用户名: 密码: 验证码:
基于细分曲面的医学假体CAD关键造型技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的进步与生活水平的提高,现代外科医学中精确设计制造人工假体来修复病损器官的案例日益增多,这对CAD/CAM技术提出了面向生物医学的特殊要求,也将刺激与推动CAD/CAM技术本身的创新。本文的研究以基于分片光滑细分曲面表示的医学假体CAD系统的开发为目标,从医学图像的输入到假体制造接口的输出,研究了医学图像的三维重建、三角网格模型处理、细分曲面拟合、基于细分曲面的实体造型与RP加工接口表示等关键造型技术,主要研究内容和成果如下:
     (1)建立了基于细分曲面表示的医学假体CAD系统的总体架构,分别从技术体系与功能模块两个角度来阐述。技术体系包括基础理论、实现工具与临床应用三个层次,为进一步的研究指明了方向;功能模块从软件实现的角度描述了医学假体CAD系统的总体框架,为系统持续开发与完善打下了坚实的基础。
     (2)研究了医学图像三维重建之MC算法的拓扑稳健与高效运行的实现方法。实现了无拓扑歧义的MC算法;为了提高原MC算法的效率,将区域增长分割的思想纳入到MC算法中,提出了一种基于相邻立方体跟踪的MC算法。
     (3)研究了面向细分曲面拟合的三角网格简化与形状优化技术。为了得到细分曲面拟合所需要的尽量简单而又形状优良的基网格,现有算法与软件都难以单独奏效,本文采用了多种策略来达此目的。首先在QEM简化算法的边折叠代价计算公式基础上添加了形状优化项,用系数α来控制该项的影响大小,称为αShape-QEM简化算法;其次,将基于切向Laplace平滑的顶点几何优化以及基于边折叠与边交换的网格拓扑优化集成到总体简化过程中,提出了迭代式网格简化优化算法。
     (4)提出了基于交互式优化的细分曲面拟合算法,可在计算效率与拟合精度之间取得最佳平衡。首先对输入原始网格M_O用前述方法简化优化得到基网格M_B,再用M_B对M_O进行若干次细分重网格化(Remeshing)得到逼近原始网格M_O的细分网格M R,对M R进行细分拟合得到控制网格M_C,使得M_C的细分极限曲面M_∞与原始网格M_O互相贴合。
     (5)提出了“支持细分曲面的构造实体边界表示(Constructive Solid Boundary Representation with Subdivision Surfaces,CSBrepSS)”实体造型方法。该方法采用混合CSG/Brep表示,实体模型在整体上用CSG树表示,整个模型为基本边界表示的叶节点的组合,叶结点可以是三角网格、细分曲面控制网格或参数表示的基本几何体。
     (6)提出了一种基于细分曲面的RP加工接口表示方法。RP系统可以用内嵌的细分曲面造型模块读入细分曲面控制网格表示的CAD模型,按照模型中指定的细分规则与特征标记对控制网格进行细分,然后再对细分结果作切片处理与分层加工。这样可以用紧凑的细分控制网格来表示形状复杂的光滑曲面,为大型复杂假体的网络化制造铺平了道路。
With the development of advanced technologies and improvement of life quality, accurately designed and manufactured artificial prosthesis for sick organ repairing is applied more and more often in modern surgery. This needs to adapt traditional CAD/CAM systems to the particular requirement of bio-medicine application, also will impulse the innovation of CAD/CAM technology itself.
     The research of this dissertation aims at the development of a medical prosthesis CAD system based on piece-wise subdivision surfaces. Thus, the research objects are the key modeling technologies for the system, from the medical image input to the manufacturing interface output, including medical image three-dimensional reconstruction, triangular mesh processing, subdivision surfaces fitting, subdivision surfaces based solid modeling and rapid prototyping manufacturing interface representation, etc. The main research contents and achievements are as following in detail:
     (1) An overall architecture of medical prosthesis CAD system based on subdivision surfaces is established, which is described in the two viewports: technological hierarchy and functional modules. The technological hierarchy consistes three levels: fundamental theory, realization tool and clinic applications, which is a good guide for further research. The functional modules describe how to implement the system, which paves the way for the system lasting development.
     (2) The topology robust and efficient Marching Cube algorithm for medical image 3D reconstruction is implemented. An ambiguity resolved MC algorithm is implemented; to improve the efficiency of the original MC algorithm, the idea of Region Growing Segmentation is put into MC algorithm, and the Neighbor Cubes Tracing based MC algorithm is put forward.
     (3) The method of triangular mesh smoothing, simplification and shape optimization for subdivision surfaces fitting is implemented. To get the base mesh well shaped and as compact as possible for subdivision surfaces fitting, none available algorithms and software can succeed along. In this dissertation, multi-policies are adopted to achieve the goal. First, a shape optimization item is added to the edge collapse cost computation formula of the original QEM algorithm, and a coefficientαis used for controlling the shape item’s effect on the overall cost, the method is calledαShape-QEM simplification algorithm. Second, the Tangent Laplace Smoothing based mesh vertex geometric optimization and the Local Topology Adjusting based mesh topology optimization is integrated into the overall simplification process, thus the Iterative Mesh Simplification and Optimization algorithm is put forward.
     (4) The Interactive Optimization based Subdivision surface Fitting algorithm is put forward, by which the computational efficiency and fitting accuracy can be balanced best. First, the inputted original mesh M_O is simplified and optimized to base mesh M_B, which is Subdivision Remeshed several times to get M R that fitted to M_O, then M R is subdivision fitted to control mesh M_C, from which the subdivision limit mesh M_∞that fits M_O is gotten.
     (5) The solid modeling method of“Constructive Solid Boundary Representation with Subdivision Surfaces (CSBrepSS)”is put forward. Using hybrid CSG/Brep representation, the whole solid model is a CSG tree made of leaf nodes with basic Brep, which include triangular mesh, subdivision surface control mesh and basic geometries with parametric representation.
     (6) A subdivision surfaces based RP interface representation method is put forward. Using the embedded subdivision surface modeling module, RP equipments can read CAD models represented with subdivision control mesh, subdivide the control mesh to generate smooth models with the subdivision rule and feature tags provided in the control mesh, then slice the result mesh and generate machining code. Thus, complex smooth surface can be represented with compact subdivision control mesh, and it paves the way of networked manufacturing of large complex prostheses.
引文
[1] 廖文和. 基于 Trimmed NURBS 的 CAD/CAM 一体化技术基础研究[D]. 南京:南京航空航天大学,1996.
    [2] Derek Ney, Elliot K Fishman, Henry Fuchs, etc. Three-Dimensional Visualization of Medical Data. ACM SIGGRAPH’1994 course notes #24, Orange County, Florida, USA.
    [3] Phidias Network. Phidias Newsletter #1-8. http://www.materialise-rp.co.uk/mimics/casestudies_ENG.html.
    [4] 田捷, 包尚联, 周明全. 医学影像处理与分析[M]. 电子工业出版社,北京,2003.9.
    [5] 许乙凯. 现代超声/PET/三维适形放疗技术[M]. 人民军医出版社, 北京, 2003.10.
    [6] 罗福成. 彩色多普勒超声诊断学[M]. 人民军医出版社,北京, 2002.9.
    [7] Kaufman Arie, Cohen D, Yagel R. Volume Graphics[J]. IEEE Computer,1993;26(7):51-64.
    [8] Chandrajit L B, Edward J C, Lin Kwunnan. Arbitrary topology shape reconstruction from planar cross sections[J]. Graphical Models and Image Processing, 1996, 58(6): 524~543.
    [9] 廖胜辉, 许端清, 董金祥. 颌骨重建中的图像分割和轮廓对应及分支问题[J]. 计算机辅助设计与图形学学报,16(9),2004:1225-1230.
    [10] Lorensen WE, Cline HE. Marching Cubes: A High Resolution 3D Surface Reconstruction Algorithm[J]. Computer Graphics,1987;21(4):163-169.
    [11] Besl P J, McKay N D. A method of registration of 3-D shapes, IEEE Transaction on Pattern Analysis and Machine Intelligence, 1992,14(2): 239–255.
    [12] Zhang-zhengyou. Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision, 1994, 13(2): 119-152.
    [13] Hoppe Hugues. Surface Reconstruction from Unorganized Points[PhD thesis]. University of Washington,1994.
    [14] Hoppe Hugues, DeRose Tony, Duchamp Tom, et al. Piecewise smooth surface reconstruction[C]. ACM SIGGRAPH. New York: ACM Press, 1994, 295-302.
    [15] 张丽艳. 逆向工程中模型重建关键技术研究[博士学位论文]. 南京航空航天大学,2001.
    [16] 周儒荣,张丽艳,苏旭,周来水. 海量散乱点的曲面重建算法研究. 软件学报, 2001, 12(2):249-255.
    [17] 张舜德,朱东波,卢秉恒. 反求工程中三维几何形状测量及数据预处理. 机电工程技术, 2001,(1):7-10.
    [18] 张丽艳,周儒荣,蔡炜斌等. 海量测量数据简化技术研究. 计算机辅助设计与图形学学报, 2001,13(11): 1119-1023.
    [19] Bajaj C, Bernardini F, and Xu G.. Automatic reconstruction of surfaces and scalar fields from 3d scans. Proceedings of ACM Siggraph, 1995: 109-118.
    [20] Guo B. Surface reconstruction: from points to splines. Computer-Aided Design, 1997, 29(4): 269-277.
    [21] Amenta N, Bern M, Kamvysselis M. A new voronoi-based surface reconstruction algorithm. ACM Siggraph'98, 1998: 415-421.
    [22] Sweldens, Schroder. Digital Geometry Processing. ACM SIGGRAPH’2001 Course Notes.
    [23] Mario Botsch, Mark Pauly, Christian Rossl, etc. Geometric Modeling Based on Triangle Meshes. ACM SIGGRAPH 2006 Course Notes.
    [24] J.Blinn, A Generalization of Algebraic Surface Drawing, ACM Transactions on Graphics, 1(3), 1982(7):135-256.
    [25] D. Laidlaw, W. Trumbore and J. Hughes. Constructive Solid Geometry for Polyhedral Objects. Proceedings of the 13th annual conference on Computer graphics and interactive techniques, 1986(8):161-170, ACM Press, New York.
    [26] James F O'Brien, Terry S Yoo, Marc Alexa, et al. Modern Techniques for Implicit Modeling. ACM SIGGRAPH 2005, Course notes #13. 2005, ACM Press, New York.
    [27] D R Smith,T. Kanade. Autonomous Scene Description with Range Imagery[J]. CVGIP,1985,31(3):322-334.
    [28] Milroy M J,C. Bradley,G.W. Vickers. Segmentation of a Wrap-around Model Using an Active Contour[J]. Computer-Aided Design,1997,29(4):299-320.
    [29] P. J. Besl , R. C. Jain. Segmentation through Variable-Order Surface Fitting[J]. IEEE PAMI,1988,10(2):167-192.
    [30] Milroy MJ, Bradley C, Vickers GW, et al. G1 continuity of B-spline surface patches in reverse engineering[J]. Computer Aided Design,1995, 27(6):471-478.
    [31] T. DeRose,M. Kass,T. Truong. Subdivision Surface for Character Animation. Computer Graphics[C]. SIGGRAPH ’98 Proceedings,1998:85-94.
    [32] Loop C,Tony D. DeRose. Generalized B-spline surfaces of arbitrary topology[J]. In Computer Graphics Proceedings,ACM SIGGRAPH,1990,24(4):347-356
    [33] Loop C. Smooth subdivision surfaces based on triangles[D]. University of Utah, Utah: 1987.
    [34] Kobbelt Leif P, Vorsatz Jens, Labsik Ulf, et al.. A Shrink Wrapping Approachto Remeshing Polygonal Surfaces[J]. Computer Graphics Forum, 1999, 18(1):209-237.
    [35] H. Suzuki,S. Takeuchi,T. Kanai. Subdivision surfacetting to a range of points[C]. In Proc. Pacic Graphics '99,1999:158-167.
    [36] Ma W Y,Ma X H,Tso S K, et al. A direct approach for subdivision surface fitting from a dense triangle mesh[J]. Computer-Aided Design, 2004, 36(6):525-536.
    [37] 李桂清,马维银,鲍虎军. 带尖锐特征的Loop细分曲面拟合系统[J]. 计算机辅助设计与图形学学报, 2005, 17(6):1179-1185.
    [38] 周海,周来水,王占东,等. 散乱数据点的细分曲面重构算法及实现[J]. 计算机辅助设计与图形学学报,2003,15(10):1287~1292.
    [39] 李登高, 秦开怀. Loop细分曲面的优化拟合算法[J]. 计算机辅助设计与图形学学报, 2006,18(6):755-759.
    [40] 戴宁. 口腔修复CAD/CAM系统关键技术的研究[D]. 南京航空航天大学,南京:2006.
    [41] 欧阳春梅, 丁秋林, 林奋强, 等. 实体造型技术[M]. 国防工业出版社, 北京:1991.
    [42] Remi Allegre, Aurelien Barbier, Eric Galin, et al. A Hybrid Shape Representation for Free-form Modeling. Proceedings of the Shape Modeling International 2004 (SMI’04).
    [43] 朱心雄. 自由曲线曲面造型技术[M]. 科学出版社,2000.
    [44] 施法中. 计算机辅助几何设计与非均匀有理B样条[M]. 高等教育出版社. 北京:2001.
    [45] 王国瑾, 汪国昭, 郑建民. 计算机辅助几何设计[M]. 高等教育出版社,北京; Springer, Heidelberg, 2001.
    [46] Spatial Co. 3D ACIS Modeler. http://www.spatial.com/components/acis/. 2006.
    [47] 刘明丽, 吕培军. 切削陶瓷在CAD/CAM中的应用与发展[J]. 口腔颌面修复学杂志, V4(3),2003(9):197-200.
    [48] L Li, N Mailiiac. CAD/CAM Application in dentistry: a presentation of the duret system[J]. Journal of northwest industry of light industry(西北轻工业学院学报). V12, 1994(9):14-21.
    [49] 商洪涛. 快速成型技术修复下颌骨缺损的实验研究[D]. 第四军医大学. 西安:2004.
    [50] 颜永年, 崔福斋, 胡蕴玉, 等. 人工骨的快速成形制造. 材料导报. V14(2), 2000(2):11-13.
    [51] 颜永年, 熊卓, 张人佶, 等. 生物制造工程的原理与方法. 清华大学学报(自然科学版), V45(2), 2005:145-150.
    [52] 王秀峰, 罗宏杰. 快速原型制造技术[M]. 中国轻工业出版社, 北京:2001.
    [53] 卢清萍. 快速原型制造技术[M]. 高等教育出版社, 北京:2001.
    [54] Andreas Gebhardt. 快速原型技术[M]. 化学工业出版社, 北京:2005.
    [55] 张坚, 徐志锋, 郑海忠, 等. 选择性激光烧结法制备聚合物氧化铝纳米复合材料[J]. 材料工程. 2004(5):36-39.
    [56] 花国然, 罗新华, 赵剑峰. 纳米陶瓷块体的激光烧结成形实验研究[J]. 中国机械工程. V15(15), 2004(8):1372-1375.
    [57] 徐健, 颜永年, 卢伟. 快速成形技术的发展方向[J]. 航空制造技术. 2002(11):25-27.
    [58] 张凯, 刘伟军, 尚晓峰. 快速原型技术在国防科技中的应用[J]. 工具技术. V39(11), 2005:3-13.
    [59] Y K Siu, S T Tan. Modeling the material grading and structures of heterogeneous objects for layered manufacturing[J]. Computer-Aided Design. V34, 2002:705-716.
    [60] T R Jackson, H Liu, N M Patrikalakisa, et al. Modeling and designing functionally graded material components for fabrication with local composition control[J]. Materials and Design. V20, 1999:63-75.
    [61] Cho W, Sachs E, Patrikalakis N, et al. Methods for distributed design and fabrication of parts with local composition control [A]. Proceedings of the NSF Design and Manufacturing Grantees Conference [C]. Tampa F L. 2001. 20-28.
    [62] Marsan A, Kumar V, Dutta D, et al. An assessment of data requirements and data transfer formats for layered manufacturing. NISTIR 6216[R], Gaithersburg, MD: National Institute of Standards and Technology, 1998.
    [63] D Dutta, V Kumar. Towards STEP-based data transfer in layered manufacturing[A]. In Proceedings of the Tenth International IFIP WG5.2/5.3 Conference[C]. PROLAMAT'98, 1998.
    [64] B Starly, A Laua, W Sun, et al. Direct slicing of STEP based NURBS models for layered manufacturing[J]. Computer-Aided Design. V37, 2005:387–397.
    [65] Sara Anne McMains. Geometric Algorithms and Data Representation for Solid Freeform Fabrication[D]. University of California at Berkeley, 2000.
    [66] Jordan Philip Smith. Robust Geometric Methods for Surface Modeling and Manufacturing[D]. University of California at Berkeley, 2003.
    [67] 吴剑煌,刘伟军,王天然. 基于细分曲面的快速原型制造研究[J]. 高技术通讯, 2005, 15(11): 44-49.
    [68] 区士颀,宾鸿赞. 细分曲面切片轮廓线的 Lifting 小波变换[J]. 中国机械工程2005,16(17):1519-1523.
    [69] David Jonsson. Visualization of CAD Models-NURBS vs Subdivision[D]. Ume? University, 2005.
    [70] F B Prinz,C L Atwood, R F Aubin, et al. Rapid Prototyping in Europe and Japan- VOLUME I: ANALYTICAL CHAPTERS[R]. Rapid Prototyping Association of theSociety of Manufacturing Engineers, Baltimore, Maryland:1997.
    [71] 龚振宇, 刘彦普, 周树夏. 基于反求工程和快速原型的下颌骨缺损的修复[J]. 中华口腔医学杂志. V39(1), 2004(1):9-11.
    [72] Wenqiang Zhang,Shilei Zhang,Xuemei Huang, et al. 3D treatment planning and simulating for craniofacial skeleton[J]. International Journal of Advanced Manufacturing Technologies. V26, 2005(10):1043-1047.
    [73] 刘震宁, 朱天岳, 郑卫国. 快速成形技术制作骨盆镜像实体模型[J]. 北京大学学报(医学版). Vol35(1), 2003(2):82-85.
    [74] 郑卫国, 颜永年, 周赫赫. 快速成形技术在临床外科手术中的潜在应用[J]. 清华大学学报(自然科学版). V42(8), 2002(8):1038-1041.
    [75] Cerec3D Operator’s Manual. http://www. sirona.com/ecomaXL/index.php?site =SIRONA_COM_cerec. 2006.
    [76] 吕培军,李彦生,王勇等. 国产口腔修复CAD-CAM系统的研究与开发[J]. 中华口腔医学杂志,2002,37(5):367-371.
    [77] Materialise home page. http://www.materialise.com/home/home_ENG.html. Materialise Corp, Belgium. 2006.
    [78] Krsek Premysl, Krupa Petr. Human tissue geometrical modelling[A]. In: Applied Simulation and Modeling[C]. Calgary, Canada, IASTED, 2003:357-362.
    [79] 刘胜兰. 逆向工程中自由曲面与规则曲面重建关键技术研究[D]. 南京:南京航空航天大学, 2004.
    [80] 叶铭, 王成焘, 孙坚. 数字几何处理技术及在颌骨缺损修复手术中的应用[J]. 生物医学工程学杂志,V22(3), 2005:501-504.
    [81] 马如宇, 铁瑛, 薛文东, 等. 基于螺旋CT构建人体骨盆三维有限元模型[J]. 医用生物力学,V19(3), 2004.
    [82] 陆晴友, 吴岳嵩, 王成焘. 股骨近端解剖形态的CT三维重建与分析[J]. 第二军医大学学报, V26(9), 2005:1029-1033.
    [83] 何毓珏, 于仲嘉, 陈铭, 等. 滚动式人工膝关节设计[J]. 生物医学工程学杂志, V22(4), 2005:840-843.
    [84] 张秀娟, 王冬梅, 孙健, 等. 个性化下颌钛支架植入体的设计与生物力学评价[J]. 上海交通大学学报, V39(7),2005:1167-1172.
    [85] 戴尅戎, 朱振安, 孙月华, 等. 计算机辅助个体化人工半骨盆的设计与应用[J]. 中华骨科杂志, V25(5), 2005:258-262.
    [86] 黄雪梅, 王成焘. 曲面散乱数据的三角网格重建及在手术导航中的应用[J]. 上海交通大学学报, V39(6), 2005:933-936.
    [87] 黄雪梅, 焦婷, 林艳萍, 等. 应用CAD/CAM与快速成形技术重建颌面器官[J]. 生物医学工程学杂志, V22(2), 2005:320-323.
    [88] 黄雪梅, 林艳萍, 王成焘. 基于逆向工程的个性化人工膝关节CAD建模[J]. 机械设计与研究, V20(4), 2004:81-83.
    [89] 闫贺庆, 叶铭, 王成焘. 股骨解剖结构的B样条曲面重构[J]. 计算机辅助设计与图形学学报, V16(7), 2004:1020-1024.
    [90] 张文强, 黄雪梅, 王成焘. 计算机辅助全膝置换手术系统的创新设计[J]. 机械设计与研究, V20(2), 2004:48-51.
    [91] 戴尅戎, 倪诚, 王成焘, 等. 定制型膝肿瘤假体的设计与临床应用[J]. 中华骨科杂志, V23(10), 2003:606-610.
    [92] 张文强, 黄雪梅, 魏斌. 牙列缺损修复的多媒体仿真系统设计[J]. 上海交通大学学报[J]. V37(Sup.), 2003(11,增刊):102-105.
    [93] 尚鹏, 闫贺庆, 王成焘. 基于个体材料和几何特性的人体股骨振动模态分析[J]. 上海交通大学学报, V37(Sup.), 2003(11,增刊):99-102.
    [94] 朱云仙, 何亚飞, 王成焘. 个性化人工髋关节的设计与制造[J]. 机械制造, V41(8), 2003:29-31.
    [95] 叶铭, 杨庆铭, 于力牛. 断层医学图像处理技术及其在骨科手术中的应用[J]. 上海交通大学学报, V37(1), 2003:30-33.
    [96] 上海交大新闻网. 让机械为提高人类生命质量作出贡献——记2004年国家科学技术进步二等奖获奖项目:个性化假体CAD/CAM技术与计算机辅助临床工程系统. http://www2.sjtu.edu.cn/dsjtu1/chinese/web1/jjxw1.asp?id=8245. 2006.
    [97] 钱西汉, 王涛, 王成焘. ISDN在面向定做式人工关节的敏捷制造系统中的应用[J]. 现代计算机, N70, 1999(1):7-9.
    [98] 尚鹏, 钱西汉, 王成焘. 个性化人工髋关节的多代理设计系统[J]. 生物医学工程学杂志, V19(2), 2002:350-355.
    [99] 钱西汉. 个性化人工关节敏捷制造系统及其关键技术研究[D]. 上海交通大学, 2000.
    [100] 上海交通大学机械与动力工程学院.个性化假体CADCAM技术与计算机辅助临床工程系统. http://me.sjtu.edu.cn/keyangongzuo/cghj.htm. 2006.
    [101] 陈建军. 图形图像处理技术及其医学应用[D]. 博士后研究报告, 上海交通大学, 2004.
    [102] 王臻, 滕勇, 李涤尘. 基于快速成型的个体化人工半膝关节的研制——计算机辅助设计与制造[J]. 中国修复重建外科杂志, V18(5), 2004:347-351.
    [103] 刘亚雄, 李涤尘, 卢秉恒. 基于快速原型的个体匹配骨骼造型方法[J]. 西安交通大学学报. V36(3), 2002(3):265-269.
    [104] 王开林,李莉敏,胡庆夕,等. 基于快速成形的仿生骨建模技术[J]. 中国机械工程,2005,16(3):196-198.
    [105] 陈作炳, 钮军. 人工关节实体造型参数化设计[J]. 计算机辅助设计与图形学学报, V14(12), 2002:1188-1191.
    [106] 陈作炳. 人工关节 CAD/CAM 相关理论及其关键技术研究[D]. 武汉理工大学, 湖北武汉, 2004.
    [107] Robert P Lanza. 组织工程原理(第 2 版)[M]. 北京: 化学工业出版社, 2006.
    [108] Wei Sun, Pallavi Lal. Recent development on computer aided tissue engineering — a review[J]. V67, 2002:85–103.
    [109] Wei Sun, Andrew Darling, Binil Strarly, et al. Computer-aided tissue engineering:overview, scope and challenges[J]. Biotechnology and Applied Biochemistry. V39, 2004(2):29-47.
    [110] Wei Sun, Binil Starly, Andrew Darling, et al. Computer-aided tissue engineering: application to biomimetic modeling and design of tissue scaffolds[J]. V39, 2004(2):49-58.
    [111] 孙伟. 计算机辅助组织工程:概况、范围和挑战(第一部分)[J]. 医用生物力学, V20(1), 2005(3):45-54.
    [112] 孙伟. 计算机辅助组织工程:概况、范围和挑战(第二部分)[J]. 医用生物力学, V20(2), 2005(6):109-117.
    [113] Wei Sun. Editorial: Bio-CAD[J]. Computer-Aided Design. V37, 2005: 1095–1096.
    [114] Sun W, Starly B, Nam J, et al. Bio-CAD modeling and its applications in computer-aided tissue engineering[J],Computer Aided Design, V37, 2005:1097-1114.
    [115] Jie Cheng, Feng Lin. Approach of heterogeneous bio-modeling based on material features[J]. Computer-Aided Design, V37, 2005:1115–1126.
    [116] 颜永年, 张人佶, 崔福斋. 用于人工骨制造的喷射成形技术[J]. 中国机械工程,11(10), 2000:1116-1121.
    [117] 熊卓, 颜永年, 陈立峰. 骨组织工程细胞载体框架的两种快速成形新工艺[J]. 中国机械工程, 12(5), 2001:515-519.
    [118] Xiong Zhuo, Yan Yongnian, Wang Shenguo, et al. Fabrication of porous scaffolds for bone tissue engineering via low temperature deposition[J]. Scripta Materialia, V46(11), 2002:771-776.
    [119] Yan Yongnian, Xiong Zhuo, Hu Yunyu, et al. Layered manufacting of tissue engineering scaffolds via multi-nozzle deposition [J]. Materials Letters, 57(18), 2003:2623-2628.
    [120] 熊卓, 颜永年, 张超. PLLA TCP 复合骨组织载体框架的低温挤出成形[J]. 清华大学学报(自然科学版), V43(5), 2003:593-596
    [121] 郑卫国. 组织工程支架梯度结构的建模与实现[D]. 北京: 清华大学, 2003.
    [122] Mironv V , Boland T, Trusk T. Organ printing: computer-aided jet based 3D tissue engineering [J]. Trends in biotechnology, V21(4), 2003:157-161.
    [123] 吴永辉,李涤尘,卢秉恒. 基于 RP 的生物活性仿生制造研究[J]. 中国机械工程,2000,11(10):1090-1094.
    [124] 李祥, 李涤尘, 苏燕平. 基于快速成形的β-磷酸三钙人工骨结构设计及制造[J]. 西 安交通大学学报, V39(1), 2005:13-16.
    [125] 张涛, 王臻, 卢建熙, 等. 个体化人工骨双循环系统的仿生制造[J]. 中国矫形外科杂志. 13(5), 2005(3):355-357.
    [126] Bhashyam S, Shin K, Dutta D. An integrated CAD system for design of heterogeneous objects[J]. Rapid Prototyping Journal, V6(2), 2000: 119-135.
    [127] Cheng Yu Lin, Noboru Kikuchi, Scott J, et al. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity[J]. Journal of Biomechanics, 37, 2004:623-636.
    [128] Ola L A Harrysson, Denis R Cormier, Ketan Jajal. Custom Design and Manufacturing of Canine Knee Implant[A]. IERC 2003[C], Portland, Oregon, USA, 2003(5).
    [129] M Wehmoller, P H Warnke, C Zilian, et al. Implant design and production—a new approach by selective laser melting[J]. International Congress Series, 1281, 2005:690-695.
    [130] Lee Ming Yih, Chang Chong Ching, Lin Chao Chun, et al. Custom Implant Design for Patients with Cranial Defects[J]. IEEE Engineering in Medicine and Biology, 2002(3-4):38-43.
    [131] Lee Ming Yih, Chang Chong Ching, Lin Chao Chun, et al. T medical rapid prototyping in custom implant design for craniofacial reconstruction[A]. IEEE International Conference on Systems, Man and Cybernetics[C], V3, 2003:2903-2908.
    [132] 栾杰, 李彦生, 刘晨. 鼻整形假体的数字化三维模拟与辅助设计[J]. 中国实用美容整形外科杂志, 15(1), 2004(2):29-31.
    [133] 栾杰, 李彦生, 刘晨, 等. 个性化隆鼻假体的数字化模拟设计、制备与应用[J]. 中华整形外科杂志, 20(2), 2004(3):110-112.
    [134] 黎文献, 张刚, 赖延清, 等. 梯度功能材料的研究现状与展望[J]. 材料导报, 17(z1),2003(9):222-226.
    [135] 张雁, 刘霓生, 陈林泉, 等. 梯度功能材料物性参数的推定方法[J]. 固体火箭技术, 27(1), 2004:77-81.
    [136] 宋建丽, 葛志军, 邓琦林. 送粉激光堆焊梯度功能材料[J]. 27(2), 2006:27-31.
    [137] Siu Y K, Tan S T. Modeling the material grading and structures of heterogeneous objects for layered manufacturing[J]. Computer-Aided Design, 34, 2002: 705-716.
    [138] Jing Hua, Ying He, and Hong Qin. Multiresolution Heterogeneous Solid Modeling and Visualization Using Trivariate Simplex Splines[A]. In ACM Symposium onSolid Modeling and Applications 2004[C], The Eurographics Association, Genova, Italy, 2004.
    [139] Liu H, Maekawa T, Patrikalakis N M, et al. Methods for Feature-Based Design of Heterogeneous Solids[J].Computer-Aided Design, 36(12), 2004(10): 1141-1159.
    [140] Liu H, Patrikalakis N M, Sachs E M, et al. A Design and Post-processing System for Local Composition Control in Solid Freeform Fabrication[A]. In Proceedings of the 2003 NSF Design and Manufacturing Grantees Conference[C], Baton Rouge, LA, USA, January 2003.
    [141] Jackson T R, Cho W, Patrikalakis N M, et al. Analysis of Solid Model Representations for Heterogeneous Objects[J]. Journal of Computing and Information Science In Engineering, ASME Transactions. 2(1), 2002(3):1-10.
    [142] W. Cho, E. M. Sachs, N. M. Patrikalakis, et al. Local composition control in solid freeform fabrication[A]. In Proceedings of the 2002 NSF Design, Service and Manufacturing Grantees and Research Conference[C]. San Juan, Puerto Rico, 2002(1).
    [143] Cho W, Sachs E M, Patrikalakis N M, et al. Methods for Distributed Design and Fabrication of Parts with Local Composition Control[A]. In Proceedings of the 2001 NSF Design and Manufacturing Grantees Conference[C]. Tampa, FL, USA, 2001(1).
    [144] Liu H, Cho W, Jackson T R, et al. Algorithms for Design and Interrogation of Functionally Gradient Material Objects[A]. In Proceedings of 2000 ASME DETC/CIE, 26-th ASME Design Automation Conference[C]. Baltimore, Maryland, USA, NY:ASME, 2000(9).
    [145] Liu H. Algorithms for Design and Interrogation of Functionally Graded Material Solids[D]. Master's thesis, Massachusetts Institute of Technology, 2000 .
    [146] Jackson T R. Analysis of Functionally Graded Material Object Representation Methods[D]. PhD thesis, Massachusetts Institute of Technology, 2000.
    [147] Wu H, Sachs E M, Patrikalakis N M, et al. Distributed Design and Fabrication of Parts with Local Composition Control[A]. In Proceedings of the 2000 NSF Design and Manufacturing Grantees Conference[C], Vancouver, BC, Canada, 2000.
    [148] Jackson T R, Liu H, Patrikalakis N M, et al. Modeling and designing functionally graded material components for fabrication with local composition control[J]. Materials and Design, 20, 1999:63-75.
    [149] Sachs E M, Patrikalakis N M, Cima M J, et al. The Distributed Design andFabrication of Metal Parts and Tooling by 3D Printing[A]. In Proceedings of the 1999 NSF Design and Manufacturing Grantees Conference[C]. Long Beach, California, 1999.
    [150] Jackson T R, Patrikalakis N M, Sachs E M, et al. Modeling and Designing Components with Locally Controlled Composition[A]. In Procedings of the 1998 Solid Freeform Fabrication Symposium, The University of Texas at Austin, Austin, Texas, 1998.
    [151] NEMA. DICOM Part 1:Introduction and Overview. http://medical.nema.org/dicom/2004.html. 2006.
    [152] 秦绪佳, 欧宗瑛, 张勇, 等. 医学图像三维重建系统的数据结构表达及表面模型的构建[J]. 生物医学工程学杂志,2002,19(2):239-243.
    [153] 秦绪佳, 欧宗瑛, 纪凤欣. 三维医学图像 MT 表面重建的相关性处理及模型简化[J]. 中国生物医学工程学报,2001,20(5):398-403.
    [154] 秦绪佳, 欧宗瑛, 纪凤欣, 等. 医学图像的交互分割及三维表面重建[J].工程图学学报,2001(2):94-101.
    [155] 黄志聪, 庄天戈. DICOM 标准的发展及最新的变化[J]. 中国医疗器械杂志, 28(3), 2004:203-208.
    [156] NEMA. DICOM Part 10: Media Storage and File Format for Media Interchange. http://medical.nema.org/dicom/2004.html. 2006.
    [157] NEMA. DICOM Part 5: Data Structures and Encoding. http://medical.nema.org/dicom/2004.html. 2006.
    [158] Offis. DCMTK-DICOM Toolkit. http://dicom.offis.de/dcmtk.php.en. 2006.
    [159] MJ Dürst. Letters: additional reference to marching cubes(A). In: ACM Computer Graphics[C], 1988,22(4):72-73.
    [160] GM Nielson, B Hamann. The asymptotic decider: resolving the ambiguity in marching cubes(A). In: IEEE Proceedings of Visualization 1991(C). IEEE computer society press,1991:83-90.
    [161] BK Natarajan. On generating topologically consistent isosurfaces from uniform samples[J].Visual Computer,1994,11(1):52-62.
    [162] EV Chernyaev. Marching Cubes 33: construction of topological correct isosurfaces. Technical report CERN CN 95-17, CERN,1995. http://citeseer.ist.psu.edu/chernyaev95marching.html. 2005.
    [163] P Cignoni, F Ganovelli, C Montani, et al. Reconstruction of Topologically Correct and Adaptive Trilinear Surfaces[J]. Computers and Graphics,2000,24(3):399-418.
    [164] A Lopes,K Brodlie. Improving the robustness and accuracy of the marching cubes algorithm for isosurfacing[J]. IEEE Transactions on Visualization andComputer Graphics, 2003, 9(1):16-29.
    [165] Xia Renbo, Liu Weijun, Wang Yuechao. A Robust and Topological Correct Marching Cube Algorithm Without Look-Up Table(A). In: The Fifth International Conference on Computer and Information Technology (CIT'05), Shanghai, China,2005:565-569.
    [166] Taubin, Kobbelt. Geometric Signal Processing on Large Polygonal Meshes. SIGGRAPH 2001 Course Notes #17, Los Angeles, California, 2001.
    [167] 周昆, 鲍虎军, 石教英. 统一的数字几何处理框架[J]. 计算机学报, 25(9), 2002:1-6.
    [168] 张三元, 查红彬, 鲍虎军, 等. 数字几何处理及其应用的最新进展[J]. 计算机辅助设计与图形学学报, 17(6), 2005:1129-1138.
    [169] Taubin, Rossignac. 3D Geometry Compression. SIGGRAPH 2000 Course Notes #38, SIGGRAPH 2000, New Orleans, Louisiana, July 2000.
    [170] Kobbelt L., Campagna S., Vorsatz J., Seidel H. P.. Interactive multi-resolution modeling on arbitrary meshes[C]. In Proc. SIGGRAPH'98, 1998:105-114.
    [171] Mathieu Desbrun, Eitan Grinspun, Peter Schroder, et al. Discrete Differential Geometry: An Applied Introduction. SIGGRAPH'2005 Course Notes, SIGGRAPH 2005.
    [172] Mario Botsch, Mark Pauly, Christian Rossl, et al. Geometric Modeling Based on Triangle Meshes. SIGGRAPH 2006 Course Notes, SIGGRAPH 2006.
    [173] Manfredo P do Carmo. Differential Geometry of Curves and Surfaces[M]. Prentice Hall, 1976.
    [174] Manfredo P do Carmo. 曲线与曲面的微分几何[M]. 机械工业出版社, 北京,2005.
    [175] 吴大任. 微分几何讲义[M]. 人民教育出版社, 北京, 1981.
    [176] Cazals F, Pouget M. Estimating differential quantities using polynomial fitting of osculating jets[A]. In Symposium on Geometry Processing[C], 2003:177–187.
    [177] Petitjean S. A survey of methods for recovering quadrics in triangle meshes[J]. ACM Computing Surveys, 34(2), 2001.
    [178] Welch W, Witkin A. Free-form shape design using triangulated surfaces[A]. In Proceedings of ACM SIGGRAPH'94:247–256, ACM Press, 1994.
    [179] Goldfeather J, Interrante V. A novel cubic-order algorithm for approximating principal directions vectors[J]. ACM Transactions on Graphics, 23(1), 2004:45–63.
    [180] Taubin G. Estimating the tensor of curvature of a surface from a polyhedral approximation[A]. In Proceedings International Conference on ComputerVision'1995[C], 1995:902–907.
    [181] Page D L, Koschan A, Sun Y, et al. Robust crease detection and curvature estimation of piecewise smooth surfaces from triangle mesh approximations using normal voting[A]. In Proceedings on Computer Vision and Pattern Recongition[C], 2001.
    [182] Meyer M, Desbrun M, Schroder P, et al. Discrete differential-geometry operators for triangulated 2-manifolds[A]. In Hans-Christian Hege, Konrad Polthier, Visualization and Mathematics III[M], p35–57. Springer-Verlag, Heidelberg, 2003.
    [183] Rusinkiewicz Szymon. Estimating Curvatures and Their Derivatives on Triangle Meshes[A]. Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04)[C], 2004.
    [184] Moreton H P, Sequin C H. Functional optimization for fair surface design[A]. In Proceedings of ACM SIGGRAPH'92[C], p167–176, 1992.
    [185] Theisel Holger, Rossl Christian, Zayer Rhaleb, et al. Normal Based Estimation of the Curvature Tensor for Triangular Meshes[A]. In Proceedings of the 12th Pacific Conference on Computer Graphics and Applications (PG’04)[C]. 2004.
    [186] Taubin G. A signal processing approach to fair surface design[A]. In Proceedings of ACM SIGGRAPH' 95[C], p351–358, 1995.
    [187] Desbrun M, Meyer M, Schroder P, et al. Implicit fairing of irregular meshes using diffusion and curvature flow[A]. In Proceedings of ACM SIGGRAPH' 99[C], p317–324, 1999.
    [188] Pinkall U,Polthier K. Computing discrete minimal surfaces and their conjugates[J]. Experimental Mathematics, 2(1):15–36, 1993.
    [189] Greiner G, Loos J, Wesselink W. Data dependent thin plate energy and its use in interactive surface modeling[A]. In Proceedings of Eurographics' 96[C], p175–186, 1996.
    [190] Greiner G. Variational design and fairing of spline surfaces[A]. In Proceedings of Eurographics'94[C], p143–154, 1994.
    [191] Welch W, Witkin A. Variational surface modeling[A]. In Proceedings of ACM SIGGRAPH' 92[C], p157–166, 1992.
    [192] 彭芳瑜, 周云飞, 周济. 基于广义能量法的曲面光顺. 华中科技大学学报 (自然科学版), 30(2), 2002:5-8.
    [193] Cignoni P, Montani C, Scopigno R. A comparison of mesh simplification algorithms[J]. Computers & Graphics, p37–54, 1998.
    [194] Gotsman C, Gumhold S, Kobbelt L. Simplification and compression of 3d meshes[A]. In Tutorials on multiresolution in geometric modeling[M].Springer, 2002. (http://www.cs.technion.ac.il/~gotsman/publications.html)
    [195] Rossignac J, Borrel P. Multi-resolution 3D approximations for rendering complex scenes[A]. In Falcidieno B, Kunii T L(Editors). Modeling in Computer Graphics[M], p455–465. Springer Verlag, 1993.
    [196] Schroeder W, Zarge J, Lorensen W. Decimation of triangle meshes[A]. In Proceedings of SIGGRAPH' 92[C], p65–70, 1992.
    [197] Garland M,Heckbert PS. Surface simplification using quadric error metrics. In Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, 1997:209-216.
    [198] Hoppe H, DeRose T, Duchamp T, et al. Mesh optimization[A]. In: ACM SIGGRAPH. Anaheim, California: ACM Press, 1993:19-26.
    [199] 张必强, 邢渊, 阮雪榆. 基于特征保持和三角形优化的网格模型简化[J]. 上海交通大学学报, 2004,38(8):1373-1377.
    [200] 刘晓利, 刘则毅, 高鹏东. 基于尖特征度的边折叠简化算法. 软件学报, 16(5),2005:669-678.
    [201] Gueziec Andre. Surface simplification inside a tolerance volume, RC 20440[R]. Yorktown Heights, NY 10598: IBM Research, 1996.
    [202] Remi Ronfard, Jarek Rossignac. Full-range approximation of triangulated polyhedra[J]. Computer Graphics Forum, 1996,15(3).
    [203] Hamann B. A data reduction scheme for triangulated surfaces[J]. Computer Aided Geometric Design, 1994, 11(3): 197-214.
    [204] 白尚恕.《九章算术》注释[M]. 科学出版社, 北京, 1983.(原作者刘徽, 三国魏景元四年,公元 263 年,此年蜀汉降魏)
    [205] Catmull E., Clark J. Recursively generated B-splines Surfaces on Arbitrary topological meshes[J]. Computer Aided Design,10(6), 1978:350-355.
    [206] Doo D,Sabin M. Behaviour of recursive division surfaces near extraordinary points[J]. Computer Aided Design, 1978, 10(6):356-360.
    [207] Vàrady T, Martin R, Cox J. Reverse engineering of geometric models—an introduction[J], Computer-Aided Design,1997,29(4):255-268.
    [208] Eck Matthics,Hoppe Hugues. Automatic Reconstruction of B-Splines Surfaces of Arbitrary Topological Type[A]. In:Computer Graphics, Annual Conference Series(ACM SIGGRAPH'96)[C]. New York:ACM Press,1996:325-334.
    [209] Chaikin,G M. an algorithm for High-speed B-spline curve Generation[J]. Computer graphics and Image Processing, 1974(3):346-349.
    [210] Sabin M A. The use of piecewise forms for numerical representation of shape[D]. Budapest:Hungarian Academy of Science, 1977.
    [211] Dahmen W, Micchelli Ch. Subdivision algorithms for the generation of boxsplines[J]. Computer Aided Geometric Design, 1(2), 1984:115-129.
    [212] Boehm Wolfgang. Calculating with box splines[J]. Computer Aided Geometric Design, 1(2), 1984:149-162.
    [213] Elaine Cohen, Tom Lyche, Richard Riesenfeld. Discrete box splines and refinement algorithms[J]. Computer Aided Geometric Design, 1(2), 1984:131-148.
    [214] Hartmut Prautzsch. Generalized subdivision and convergence[J]. Computer Aided Geometric Design, 2(1-3), 1985:69-75.
    [215] Boehm Wolfgang. Triangular spline algorithms[J]. Computer Aided Geometric Design, 2(1-3), 1985:61-67.
    [216] Dahmen Wolfgang, Micchelli Charles A. On the piecewise structure of discrete box splines[J]. Computer Aided Geometric Design, 3(3), 1986:185-191.
    [217] 张永春, 达飞鹏, 宋文忠. 任意三角形网格的基于二元四次箱样条分片 C1 曲面[J]. Journal of Software(软件学报英文版), 17(10), 2006:2211?2220.
    [218] 张永春, 达飞鹏, 宋文忠. 任意三角形控制网格的二元四次箱样条曲面算法[J]. 机械工程学报, 41(2), 2005:187-193.
    [219] Schweitzer Jean E. Analysis and Application of Subdivision Surfaces[D]. University of Washington, Seattle, Washington, 1996.
    [220] Reif Ulrich. A unified approach to subdivision algorithms near extraordinary vertices[J]. Computer Aided Geometric Design, 12, 1995:153-174.
    [221] Peters J, Reif U. Analysis of Generalized B-Spline subdivision algorithms[J]. SIAM Journal of Numerical Analysis, 35(2), 1998:728–748.
    [222] Zorin D, Schroder P, Sweldens W. Interpolating Subdivision for Meshes with Arbitrary Topology[A]. In: Computer Graphics Proceedings, SIGGRAPH’96[C], 89-192, 1996.
    [223] Kobbelt L. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology[A]. In: Proceedings of Eurographics'96[C], Computer Graphics Forum, 409-420, 1996.
    [224] Kobbelt L. 3 Subdivision[A].In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH’2000[C], ACM Press, New York, 2000.
    [225] Levin Adi. Combined subdivision schemes[D].School of Mathematical Sciences Tel-Aviv University, Israel, 2000.
    [226] Levin Adi. A Combined Subdivision Scheme for Filling Polygonal Holes.
    [227] Levin Adi. A combined subdivision scheme for Filling Polygonal holes[A]. In: Denis Zorin, Peter Schroder, Tony DeRose, et al(Eds). Subdivision for Modeling and Animation[C], SIGGRAPH 2000 Course Notes, ACM Press, New York,2000.
    [228] 刘浩. 基于四边形网格的细分曲面造型基础技术研究[D]. 南京航空航天大学, 2005.
    [229] Lee Aaron WF, Sweldens Wim, Schroder Peter, et al. MAPS: Multiresolution Adaptive Parameterization of Surfaces[A]. In: Denis Zorin, Peter Schroder, Tony DeRose, et al(Eds). Subdivision for Modeling and Animation[C], SIGGRAPH 2000 Course Notes, ACM Press, New York, 2000.
    [230] DeRose Tony, Kass Michael ,Truong Tien. Subdivision surfaces in character animation[A].In: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, SIGGRAPH'98[C], 85-94, 1998, ACM Press, New York, USA.
    [231] Stam J, Loop C. Quard-triangle subdivision[J]. Computer Graphics Forum, 2003, 22(1):1-7.
    [232] Sederberg T, Zheng J, Swell D, et al. Non-Uniform recursive Subdivision Surfaces[A].In:Computer Graphics, Annual Conference Series, ACM SIGGRAPH'98[C]. 1998, 387-394, ACM Press, New York.
    [233] Zorin D. Stationary subdivision and multiresolution surface representation. Ph.D Thesis, California Institute of Technology, Pasadena, California, 1998.
    [234] Litke N, Levin A, Schr?der P. Trimming for subdivision surfaces[J]. Computer Aided Geometric Design, 2001, 18(5): 463-481.
    [235] Web3D Consortium Homepage. www.web3d.org/. 2006.
    [236] Lattice 3D Inc. www.lattice3d.com/. 2006.
    [237] WAKITA A, YAJIMA M, HARADA T, et al. XVL : A compact and qualified 3D representation based on lattice mesh and surface for the internet[A]. In: Proceedings of Web3D-VRML Conference, 2000 [C], p45–51. ACM Press, New York, 2000.
    [238] ISO/IEC. Information technology — Coding of audio-visual objects —Part 16: Animation Framework eXtension (AFX). ISO/IEC 14496-16.
    [239] Moran F, Gioia P, Steliaros M, et al. Subdivision surfaces in MPEG-4[A]. In: Proceedings of International Conference on Image Processing (IEEE ICIP 2002)[C]. V3,III5-III8.
    [240] Mika?l Bourges-Sévenier, Euee S Jang. An Introduction to the MPEG-4 Animation Framework eXtension[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 14(7), 2004:928-936.
    [241] Alain Mignot, Pierre Garneau. MPEG-4 Toward Solid Representation[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 14(7), 2004:967-974.
    [242] Yannick Maret. Implementation of MPEG-4’s Subdivision Surfaces Tools[D]. Institut de Traitement des Signaux, 2003.
    [243] HOOPS home page. www.hoops3d.com/. Tech Soft America. 2006.
    [244] OpenHSF Initiative. www.openhsf.org/. 2006.
    [245] Dassault Systemes. www.3ds.com/3dxml/. 2006.
    [246] 黄铁军,柳健. VRML 国际标准与应用指南[M]. 电子工业出版社, 北京, 1999.
    [247] Sun K Yoo, Jin Ho Jo, Sung Rim Kim, et al. Web-Based Surgical Simulation of Craniofacial CT Data. WISE 2004, LNCS 3306, p193–198, Springer-Verlag, Berlin, Heidelberg, 2004.
    [248] 张正波. 基于 X3D 的儿童髁上骨折网络辅助诊断系统[D]. 四川大学, 2005.
    [249] 郑钰琪. 基于 VRML 的网络异地协同设计的研究[D]. 2001.
    [250] ECMA. Standard ECMA-363, Universal 3D File Format, 3rd edition (June 2006). http://www.ecma-international.org/publications/standards/Ecma-363.htm/. 2006.
    [251] Akira Wakita, Takamichi Hayashi, Takashi Kanai. Using Lattice for Web-based Medical Applications[A]. WEB3D '2001[C], Paderbon, Germany. ACM Press, New York.
    [252] JT Open Community. www.jtopen.com/. 2006.
    [253] Rajagopalan, Mukund, Aziz, et al. A model for interfacing geometric modeling data with rapid prototyping systems[J]. Advances in Engineering Software, 23, 1995:89-96.
    [254] Wohlers, Terry T. Solid Modeling and Rapid Prototyping[A]. In: Handbook of Solid Modeling[M]. Donald E, LaCourse(Eds), McGraw-Hill, New York, 1995.
    [255] Rock, S J, Wozny M J. A Flexible File Format for SFF[A]. In: Solid Freeform Fabrication Symposium 1991[C], p1-12, University of Texas, Austin, 1991.
    [256] Suzuki H, Yamamoto T, Kanai T, et al. Subdivision-based Mesh Refinement for Rapid Prototyping[A]. In Proceedings of 6th IFIP TC5/WG5.2, Int. Workshop on Geometric Modelling, Fundamentals and Applications[C]. 1998, p255-266, Tokyo.
    [257] SUZUKI Hiromasa. Direct Refinement of Rapid Prototyping Models Using LSF Subdivision Scheme[A]. In: Proceedings of 8th International Rapid Prototyping Conference[C], p26-31, 2000.
    [258] 李占利, 梁栋, 李涤尘. 基于信息继承的快速分层处理算法研究[J]. 西安交通大学学报, 36(1), 2002:43-46.
    [259] 朱君, 郭戈, 颜永年. 快速成形制造中基于模型连续性的快速分层算法研究[J]. 11(5), 2000:549-555.
    [260] Sara McMains, Carlo Sequin. A Coherent Sweep Plane Slicer for LayeredManufacturing[A]. In: Proceedings of the 5th ACM SIGGRAPH Symposium on Solid Modeling and Applications[C]. 1999, Ann Arbor, Michigan. ACM Press, New York.
    [261] 缪斌和, 邓元木, 黄斐增等. 基于对应点匹配断层图像三维插值方法. 中国医学物理学, 17(1), 2000:14-16.
    [262] 戴 宁,廖文和,陈春美. STL 数据拓扑快速重建关键算法的研究.《计算机辅助图形学学报》,2005,Vol.17(11):p2447-2452.
    [263] 张 翔,廖文和,程筱胜,等. STL 格式文件的拓扑重建方法研究. 《机械科学与技术》2005,Vol.24(9):p1093-1096.
    [264] 田捷,赵明昌,何晖光. 集成化医学影像算法平台理论与实践[M]. 清华大学出版社,北京,2004(10).
    [265] 何晖光,田捷,赵明昌,等. 基于分割的三维医学图像表面重建算法. 软件学报, 13(2), 2002:219-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700