下的作业过程,高效保障“知剂量”优化决策提供了可能。在国际合作框架协议支持下,将RVIS2.0应用于国际热核聚变实验堆ITER极向场线圈PF4维修剂量的仿真与分析中,给出了优化的屏蔽和维修方案,对辅助ITER维修优化具有积极意义。
How to predict radiation dose of staff and reduce the radiation harm is one of the key issues of radiation protection. Simulation technology which connects theory and experimental study has been widely used in planing, evaluation and optimization of radiation-related activities. With the development of modern information technologies, such as, network and communication, high-performance computing, virtual simulation and visualization in scientific computing, high fidelity simulation of the operation process in nuclear and radiation environment and efficient development of nuclear technologies have been widely studied.
     In this thesis, a systematic and deep study on how to achieve high fidelity simulation of the operation process in nuclear facilities repair and reduce occupational irradiation dose as much as possible, has been conducted by applying the advanced information technologies. Main work and innovations are as follows:
     1) Based on the deep investigation of existing nuclear and radiation safety simulation approaches and system, a component based multi-layer framework for nuclear and radiation safety integrated simulation has been prensented. In this framework, the component technology and hybrid service mode coupling with C/S and B/S approaches were adopted. And requirements on scheme's interaction design and simulation analysis, scheme and worker's historical dose remote management, virtual operating and training and so on, are well satisfied in this framework.
     2) According to the requirement on real-time rendering of large scale complex scenes in stand-alone device, an octree based real-time rendering method has been presented. The method optimizes the data field and model simulation scene visualization process. Meanwhile, according to the needs of superimposed visualization of irregular data field and model, the author develops the large irregular data field visualization method and the model superposition based on programmable GPU. The method avoids data regularization operation and improves the efficiency of real-time rendering of simulation data.
     3) Giving consideration to easy use, excellent expansibility and high fidelity comprehensive simulation, an integrated system RVIS has been developed and applied to the evaluation and optimization of ITER PF4coil maintenance, the simulation result received ITER organization recognition. And this proposed method and system provide a useful approach to guide the analysis and optimization of ITER maintenance.
引文
[1]杨湘山,吕焱,李冰,杨晓光,刘洪阳,赵力.新形势下的核安全与辐射安全对策[J].中国安全科学学报,2005,07:44-47.
    [2]潘自强,陈竹舟,肖雪夫,胡百精.由核事故看核与辐射安全[J].中国核工业,2011,07:26-31.
    [3]王精业,杨学会,徐豪华.仿真科学与技术的学科发展现状与学科理论体系[J].科技导报,25/12,2007.6,5.
    [4]吴重光.仿真技术[M].北京:化学工业出版社,2000..
    [5]IEEE Std 1516. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) - Framework and Rules[S]. Simulation Interoperability Standards Committee of the IEEE Computer Society, Institute of Electrical and Electronics Engineers, Inc., New York, USA,2000.15-17
    [6]http://www.iter.org/
    [7]Lindell B. A History of Radiation Protection. Radiat. Prot. Dosimetry,1996, 68(1/2):83.
    [8]李德平.ICRP和辐射防护的发展——祝贺ICRP诞生70周年.辐射防护,1998,18(5-6):447.
    [9]http://www.wano.info
    [10]http://www.cbcb.umd.edu/-rcolwell
    [11]卢继平,郑力,徐家球.虚拟制造技术[J].计算机辅助设计与制造,1998,5/6
    [12]Using simulation in production management[J], Simulation, Vol.66, No.2, Feb. 1996, p.73.
    [13]Simulation:strategic technique for the factory's future[J]. Simulation, Vol.69, No.5, Nov.1997, p.291.
    [14]平子叔男,张玉生.计算机网络的动向.计算机研究与发展,2009,06.
    [15]李根国,桂亚东,刘欣,浅谈高性能计算的地位及应用[J].计算机应用与软件,2006,23(9):3-4,18
    [16]赵沁平.虚拟现实综述[J].中国科学F辑:信息科学,2009年第39卷第1期.
    [17]唐泽圣.三维数据场可视化[M].北京:清华大学出版社,1999.
    [18]Leservot, A. and L. Chodorge (2005). CHAVIR:a virtual site simulation environment, ENC.
    [19]Aghina, M. A. C., et al. (2009). "Virtual environments simulation for dose assessment in nuclear plants." Progress in Nuclear Energy 51:382-387.
    [20]Mol, A. C. A., et al. (2011). "Radiation dose rate map interpolation in nuclear plants using neural networks and virtual reality techniques." Annals of Nuclear Energy 38(2-3):705-712.
    [21]Aghina, M. A. C., et ai. (2012). "Non-conventional interfaces for human-system interaction in nuclear plants'virtual simulations." Progress in Nuclear Energy 59: 33-43.
    [22]Mol, A. C. A., et al. (2008). "Using a Game Engine for VR Simulations in Evacuation Planning." Computer Graphics and Applications, IEEE 28(3):6-12.
    [23]Mol, A. C. A., et al. (2006). "Neural and genetic-based approaches to nuclear transient identification including 'don't know' response." Progress in Nuclear Energy 48(3):268-282.
    [24]Mol, A. C. A., et al. (2009). "Nuclear plant's virtual simulation for on-line radioactive environment monitoring and dose assessment for personnel." Annals of Nuclear Energy 36(11-12):1747-1752.
    [25]1, A. n. C. A. M., et al. (2009). "Virtual environments simulation for dose assessment in nuclear plants." Progress in Nuclear Energy 51:382-387.
    [26]Freitas, V. G. G., et al. (2014). "Virtual reality for operational procedures in radioactive waste deposits." Progress in Nuclear Energy 71 (0):225-231.
    [27]Vermeersch, F. (2005). "ALARA pre-job studies using the VIS1PLAN 3D ALARA planning tool." Radiation Protection Dosimetry 115(1-4):294-297.
    [28]F. Vermeersch, C. Vanbosstraeten, "Software VISIPLAN:A powerful tool for optimization",2nd European ISOE Workshop on Occupational Exposure Management at NPPs", April 5-7 2000, Tarragona, Spain.
    [29]J. Rodenas, I. Zarza, M. C. Burgos R6denas J, Zarza I, Felipe A, et al., Developing a Virtual Reality Application for Training Nuclear Power Plant Opertors:Setting up a Database Containing Dose Rates in the Refuelling Plant[J], Radiation Protection Dosimetry,111 (2) (2004) 173-180.
    [30]Telje J, Edvardsen ST, MeyerG, et al. The VRdose Software System:User Manual, Report and Design Documentation for R5.05A0698890,2004:184
    [31]Iguchi Y, Kanehira Y, Tachibana M, et al. Development Of Decommissioning Engineering Support System(DEXUS) of the Fugen Nuclear Power Station. Journal of Nuclear Science and Technology,2004,41 (3):367.
    [32]Yukiharu Ohga, Mitsuko Fukuda, Kiyotaka Shibata, et al. A SYSTEM FOR THE CALCULATION AND VISUALISATION OF RADIATION FIELD FOR MAINTENANCE SUPPORT IN NUCLEAR POWER PLANTS. Radiation Protection Dosimetry (2005), Vol.116, No.1-4, pp.592-596
    [33]Yoon Hyuk Kim and Wom Man Park, Use of Simulation Technology for Prediction of Radiation Dose in Nuclear Power Plant, CIS 2004, LNCS 3314, pp. 413-418,2004.
    [34]H.S Park, G.H Kim, K.W Lee, et al. Development of Animation and Simulation Module for Evaluation of Worke's Dose, WM'07 Conference, Feb.25-Mar. 1,2007, Tuscon,AZ.
    [35]J.F. Briesmeister, MCNP-A general Monte Carlo N-Particle transport code, version 4C[R], Los Alamos National Laboratory, USA,2000.
    [36]刘鹏飞,等.虚拟现实技术在核电厂仿真中的应用.原子能科学与技术,2008,42(809):169-175.
    [37]刘中坤,等.核设施退役虚拟仿真系统框架研究.原子能科学技术,2011,45(9):1080-1086.
    [38]刘中坤,et al.(2010).“核设施退役虚拟仿真中烟尘输运过程建模及算法研究原子能科学技术44增刊:596-601.
    [39]http://www.fds.org.cn
    [40]汤正道:基于虚拟现实的剂量评估系统设计与应用研究[D].合肥:中国科学院研究生院博士学位论文,2010.
    [41]Tang, Z. D., et al. (2010). "Real-time dose assessment and visualization of radiation field for EAST tokamak." Fusion Engineering and Design 85(7-9): 1591-1594.
    [42]Per Wikman-Svahn, Radiation protection issues related to the use of nuclear power[J]. WIREs Energy Environ2012,1:256-269 doi:10.1002/wene.22.
    [43]周永增,辐射防护的生物学基础——辐射生物效应,辐射防护,2003,23(2):90-101.
    [44]国际放射防护委员会.国际放射防护委员会第26号出版物.李树德译.北京:原子能出版社,1983
    [45]ICPR Publication 60,1990 Recommendations of Internation Commission on Protection (1991)[R].
    [46]王恒德.辐射防护最优化的程序和方法.辐射防护,1995,15(3):147-157.
    [47]电离辐射防护与辐射源安全基本标准[R],GB 18871-2002.
    [48]International Commission on Radiological Protection.2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103[R]. Oxford Pergamon Press2007.
    [49]外部辐射源引起的职业照射评估[R],No. RS-G-1.3,国际原子能机构和国际劳工局联合倡议制订,1999.
    [50]摄入放射性核素引起的职业照射评估[R],No.RS-G-1.2,国际原子能机构和国际劳工局联合倡议制订,1999.
    [51]丁大钊,叶春堂.中子物理学[M].北京:原子能出版社,2001.
    [52]谢仲生,邓力.中子输运理论数值计算方法[M].西安:西北工业大学出版社,2005.
    [53]谢仲生,张育曼,张建民,等.核反应堆物理数值计算[M].北京:原子能出版社,1997.
    [54]K. Niita, T. Sato, H. Iwase, et al. PHITS-a particle and heavy ion transport code system. Radiation Measurements,41(9-10)(2006):1080-1090
    [55]Ohta, M., et al. Benchmark test of TRIPOLI-4 code through simple model calculation and analysis of fusion neutronics experiments at JAEA/FNS. Fusion Engineering and Design,88(9-10) (2013):2160-2163.
    [56]A. Fasso, A. Ferrari, J. Ranft, FLUKA:A multi-particle transport code (program version 2005), CERN-2005-010, INFN/TC 05/11, SLAC-R-773.
    [57]S. Agostinelliae, J. Allison, K. Amakoe. GEANT4:A Simulation Toolkit. Nuclear Instruments and Methods in Physics Research Section A,506(3)(2003):250-303.
    [58]Donald Heam, M. Pauline Baker著,蔡士杰,吴春铭,孙正兴等译.计算机图形学(第二版[M].电子工业出版社.2002.
    [59]Drebin R A, Carpenter L, Hanrahan P. Volume rendering[C]//ACM Siggraph Computer Graphics. ACM,1988,22(4):65-74.
    [60]Crow F C. Summed-area tables for texture mapping[C]//ACM SIGGRAPH Computer Graphics. ACM,1984,18(3):207-212.
    [61]Dippe M A Z, Wold E H. Antialiasing through stochastic sampling[J]. ACM Siggraph Computer Graphics,1985,19(3):69-78.
    [62]Westermann R, Ertl T. Efficiently using graphics hardware in volume rendering applications[C]//Proceedings of the 25th annual conference on Computer graphics and interactive techniques. ACM,1998:169-177.
    [63]Eichmiller F. Device and method for shielding healthy tissue during radiation therapy:U.S. Patent 5,190,990[P].1993-3-2.
    [64]Pistorius S. A two-step algorithm for predicting portal dose images in arbitrary detectors[J]. Medical physics,2000,27(9):2109-2116.
    [65]Owens J.D., Luebke D., Govindaraju, et al, A survey of general - purpose comutation on graPhies hardware[C]. ComPuter GraPhies Forum,80-113,2007.
    [66]Moreland K. Angel E. The FFT on a GPU[C]. In Proeeedings of Graphics Hardware. San Diego. California.2003.
    [67]http://www.3ds.com/zh/products-services/catia/
    [68]http://www.solidworks.com/
    [69]http://www.ptc.com/
    [70]杨春晖,系统架构设计师教程,北京:清华大学出版社[M],2009年
    [71]宾晓华.利用领域专用软件体系结构集成大型指挥系统的方法[J].海军航空工程学院学报,2008,23(2):194-197.
    [72]任中方,张华,闫明松,等.MVC模式研究的综述[J],计算机应用研究,2004,21(10):1-4.
    [73]张国宣,韦穗.虚拟现实中的LOD技术[J].微机发展,2001,11(1):13-16.
    [74]董士海.人机交互的进展及面临的挑战[J].计算机辅助设计与图形学学报.2004,16(1):1-13.
    [75]张志刚.基于图像的绘制技术[J].计算机仿真.2010(6):279-282.
    [76]王志强,洪嘉振.碰撞检测问题研究综述[J].软件学报,1999,10(5):545-551.
    [77]魏迎梅.虚拟环境中碰撞检测问题的研究[J].国防科技大学,2000.
    [78]朱元峰,孟军,谢光华,等.基于复合层次包围盒的实时碰撞检测研究[J].系统仿真学报,2008,20(2):372-377.
    [79]潘振宽,崔树娟,张继萍,等.基于层次包围盒的碰撞检测方法[J].青岛大学学报:自然科学版,2005,18(1):71-76.
    [80]http://www.ogre3d.org/
    [81]http://www.vtk.org/
    [82]http://www.jenkinssoftware.com/
    [83]http://qt.digia.com/
    [84]ITER IDM:PD-ITER Plant Description 2X6K67_v1_1.
    [85]http://www.autodesk.com/products/autodesk-3ds-max/overview
    [86]M. Z. Youssef, and R. E. Feder. Global dose rate assessment in ITER diagnostics ports based on the 3-D FEM ATTILA code. Fusion Engineering and Design, 87(7-8)(2012):1101-1110
    [87]M. Z. Youssef, and R. E. Feder. Global dose rate assessment in ITER diagnostics ports based on the 3-D FEM ATTILA code. Fusion Engineering and Design, 87(7-8)(2012):1101-1110
    [88]M.Y. Cheng, Q. Zeng, R.F. Cao, et al. Construction a voxel model with physical properties derived from the CT numbers. Progress in Nuclear Science and Technology (PNST),2(2011):237-241.
    [89]Mengyun Cheng, Qin Zeng, Ruifen Cao, Gui Li, Huaqing Zheng, Shanqing Huang, Gang Song, Yican Wu, and FDS Team, Construction a Voxel Model with physical properties derived from the CT numbers, Progress in Nuclear Science and Technology (PNST).2012.
    [90]CAD-based Interface Programs for Fusion Neutron Transport Simulation. Y. Wu, FDS Team. Fusion Engineering and Design,2009,84:1987-1992. Also presentation at the 25th Symposium on Fusion Technology (SOFT-25), Sept.15-19,2008, Rostock, Germany.
    [91]Y.C. Wu, FDS Team. CAD-based interface programs for fusion neutron transport simulation. Fusion Engineering and Design,84(7-11)(2009):1987-1992.
    [92]Y.C. Wu, ZS. Xie, U. Fischer, A discrete ordinates nodal method for one-dimensional neutron transport calculation in curvilinear geometries. Nuclear Science and Engineering,133 (3X1999):350-357.
    [93]Y. Li, L. Lu, A. Ding, et al. Benchmarking of MCAM 4.0 with the ITER 3D model. Fusion Engineering and Design,82(15-24)(2007):2861-2866.
    [94]H. Hu, Y.C. Wu, M.L. Chen, et al. Benchmarking of SNAM with the ITER 3D model. Fusion Engineering and Design,82(15-24)(2007):2867-2871.
    [95]P.C. Long, J. Zou, S.Q. Huang, et al. Development and application of SN Auto-Modeling Tool SNAM 2.1. Fusion Engineering and Design,85(7-9)(2010): 1113-1116.
    [96]Y.C. Wu, S.L. Zheng, X. Zhu, et al. Conceptual Design of the Fusion-driven Subcritical System FDS-I. FDS Team. Fusion Engineering and Design,81(2006), PartB:1305-1311.
    [97]Y.C. Wu, FDS Team. Conceptual Design of the China Fusion Power Plant FDS-Ⅱ. Fusion Engineering and Design,83(10-12)(2008):1683-1689.
    [98]蒙特卡罗粒子输运计算自动建模程序系统的研究与发展.吴宜灿,李莹,卢磊,丁爱平,胡海,曾勤,罗月童,郑善良,黄群英,陈义学.核科学与工程,2006,26(1):20-27.
    [99]罗月童,模型变换技术及其存MCNP建模中的应用研究[D],合肥工业大学博士学位论文,安徽合肥,2005.
    [100]罗月童,孙静和薛哗,基于转换特征的三维BREP模型的CSG树自带生成算法[J],软件技术,2007,20:56-59.
    [101]龙鹏程,离散纵标法中子输运计算可视化系统设计研究及应用[D].中国科学院博士学位论文.2010.
    [102]ITER IDM:Project Requirements (PR) 27ZRW8_v4_6
    [103]大型集成多功能中子学计算与分析系统VisualBUS的研究与发展.吴宜灿,李静惊,陈明亮,郑善良,许德政,蒋洁琼,李莹,卢磊,丁爱平,胡海敏,龙鹏程,罗月童,曹瑞芬,邹俊,何兆忠,曾勤,FDS团队.核科学与工程,2007,27(4):365-373.
    [104]Y.C. Wu, J.J. Li, Y. Li, et al. An integrated multi-functional neutronics calculation and analysis code:VisualBUS. Chinese Jouranl of Nuclear Science and Engineering,27(4)(2007):365-373.
    [105]Y.X. Chen, U. Fischer, Rigorous, MCNP based shutdown dose rate calculations:computational scheme, verification calculations and application to ITER. Fusion Engineering and Design,63-64(2002):107-114.
    [106]Y.Luo, P.Long, G.Wu, etc. SVIP-N 1.0:An Integrated Visualization System for Neutronics Analysis, Fusion Engineering and Design,85 (2010) 1527-1530.
    [107]Pengcheng LONG, Qin ZENG, Tao HE, et. al. Development of a Geometry-Coupled Visual Analysis System for MCNP, Progress in Nuclear Science and Technology, Vol.2, pp.280-283 (2011)
    [108]Y.T. Luo, P.C. Long, G. Wu, et al. SVIP-N 1.0:An Integrated Visualization System for Neutronics Analysis. Fusion Engineering and Design,85 (2010) 1527-1530.
    [109]Tao He, Pengcheng LONG, Shaoheng ZHOU, et al., A Method for 3D Structured data set Regulation Based on Image, Recent Advances in CSIE 2011, LNEE 126, pp.643-648.
    [110]周少恒,何桃,龙鹏程,程梦云,江平MCNP大规模重复结构体素的实时交互可视化方法研究.核科学与工程,32(3):266-270,2012.
    [111]罗月童,龙鹏程,薛哗,等.面向中子学分析的集成可视化平台SVIP的发展研究[J].核科学与工程,2008,27(4):374-378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700